Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (24): 4969-4981.doi: 10.3864/j.issn.0578-1752.2020.24.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat

SI XuYang1(),JIA XiaoWei1(),ZHANG HongYan1,JIA YangYang1,TIAN ShiJun1,ZHANG Ke2(),PAN YanYun1()   

  1. 1College of Life Sciences, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071000, Hebei
    2College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071001, Hebei
  • Received:2020-03-23 Accepted:2020-06-02 Online:2020-12-16 Published:2020-12-28
  • Contact: Ke ZHANG,YanYun PAN E-mail:sixuyanglove@163.com;jia999666@126.com;zhangke0126@163.com;pyycell@163.com

Abstract:

【Objective】To characterize the gene family encoding phosphatidylinositol-specific phospholipase-C (PI-PLC), the gene number, structure, phylogenetic relationship and expression pattern of TaPLC genes were analyzed. In addition, we explored their relative transcription levels in various tissue and the expression pattern under drought and salt stress to further analysis the physiological role of TaPLC genes in response to abiotic stress.【Method】Based on the genome database (Ensembl Plants, http://plants.ensembl.org/index.html), TaPLC genes were identified from Triticum aestivum, and the gene structures were analyzed by some bioinformatics tools, such as Pfam, CDD and SMART. The protein sequence characteristics of the members in TaPLC family were analyzed with the online server ExPASy (http://cn.expasy.org/tools). The subcellular localization of TaPLC genes were predicted using the WoLF PSORT (https://www.genscript.com/wolf-psort.html). Phylogenic tree analysis was performed by software MEGA 7.0. The real-time PCR was used to detect the gene expression levels in different tissues under abiotic stress. 【Result】A total of 11 TaPLC genes members within the heterologous hexaploid wheat genome were identified and analyzed. All TaPLC genes have conserved X-Y catalytic domains and C2 domains, just like other plant PLC genes. Subcellular localization showed that these proteins were located in the chloroplast or mitochondria. Phylogenetic analysis revealed that all of the TaPLC genes were unevenly classified into four numbered, TaPLC1A/TaPLC1D, TaPLC2A/TaPLC2B/TaPLC2D, TaPLC3A/TaPLC3B/TaPLC3D, and TaPLC4A/TaPLC4B/TaPLC4D, which were all orthologous genes of plant PLC genes in plants, and highly conserved during evolution. However, the deletion of TaPLC1 in B subgenome indicates asymmetry evolution in different subgenomes. Further analysis of cis-regulatory elements elucidated that these members of TaPLC family shared similar elements, such as the phytohormone and the stress response cis-elements. Each PLC gene has a unique tissue expression pattern, and they are expressed mainly in roots, leaves, spikes, and gains. In addition, PLC genes mediate the response of wheat to salt and drought stresses, which are induced rapidly by salt or drought stress stimulation. 【Conclusion】The TaPLC family in Triticum aestivum contains 11 members which have conserved X-Y catalytic domains and C2 domains. Although the TaPLC genes were highly conserved, they were asymmetrically evolved in different subgenomes. They had specific expression pattern in different tissues, and were induced by salt or drought stress, which suggested TaPLC genes play a role in response to salt or drought in wheat.

Key words: Triticum aestivum, PI-PLC, salt stress, drought stress

Table 1

Comparative analysis of TaPLC gene families in wheat"

基因名称
Gene name
基因ID
Gene ID
染色体定位a
Chromosomal location
开放阅读框
Open reading frame (bp)
蛋白质b Protein
大小 Size (aa) 分子量 MW (kD) 等电点 pI
TaPLC1A TraesCS1A02G069300 1A:51700021—51707185 1758 585 66.01 6.07
TaPLC1D TraesCS1D02G071800 1D:52338417—52345805 1761 586 66.19 6.03
TaPLC2A TraesCS2A02G084000 2A:38534860—38538480 1830 609 68.5 5.91
TaPLC2B TraesCS2B02G098500 2B:58321242—58325230 1821 606 68.22 6.06
TaPLC2D TraesCS2D02G082000 2D:35259471—35263395 1824 607 68.45 5.88
TaPLC3A TraesCS4A02G109000 4A:129086595—129090166 1902 633 71.11 5.54
TaPLC3B TraesCS4B02G195200 4B:420197892—420201623 1902 633 71.00 5.75
TaPLC3D TraesCS4D02G195800 4D:340085748—340090648 1902 633 71.05 5.84
TaPLC4A TraesCS5A02G155300 5A:333407514—333413175 1773 590 65.73 6.05
TaPLC4B TraesCS5B02G153600 5B:283008744—283014326 1770 589 65.65 6.06
TaPLC4D TraesCS5D02G160300 5D:250061407—250066699 1770 589 65.65 6.06

Table 2

Subcellular localization of TaPLC protein"

基因Gene 亚细胞定位Subcellular localization
TaPLC1A 线粒体:8,叶绿体:4,细胞核:1 Mito: 8, chlo: 4, nucl: 1
TaPLC1D 线粒体:8,叶绿体:4,细胞核:1 Mito: 8, chlo: 4, nucl: 1
TaPLC2A 叶绿体:7,细胞核:3,线粒体:2.5,线粒体基质:2 Chlo: 7, nucl: 3, mito: 2.5, cyto_mito: 2
TaPLC2B 叶绿体:6,线粒体:5.5,线粒体基质:3.5,细胞核:1 Chlo: 6, mito: 5.5, cyto_mito: 3.5, nucl: 1
TaPLC2D 叶绿体:7,线粒体:4.5,线粒体基质:3,细胞核:1 Chlo: 7, mito: 4.5, cyto_mito: 3, nucl: 1
TaPLC3A 细胞质:8,细胞核:4,叶绿体:1 Cyto: 8, nucl: 4, chlo: 1
TaPLC3B 细胞质:8,细胞核:3,叶绿体:1,线粒体:1 Cyto: 8, nucl: 3, chlo: 1, mito: 1
TaPLC3D 细胞质:6,细胞核:3,线粒体:2,过氧化物:2 Cyto: 6, nucl: 3, mito: 2, pero: 2
TaPLC4A 线粒体:10,叶绿体和线粒体:6.83333,线粒体基质:5.83333,叶绿体:2.5 Mito: 10, chlo_mito: 6.83333, cyto_mito: 5.83333, chlo: 2.5
TaPLC4B 线粒体:10,叶绿体和线粒体:6.83333,线粒体基质:5.83333,叶绿体:2.5 Mito: 10, chlo_mito: 6.83333, cyto_mito: 5.83333, chlo: 2.5
TaPLC4D 线粒体:10,叶绿体和线粒体:6.83333,线粒体基质:5.83333,叶绿体:2.5 Mito: 10, chlo_mito: 6.83333, cyto_mito: 5.83333, chlo: 2.5

Fig. 1

Functional domain analysis of wheat TaPLC protein Numbers indicating positions of each domain in protein sequences"

Fig. 2

Phylogenetic analyses of PLC gene family proteins ☆: Dicots; ★: Monocots; ○: Conifer; ●: Lycophytes; □: Bryphytes; ■: Algae; △: Yeast; ▲: Mammals. Ta: Triticum aestivum; At: Arabidopsis thaliana; Gm: Glycine max; Os: Oryza sativa; Pp: Physcomitrella patens; Ps: Picea sitchensis; N: Nicotiana tabacum; Sl: Solanum licopersicum; Ld: Lilium davidii; Sb: Sorghum bicolor; Pi: Petunia integrifolia; St: Solanum tuberosum; Bn: Brassica napus; Sm: Selaginella moellendorffii; Mp: Micromonas pusilla; Ot: Ostreococcus tauri; Hs: Homo sapiens; Sp: Schizosaccharomyces pombe; Sc: Saccharomyces cerevisiae; Zm: Zea mays"

Fig. 3

Phylogenetic relationship, gene structure and motifs of the TaPLC genes A: The phylogenetic tree of TaPLC genes; B: Schematic diagram for the exon-intron organization of TaPLC基因; C: Schematic diagram for the motifs of TaPLC genes. The motif's sequence and logo diagrams are in S3 Table and S2 Fig."

Fig. 4

Putative regulatory cis-elements in the TaPLC genes promoters of wheat A: Abscisic acid (ABA)-responsive element; E: Ethylene-responsive element; G: Gibberellin-responsive element; P: Gibberellin-responsive element; B: Element involved in the MeJA-responsiveness; D and U: Auxin-responsive element; W: Wound-responsive element; L: Element involved in low-temperature responsiveness; S: MYB binding site involved in drought-inducibility; M: MYB binding site involved in light responsiveness; H: Heat shock-responsive element; R: Element involved in light responsiveness; O: Part of a light responsive element; X: WRKY protein-specific binding site, responsive to pathogen infection. The hormone response cis-elements are red letters; The stress response cis-elements are black letters"

Fig. 5

Tissue expression analysis of TaPLC gene A: RNA-seq data analysis results; B: qRT-PCR results. Lowercase letter indicates significance level (P=0.05) of each gene at different tissues"

Fig. 6

Analysis of TaPLC gene expression under salt and drought condition A: Analysis of TaPLC gene expression under drought condition; B: Analysis of TaPLC gene expression under salt condition. Asterisk indicate the significant difference (P = 0.05) compared with control"

Fig. 7

Analysis of TaPLC genes expression in drought and salt tolerance varieties under drought and salt condition A: Analysis of TaPLC genes expression in drought tolerance varieties under drought condition; B: Analysis of TaPLCs gene expression in salt tolerance varieties under salt condition. KD: Kenong 199; LD: Luohan 7#; SS: Shimai 15#; XS: Xiaoyan 60#"

[1] GONG Z, XIONG L, SHI H, YANG S, HERRERA-ESTRELLA L R, XU G, CHAO D Y, LI J, WANG P Y, QIN F, LI J, DING Y, SHI Y, WANG Y, YANG Y, GAO Y, ZHU J K. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020,63(5):635-674.
doi: 10.1007/s11427-020-1683-x pmid: 32246404
[2] 江成, 周厚君, 赵岩秋, 何辉, 楚立威, 宋学勤, 卢孟柱. 干旱和高盐胁迫下钙离子依赖核酸酶基因CDD对银腺杨84K生长发育的影响. 林业科学, 2019,55(2):33-40.
JIANG C, ZHOU H J, ZHAO Y Q, HE H, CHU L W, SONG X Q, LU M Z. Effects of CDD gene on the growth and development of Populus alba× P. glandulosa ‘84K’ in response to drought and salt stresses. Scientia Silvae Sinicae, 2019,55(2):33-40. (in Chinese)
[3] HOU Q, UFER G, BARTELS D. Lipid signalling in plant responses to abiotic stress. Plant, Cell and Environment, 2016,39(5):1029-1048.
doi: 10.1111/pce.12666 pmid: 26510494
[4] MUNNIK T, VERMEER J E. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant, Cell and Environment, 2010,33(4):655-669.
doi: 10.1111/j.1365-3040.2009.02097.x pmid: 20429089
[5] TASMA I M, BRENDEL V, WHITHAM S A, BHATTACHARYYA M K. Expression and evolution of the phosphoinositide-specific phospholipase C gene family inArabidopsis thaliana. Plant Physiology and Biochemistry, 46(7):627-637.
doi: 10.1016/j.plaphy.2008.04.015 pmid: 18534862
[6] SHI J, GONZALES R A, BHATTACHARYYA M K. Characterization of a plasma membrane-associated phosphoinositide-specific phospholipase C from soybean. The Plant Journal, 1995,8(3):381-390.
doi: 10.1046/j.1365-313x.1995.08030381.x pmid: 7550376
[7] PICAL C, KOPKA J, MULLER R B, HETHERINGTON A M, GRAY J E. Isolation of 2 cDNA clones for phosphoinositide-specific phospholipase C from epidermal peels (accession No. X95877) and guard cells (accession No. Y11931) of Nicotiana rustica (PGR 97-086). Plant Physiology, 1997,114:747-749.
doi: 10.1104/pp.114.2.747 pmid: 9235602
[8] TRIPATHY M K, TYAGI W, GOSWAMI M, KAUL T, SINGLA-PAREEK S L, DESWAL R, REDDY M K, SOPORY S K. Characterization and functional validation of tobacco PLC delta for abiotic stress tolerance. Plant Molecular Biology Reporter, 2012,30(2):488-497.
doi: 10.1007/s11105-011-0360-z
[9] LI L, WANG F, YAN P, JING W, ZHANG C, KUDLA J, ZHANG W. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice . New Phytologist, 2017,214(3):1172-1187.
doi: 10.1111/nph.14426
[10] KOPKA J, PICAL C, GRAY J E, MULLER-ROBER B. Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiology, 1998,116:239-250.
doi: 10.1104/pp.116.1.239 pmid: 9449844
[11] WANG C R, YANG A F, YUE G D, GAO Q, YIN H Y, ZHANG J R. Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta, 2008,227(5):1127-1140.
doi: 10.1007/s00425-007-0686-9
[12] PAN Y Y, WANG X, MA L G, SUN D Y. Characterization of phosphatidylinositol-specific phospholipase C (PI-PLC) from Lilium daviddi pollen. Plant and Cell Physiology, 2005,46(10):1657-1665.
doi: 10.1093/pcp/pci181 pmid: 16085656
[13] KIM Y J, KIM J E, LEE J H, LEE M H, JUNG H W, BAHK Y Y, HWANG B K, HWANG I, KIM W T. The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). FEBS Letters, 2004,556(1):127-136.
doi: 10.1016/S0014-5793(03)01388-7
[14] GNANARAJ M, UDHAYAKUMAR N, RAJIV GR, MANOHARAN K. Isolation and gene expression analysis of Phospholipase C in response to abiotic stresses from Vigna radiata (L.) Wilczek. Indian Journal of Experimental Biology, 2015,53(6):335-341.
pmid: 26155672
[15] CAO Z, ZHANG J, LI Y, XU X, LIU G, BHATTACHARRYA M K, YANG H, REN D. Preparation of polyclonal antibody specific for AtPLC4, an Arabidopsis phosphatidylinositol-specific phospholipase C in rabbits. Protein Expression and Purification, 2007,52(2):306-312.
doi: 10.1016/j.pep.2006.10.007
[16] XIA K, WANG B, ZHANG J, LI Y, YANG H, REN D. Arabidopsis phosphoinositide-specific phospholipase C 4 negatively regulates seedling salt tolerance. Plant, Cell and Environment, 2017,40(8):1317-1331.
doi: 10.1111/pce.12918 pmid: 28102910
[17] KANEHARA K, YU C Y, CHO Y, CHEONG W F, TORTA F, SHUI G, WENK M R, NAKAMURA Y. Arabidopsis AtPLC2 is a primary phosphoinositide-specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. PLoS Genetics, 2015,11(9):e1005511.
doi: 10.1371/journal.pgen.1005511 pmid: 26401841
[18] LI L, HE Y, WANG Y, ZHAO S, CHEN X, YE T, WU Y, WU Y. Arabidopsis PLC2 is involved in auxin-modulated reproductive development. The Plant Journal: for Cell and Molecular Biology, 2015,84(3):504-215.
doi: 10.1111/tpj.2015.84.issue-3
[19] ZHANG Q, VAN WIJK R, ZARZA X, SHAHBAZ M, VAN HOOREN M, GUARDIA A, SCUFFI D, GARCÍA-MATA C, VAN DEN ENDE W, HOFFMANN-BENNING S, HARING M A, LAXALT A M, MUNNIK T. Knock-down of Arabidopsis PLC5 reduces primary root growth and secondary root formation while overexpression improves drought tolerance and causes stunted root hair growth. Plant and Cell Physiology, 2018,59(10):2004-2019.
doi: 10.1093/pcp/pcy120 pmid: 30107538
[20] ZHANG Q, VAN WIJK R, SHAHBAZ M, ROELS W, SCHOOTEN B V, VERMEER J E M, ZARZA X, GUARDIA A, SCUFFI D, GARCÍA-MATA C, LAHA D, WILLIAMS P, WILLEMS L A J, LIGTERINK W, HOFFMANN-BENNING S, GILLASPY G, SCHAAF G, HARING M A, LAXALT A M, MUNNIK T. Arabidopsis phospholipase C3 is involved in lateral root initiation and ABA responses in seed germination and stomatal closure. Plant and Cell Physiology, 2018,59(3):469-486.
doi: 10.1093/pcp/pcx194 pmid: 29309666
[21] VAN WIJK R, ZHANG Q, ZARZA X, LAMERS M, MARQUEZ F R, GUARDIA A, SCUFFI D, GARCÍA-MATA C, LIGTERINK W, HARING M A, LAXALT A M, MUNNIK T. Role for Arabidopsis PLC7 in stomatal movement, seed mucilage attachment, and leaf serration. Frontiers in Plant Science, 2018,9:1721.
doi: 10.3389/fpls.2018.01721 pmid: 30542361
[22] SINGH A, KANWAR P, PANDEY A, TYAGI A K, SOPORY S K, KAPOOR S, PANDEY G K. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PLoS ONE, 2013,8(4):e62494.
doi: 10.1371/journal.pone.0062494 pmid: 23638098
[23] SINGH A, BHATNAGAR N, PANDEY A, PANDEY G K. Plant phospholipase C family: Regulation and functional role in lipid signaling. Cell Calcium, 2015,58(2):139-146.
doi: 10.1016/j.ceca.2015.04.003 pmid: 25933832
[24] POKOTYLO I, KOLESNIKOV Y, KRAVETS V, ZACHOWSKI A, RUELLAND E. Plant phosphoinositide-dependent phospholipases C: Variations around a canonical theme. Biochimie, 2014,96:144-157.
doi: 10.1016/j.biochi.2013.07.004 pmid: 23856562
[25] MELIN P M, SOMMARIN M, SANDELIUS A S, JERGIL B. Identification of Ca2+-stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes . FEBS Letters, 1987,223(1):87-91.
doi: 10.1016/0014-5793(87)80515-x pmid: 2822482
[26] MELIN P M, PICAL C, JERGIL B, SOMMARIN M. Polyphosphoinositide phospholipase C in wheat root plasma membranes, partial purification and characterization. Biochimica et Biophysica Acta, 1992,1123(2):163-169.
doi: 10.1016/0005-2760(92)90107-7 pmid: 1310875
[27] PICAL C, SANDELIUS A S, MELIN P M, SOMMARIN M. Polyphosphoinositide phospholipase C in plasma membranes of wheat (Triticum aestivum L.): Orientation of active site and activation by Ca and Mg. Plant Physiology, 1992,100(3):1296-1303.
doi: 10.1104/pp.100.3.1296 pmid: 16653120
[28] ZHANG K, JIN C, WU L, HOU M, DOU S, PAN Y. Expression analysis of a stress-related phosphoinositide-specific phospholipase C gene in wheat (Triticum aestivum L.). PLoS ONE, 2014,9(8):e105061.
doi: 10.1371/journal.pone.0105061 pmid: 25121594
[29] 吴少辉, 张学品, 杨洪强, 冯伟森. GS旱地小麦新品种-洛旱7号. 中国农业科技导报, 2009,11(S2):118-120.
WU S H, ZHANG X P, YANG H Q, FENG W S. GS dryland wheat new variety-luohan 7. Journal of Agricultural Science and Technology, 2009,11(S2):118-120. (in Chinese)
[30] 张明明, 董宝娣, 乔匀周, 赵欢, 刘孟雨, 陈骎骎, 杨红, 郑鑫. 播期、播量对旱作小麦‘小偃60’生长发育、产量及水分利用的影响. 中国生态农业学报, 2016,24(8):1095-1102.
ZHANG M M, DONG B D, QIAO Y Z, ZHAO H, LIU M Y, CHEN Q Q, YANG H, ZHEN X. Effects of sowing date and seeding density on growth, yield and water use efficiency of ‘Xiaoyan 60’ wheat under rainfed condition. Chinese Journal of Eco-Agriculture, 2016,24(8):1095-1102. (in Chinese)
[31] TASMA I M, BRENDEL V, WHITHAM S A, BHATTACHARYYA M K. Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2008,46(7):627-637.
doi: 10.1016/j.plaphy.2008.04.015
[32] SINGH A, KANWAR P, PANDEY A, TYAGI A K, SOPORY S K, KAPOOR S, PANDEY G K. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PLoS ONE, 2013,8(4):e62494.
doi: 10.1371/journal.pone.0062494 pmid: 23638098
[33] VOSSEN J H, ABD-EL-HALIEM A, FRADIN E F, VAN DEN BERG G C M, EKENGREN S K, MEIJER H J G, SEIFI A, BAI Y, TEN HAVE A, MUNNIK T, THOMMA B P H J, JOOSTEN M H A J. Identification of tomato phosphatidylinositol-specific phospholipase- C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. The Plant Journal: for Cell and Molecular Biology, 2010,62(2):224-239.
doi: 10.1111/j.1365-313X.2010.04136.x
[34] KHALIL H B, WANG Z, WRIGHT J A, RALEVSKI A, DONAYO A O, GULICK P J. Heterotrimeric Gα subunit from wheat (Triticum aestivum), GA3, interacts with the calcium-binding protein, Clo3, and the phosphoinositide-specific phospholipase C, PI-PLC1. Plant Molecular Biology, 2011,77(1/2):145-158.
doi: 10.1007/s11103-011-9801-1
[35] MORRAN S, EINI O, PYVOVARENKO T, PARENT B, SINGH R, ISMAGUL A, ELIBY S, SHIRLEY N, LANGRIDGE P, LOPATO S. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal, 2011,9(2):230-249.
doi: 10.1111/j.1467-7652.2010.00547.x
[36] HIRAYAMA T, OHTO C, MIZOGUCHI T, SHINOZAKI K. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1995,92(9):3903-3907.
doi: 10.1073/pnas.92.9.3903 pmid: 7732004
[37] LIN W H, YE R, MA H, XU Z H, XUE H W. DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments. Cell Research, 2004,14(1):34-45.
doi: 10.1038/sj.cr.7290200 pmid: 15040888
[38] TASMA I M, BRENDEL V, WHITHAM S A, BHATTACHARYYA M K. Expression and evolution of the phosphoinsitide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2008,46(7):627-637.
doi: 10.1016/j.plaphy.2008.04.015
[39] ZHAI S M, SUI Z H, YANG A F, ZHANG J R. Characterization of a novel phosphoinositide-speciWc phospholipase C from Zea mays and its expression in Escherichia coli. Biotechnology Letters, 2005,27(11):799-804.
doi: 10.1007/s10529-005-5802-y
[40] DARWISH E, TESTERINK C, KHALIL M, EL-SHIHY O, MUNNIK T. Phospholipid signaling responses in salt-stressed rice leaves. Plant Cell Physiology, 2009,50(5):986-997.
doi: 10.1093/pcp/pcp051 pmid: 19369274
[41] 邓先俊. 水稻磷脂酰肌醇特异性磷脂酶C4(OsPLC4)调节水稻渗透胁迫响应及生长发育[D]. 武汉: 华中农业大学, 2018.
DENG X J. Phosphatidylinositol-specific phosphatidylase C 4 (OsPLC4) regulates osmotic stress response and growth and development in rice[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[42] GEORGES F, DAS S, RAY H, BOCK C, NOKHRINA K, KOLLA A, KELLER W. Over-expression of Brassica napus phosphatidylinositol- phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation. Plant, Cell and Environment, 2009,32(12):1664-1681.
doi: 10.1111/j.1365-3040.2009.02027.x pmid: 19671099
[43] 杜康兮, 沈文辉, 董爱武. 表观遗传调控植物响应非生物胁迫的研究进展. 植物学报, 2018,53(5):581-593.
doi: 10.11983/CBB17143
DU K X, SHEN W H, DONG A W. Advances in epigenetic regulation of abiotic stress response in plants. Chinese Bulletin of Botany, 2018,53(5):581-593. (in Chinese)
doi: 10.11983/CBB17143
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[3] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[4] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[5] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[6] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[7] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[8] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[9] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[10] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[11] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[12] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[13] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[14] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[15] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!