Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (14): 2696-2708.doi: 10.3864/j.issn.0578-1752.2022.14.002


Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings

HU YaLi(),NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng()   

  1. College of Agriculture, Guangxi University/Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning 530004
  • Received:2022-02-27 Accepted:2022-04-24 Online:2022-07-16 Published:2022-07-26
  • Contact: Peng CHEN;


【Objective】To study the growth and physiological response of salicylic acid (SA) priming in kenaf under salt stress, and further reveal the induction pattern of SA priming on the stress-related genes in kenaf, thus provide a theoretical basis for salt tolerance study in kenaf. 【Method】Two different salt-tolerant kenaf cultivars (resistant and sensitive cultivars codenamed CP018 and CP047, respectively) were used as materials. The seeds were tested by SA priming and then subjected to hydroponics experiments to analyze the effect of SA priming on kenaf seed germination and the agronomic and physiological aspects of seedling under 150 mmol·L-1 NaCl stress, and the expression patterns of SA priming stress-related genes were analyzed by qRT-PCR. 【Result】The germination rate, germination potential and germination index of the salt-resistant cultivar CP018 were significantly improved after 0.2 mmol·L-1 SA priming, by 34.78%, 31.30% and 58.07%, respectively; the salt-susceptible cultivar CP047 also showed some improvement, by 7.50%, 10.56% and 6.23%, respectively, but did not reached the significant level. Under salt stress conditions, plant height inhibition was significantly reduced by 4.07% (CP018) and 3.91% (CP047) in the 2 cultivars by SA priming (S1) compared with un-priming (N1), and dry weight inhibition was significantly reduced by 15.50% (CP018) and 15.68% (CP047), in the 2 cultivars, respectively; fresh weight inhibition was significantly reduced by 4.46% in CP047, but not in CP018. Analysis of the root systems showed that root length inhibition was significantly reduced by 10.74% (CP018) and 10.77% (CP047) in the two cultivars, respectively, root surface area inhibition decreased by 5.09% (CP018) and 2.95% (CP047) in the two cultivars, reaching a significant level only in the salt-resistant cultivar CP018, while root activity inhibition was significantly reduced by 46.21% in the salt-susceptible cultivar CP047 and 6.56% in the salt-resistant cultivar CP018, reaching a significant level only in the salt-susceptible cultivar CP047. A grey correlation analysis of the indicators revealed that root activity was the most relevant factor influencing plants dry weight. SA priming reduced the MDA content and increased the POD and SOD enzyme activities of kenaf leaves under salt stress. Expression analysis of 12 stress-related genes showed that ACCD, APX2, SOS1, ARR2, PAL, CHIT and TIFY11 genes expression levels were significantly up-regulated after SA priming, while ERF9, ERS1, ERF.C3 and MYC2 and XTH22 expression patterns differed between the two cultivars, with XTH22 being significantly up-regulated in salt sensitive cultivar CP047 but not in the salt resistant cultivar CP018, ERS1 and MYC2 were significantly up-regulated in the salt resistant cultivar CP018 but significantly down regulated in the salt sensitive cultivar CP047, while the trend of ERF9 was opposite in the two cultivars. 【Conclusion】SA priming at a suitable concentration could significantly alleviate the growth of kenaf under salt stress, and differed in the degree and patterns of effects on different kenaf germplasm resources. SA may regulate kenaf plant response to abiotic stresses by affecting physiological processes such as antioxidant enzyme systems and mediating the expression of specific genes.

Key words: kenaf (Hibiscus cannabinus L.), seed priming, salicylic acid, antioxidant enzyme activity, salt stress

Table 1

Settings for various treatment combinations"

处理 Treatment CP018 CP047
S0 0.2 mmol·L-1 SA 0.2 mmol·L-1 SA
S1 0.2 mmol·L-1 SA +150 mmol·L-1 NaCl 0.2 mmol·L-1 SA +150 mmol·L-1 NaCl
N0 - -
N1 150 mmol·L-1 NaCl 150 mmol·L-1 NaCl

Table 2

Primer sequences for qRT-PCR"

Primer name
Forward primer (5′-3′)
Reverse primer (5′-3′)

Fig. 1

Effects of SA Seed Priming on seed germination of kenaf Different letters in the treatments represent significant differences at the 0.05 level. The same as below"

Fig. 2

Seedling morphology of kenaf after SA seed priming under salt stress"

Fig. 3

Agronomic traits of kenaf after SA seed priming under salt stress"

Fig. 4

Root system scan of kenaf after SA seed priming under NaCl stress"

Fig. 5

Root system analysis of kenaf after SA seed priming under NaCl stress"

Fig. 6

Effect of SA seed priming on root activity of kenaf plants under NaCl stress"

Table 3

Grey correlation analysis of the indicators of SA seed priming in kenaf under salt stress"

Root activity
Fresh weight
Plant height
Root total length
Root surface area
关联度 Correlation degree 0.689978 0.884894 0.900494 0.921566 0.892805
排序 Order 1 2 4 5 3

Fig. 7

Effect of SA seed priming on MDA content and antioxidant enzyme activity of kenaf leaves under NaCl stress"

Fig. 8

qRT-PCR detection of the stress-related genes"

[1] RAMESH M. Kenaf (Hibiscus cannabinus L.) fibre based bio- materials: A review on processing and properties. Progress in Materials Science, 2016, 78: 1-92.
[2] WEI F, TANG D F, LI Z Q, KASHIF M H, KHAN A, LU H, JIA R X, CHEN P. Molecular cloning and subcellular localization of six HDACs and their roles in response to salt and drought stress in kenaf (Hibiscus cannabinus L.). Biological Research, 2019, 52(1): 1-11.
doi: 10.1186/s40659-018-0209-0
[3] CUEVAS J, DALIAKOPOULOS I N, DEL MORAL F, HUESO J J, TSANIS I K. A review of soil-improving cropping systems for soil salinization. Agronomy, 2019, 9(6): 295.
doi: 10.3390/agronomy9060295
[4] 王佳丽, 黄贤金, 钟太洋, 陈志刚. 盐碱地可持续利用研究综述. 地理学报, 2011, 66(5): 673-684.
WANG J L, HUANG X J, ZHONG T Y, CHEN Z G. Review on sustainable utilization of salt-affected land. Acta Geographica Sinica, 2011, 66(5): 673-684. (in Chinese)
[5] HANIN M, EBEL C, NGOM M, LAPLAZE L, MASMOUDI K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science, 2016, 7: 1787.
[6] MITTLER R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7(9): 405-410.
doi: 10.1016/S1360-1385(02)02312-9
[7] ZHAO C Z, ZHANG H, SONG C P, ZHU J K, SHABALA S. Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 2020, 1(1): 100017.
[8] APEL K, HIRT H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399.
doi: 10.1146/annurev.arplant.55.031903.141701
[9] BRADFORD K J. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience, 1986, 21(5): 1105-1112.
[10] 杜锦, 肖萌, 郝娜娜, 曹高燚, 向春阳. 不同药剂引发对干旱胁迫下玉米种子萌发及幼苗生长的影响. 种子, 2014, 33(11): 43-46.
DU J, XIAO M, HAO N N, CAO G Y, XIANG C Y. Effects of seed priming with different agents on seed germination and seedling growth in maize (Zea mays L.) under water deficit stress. Seed, 2014, 33(11): 43-46. (in Chinese)
[11] 李秀梅, 古吉, 李亚清, 宋碧清, 孙云龙, 陈雪艳, 郑昀晔. 不同引发温度及时间对烟草种子低温萌发的影响. 种子, 2020, 39(5): 99-103.
LI X M, GU J, LI Y Q, SONG B Q, SUN Y L, CHEN X Y, ZHENG Y Y. Effects of different initiation temperature and time on low temperature germination of tobacco seeds. Seed, 2020, 39(5): 99-103. (in Chinese)
[12] 林春光, 许天委, 李国寅. 不同浓度PEG-6000对大叶榄仁种实的引发效应. 耕作与栽培, 2020, 40(3): 6-9.
LIN C G, XU T W, LI G Y. Germination effect of PEG-6000 at different concentrations on the seed of Terminalia catappa. Tillage and Cultivation, 2020, 40(3): 6-9. (in Chinese)
[13] 姚东伟, 吴凌云, 沈海斌, 田守波, 李明. 种子引发技术研究与应用进展. 上海农业学报, 2020, 36(5): 153-160.
YAO D W, WU L Y, SHEN H B, TIAN S B, LI M. Advances in research and application on seed priming technology. Acta Agriculturae Shanghai, 2020, 36(5): 153-160. (in Chinese)
[14] IBRAHIM E A. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 2016, 192: 38-46.
doi: 10.1016/j.jplph.2015.12.011
[15] RASKIN I. Role of salicylic acid in plants. Annual Review of Plant Biology, 1992, 43: 439-463.
[16] SAKO K, NGUYEN H M, SEKI M. Advances in chemical priming to enhance abiotic stress tolerance in plants. Plant and Cell Physiology, 2020, 61(12): 1995-2003.
doi: 10.1093/pcp/pcaa119
[17] 侯林欣, 吕强, 黄明, 焦念元, 尹飞, 刘领, 吕梦, 付国占. 不同温度水杨酸引发对干旱胁迫下玉米种子发芽及幼苗生理特性的影响. 中国农学通报, 2021, 37(19): 13-21.
HOU L X, LÜ Q, HUANG M, JIAO N Y, YIN F, LIU L, LÜ M, FU G Z. SA priming of maize seeds at different temperature under drought stress: Effect on seed germination and seedling physiological characteristics. Chinses Agricultural Science Bulletin, 2021, 37(19): 13-21. (in Chinese)
[18] AFZAL I, BASRA S M A, AHMAD N, CHEEMA M A, HAQ M A, KAZMI M H, IRFAN S. Enhancement of antioxidant defense system induced by hormonal priming in wheat. Cereal Research Communications, 2011, 39(3): 334-342.
doi: 10.1556/CRC.39.2011.3.3
[19] AHMAD F, KAMAL A, SINGH A, ASHFAQUE F, ALAMRI S, SIDDIQUI M H. Salicylic acid modulates antioxidant system, defense metabolites, and expression of salt transporter genes in Pisum sativum under salinity stress. Journal of Plant Growth Regulation, 2020: 1-14.
[20] AFZAL I, BASRA S M A, FAROOQ M, NAWAZ A. Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. International Journal of Agriculture and Biology, 2006, 8(1): 23-28.
[21] 朱伟, 李聪, 马斌强, 李伶俐, 马宗斌, 袁超. 水杨酸浸种对抗虫棉种子萌发的影响. 江西农业学报, 2010, 22(3): 34-36.
ZHU W, LI C, MA B Q, LI L L, MA Z M, YUAN C. Effect of seed-soaking with salicylic acid on deed germination of insect-resistant cotton. Acta Agriculturae Jiangxi, 2010, 22(3): 34-36. (in Chinese)
[22] 王铁兵, 王鹏, 蒋建军, 王芳. 不同药剂引发处理对老化玉米种子萌发及幼苗生长的影响. 中国草地学报, 2020, 42(5): 31-39.
WANG T B, WANG P, JIANG J J, WANG F. Effects of different initiators on germination and seedlings growth of aged maize seeds. Chinese Journal of Grassland, 2020, 42(5): 31-39. (in Chinese)
[23] HORVATH E, BRUNNER S, BELA K, PAPDI C, SZABADOS L, TARI I, CSISZAR J. Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Functional Plant Biology, 2015, 42(12): 1129-1140.
doi: 10.1071/FP15119
[24] CHEN P, RAN S M, LI R, HUANG Z P, QIAN J H, YU M L, ZHOU R Y. Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Molecular Breeding, 2014, 34(4): 1879-1891.
doi: 10.1007/s11032-014-0146-8
[25] 李桂荣, 程珊珊, 张少伟, 扈惠灵, 连艳会, 周瑞金, 朱自果. 葡萄抗寒相关生理生化指标灰色关联分析. 东北林业大学学报, 2018, 46(10): 40-47, 53.
LI G R, CHENG S S, ZHANG S W, HU H L, LIAN Y H, ZHOU R J, ZHU Z G. Grey correlation analysis of physi-biochemical indexes related to cold tolerance in different grapes. Journal of Northeast Forestry University, 2018, 46(10): 40-47, 53. (in Chinese)
[26] CAYUELA E, PEREZALFOCEA F, CARO M, BOLARIN M C. Priming of seeds with NaCl induces physiological changes in tomato plants grown under salt stress. Physiologia plantarum, 1996, 96(2): 231-236.
doi: 10.1111/j.1399-3054.1996.tb00207.x
[27] 杨小环, 马金虎, 郭数进, 李新基, 李盛. 种子引发对盐胁迫下高粱种子萌发及幼苗生长的影响. 中国生态农业学报, 2011, 19(1): 103-109.
doi: 10.3724/SP.J.1011.2011.00103
YANG X H, MA J H, GUO S J, LI X J, LI S. Effects of seed priming on sorghum (Sorghum bicolor L.) seed germination and seedling growth under salt stress. Chinese Journal of Eco-Agriculture, 2011, 19(1): 103-109. (in Chinese)
doi: 10.3724/SP.J.1011.2011.00103
[28] 何奇江, 李楠, 傅懋毅, 周文伟, 王波. 氯化钠胁迫对雷竹根系活力和细胞膜透性的影响. 浙江农林大学学报, 2013, 30(6): 944-949.
HE Q J, LI N, FU M Y, ZHOU W W, WANG B. Root activity and cell membrane permeability in Phyllostachys violascens with NaCl stress. Journal of Zhejiang A&F University, 2013, 30(6): 944-949. (in Chinese)
[29] 王立红, 孙影影, 李星星, 阿曼古丽•买买提阿力, 扎拉提•努布尔提拉, 张巨松. 水杨酸浸种对NaCl胁迫下棉花种子萌发和幼苗根系生长的影响. 中国农业大学学报, 2016, 21(4): 10-17.
WANG L H, SUN Y Y, LI X X, MAIMAITIALI A, NUBUERTILA Z, ZHANG J S. Effects of salicylic soaking on seed germination and root growth of cotton under stress. Journal of China Agricultural University, 2016, 21(4): 10-17. (in Chinese)
[30] 李畅, 苏家乐, 刘晓青, 何丽斯, 陈尚平, 肖政, 熊才法. 干旱胁迫对鹿角杜鹃种子萌发和幼苗生理特性的影响. 西北植物学报, 2015, 35(7): 1421-1427.
LI C, SU J L, LIU X Q, HE L S, CHEN S P, XIAO Z, XIONG C F. Effects of drought stress on seed germination and seedling physiological characteristics of Rhododendron latoucheae. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(7): 1421-1427. (in Chinese)
[31] NOREEN Z, ASHRAF M. Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. Journal of Plant Physiology, 2009, 166(16): 1764-1774.
doi: 10.1016/j.jplph.2009.05.005
[32] 姚军朋, 姚拓, 王小利. ACC脱氨酶的应用研究进展与评述. 生物技术, 2010, 20(2): 87-91.
YAO J P, YAO T, WANG X L. Research progress and application of 1-aminocyclopropane-1-carboxylate deaminase. Biotechnology, 2010, 20(2): 87-91. (in Chinese)
[33] CONTESTO C, DESBROSSES G, LEFOULON C, GILLES B, BOREL F, GALLAND M, GAMET L, VAROQUAUX F, TOURAINE B. Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Science, 2008, 175(1/2): 178-189.
doi: 10.1016/j.plantsci.2008.01.020
[34] YE H Y, DU H, TANG N, LI X H, XIONG L Z. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Molecular Biology, 2009, 71(3): 291-305.
doi: 10.1007/s11103-009-9524-8
[35] CHO S K, KIM J E, PARK J A, EOM T J, KIM W T. Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Letters, 2006, 580(13): 3136-3144.
doi: 10.1016/j.febslet.2006.04.062
[36] 张萍萍. 大丽花耐热性及化学调控机理的基础研究[D]. 苏州: 苏州大学, 2016.
ZHANG P P. Basic study on mechanisms of thermotolerance and chemical regulation in Dahlia[D]. Suzhou: Soochow University, 2016. (in Chinese)
[37] DU M, ZHAO J, TZENG D T W, LIU Y Y, DENG L, YANG T X, ZHAI Q Z, WU F M, HUANG Z, ZHOU M, WANG Q M, CHEN Q, ZHONG S L, LI C B, LI C Y. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. The Plant Cell, 2017, 29(8): 1883-1906.
doi: 10.1105/tpc.16.00953
[38] LORETI E, VAN VEEN H, PERATA P. Plant responses to flooding stress. Current Opinion in Plant Biology, 2016, 33: 64-71.
doi: 10.1016/j.pbi.2016.06.005
[39] 刘晓芬, 向理理, 殷学仁, 李方, 陈昆松. 乙烯响应因子ERF参与转基因菊花水培低氧胁迫耐受性的调控. 园艺学报, 2018, 45(1): 109-116.
LIU X F, XIANG L L, YIN X R, LI F, CHEN K S. Ethylene responsive factors ERF regulated the hypoxia response of transformed chrysanthemum lines. Acta Horticulturae Sinica, 2018, 45(1): 109-116. (in Chinese)
[40] 董翠翠, 马岩岩, 谢让金, 邓烈, 易时来, 吕强, 郑永强, 何绍兰. 柑橘CitERF9和CitAP2-7在不同逆境和外源激素处理下的表达. 园艺学报, 2016, 43(2): 239-248.
DONG C C, MA Y Y, XIE R J, DENG L, YI S L, LÜ Q, ZHENG Y Q, HE S L. Expression of two citrus AP2/ERF genes under different hormone and stress treatments. Acta Horticulturae Sinica, 2016, 43(2): 239-248. (in Chinese)
[41] 王盼盼. 细胞分裂素通过水杨酸途径调控拟南芥根发育的分子机理研究[D]. 金华: 浙江师范大学, 2021.
WANG P P. Molecular mechanism of cytokinin regulation of root development via salicylic acid signaling in Arabidopsis[D]. Jinhua: Zhejiang Normal University, 2021. (in Chinese)
[42] 陈首业. 利用西伯利亚白刺Na+/H+逆向转运蛋白基因提高转基因杨树耐盐性的研究[D]. 呼和浩特: 内蒙古大学, 2021.
CHEN S Y. Study on salt-tolerance improvement of poplar by transformation using Na+/H+ antiporter genes from Nitraria Sibirica pall[D]. Hohhot: Inner Mongolia University, 2021. (in Chinese)
[43] 刘卓毅, 于文菲, 蔡文丽, 刘子珊, 张雨, 袁媛, 伍炳华, 吕美玲. 辣椒几丁质酶类基因家族的全基因组鉴定和表达特征分析. 热带作物学报, 2021, 42(11): 3101-3110.
LIU Z Y, YU W F, CAI W L, LIU Z S, ZHANG Y, YUAN Y, WU B H, LÜ M L. Genome-wide identification and expression analysis of CTL gene family members in Capsicum annuum L. Chinese Journal of Tropical Crops, 2021, 42(11): 3101-3110. (in Chinese)
[44] 周兴元. 几种暖季型草坪草耐盐及耐荫性研究[D]. 南京: 南京林业大学, 2004.
ZHOU X Y. Study on salt and shade tolerance of warm-seasonal turfgrasses[D]. Nanjing: Nanjing Forestry University, 2004. (in Chinese)
[1] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[2] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[3] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[4] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[5] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[6] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[7] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[8] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
[9] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
[10] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[11] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[12] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
[13] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[14] SI XuYang,JIA XiaoWei,ZHANG HongYan,JIA YangYang,TIAN ShiJun,ZHANG Ke,PAN YanYun. Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat [J]. Scientia Agricultura Sinica, 2020, 53(24): 4969-4981.
[15] QIN XiuJuan,QI JingJing,DOU WanFu,CHEN ShanChun,HE YongRui,LI Qiang. Identification of Rboh Family and the Response to Hormone and Citrus Bacterial Canker in Citrus [J]. Scientia Agricultura Sinica, 2020, 53(20): 4189-4203.
Full text



No Suggested Reading articles found!