Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (4): 669-682.doi: 10.3864/j.issn.0578-1752.2020.04.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots

ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING(),JiHua TANG()   

  1. College of Agronomy, Henan Agricultural University/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
  • Received:2019-07-07 Accepted:2019-08-06 Online:2020-02-16 Published:2020-03-09
  • Contact: Dong DING,JiHua TANG E-mail:dingdong0216@hotmail.com;tangjihua1@163.com

Abstract:

【Objective】 Rice (Oryza sativa L.) is the most important food crop in China. But as a salt sensitive plant, to study the expression pattern of salt stress responding genes in rice has theoretical and practical significance. The dissection of the molecular mechanism and regulatory network in response to salt stress will contribute to salt-tolerant rice breeding. 【Method】 The rice variety Nipponbare seeds were used as experimental materials. Samples were treated with 150 mmol·L -1 NaCl for 21 days in 1/2MS medium. Small RNAs were extracted from treated and non-treaded root samples for sequencing. Differentially expressed miRNAs and tRFs (tRNA-derived RNA fragments) were identified using the cut-off of log2 fold change (log2FC) >1 or <-1, and their predicted target genes were analyzed. The sequencing results and target genes were further verified by real-time quantitative PCRs.【Result】 RPM > 500 for at least one set of data and log2 FC > 1 or <-1 were used as the cut-off threshold, and 31 differently expressed miRNAs were obtained. Among them, the expression of 8 miRNA were up-regulated and 23 miRNA were down-regulated under salt treatment. The differently expressed miRNAs belonged to 12 miRNA families. 8 of these miRNA families have been reported as salt responding ones in Arabidopsis, maize and wheat, including osa-miR397, osa-miR396, osa-miR156, osa-miR167, osa-miR1432, which were down-regulated miRNAs, and osa-miR159, osa-miR168, osa-miR164, which were up-regulated ones under salt treatment, The other 4 miRNA families, namely osa-miR1882, osa-miR1876, osa-miR1423 and osa-miR5077, have not yet been reported in relation to salt stress. 162 target genes of these 31 differentially expressed miRNAs were predicted. Under salt stress, the expression of 34-38nt tRFs were significantly enhanced in rice root, indicating these tRFs were not produced randomly, but induced by salt stress. RPM > 50 and log2 FC > 1 or <-1 were used as the threshold, 3 tRFs were detected as 5' terminal tRFs and 3 tRFs were detected as 3' terminal tRFs. These tRFs are produced from 6 tRNAs. It is suggested that these tRFs function potentially response to salt stress in rice root. 【Conclusion】 In this study, 12 miRNA families responding to salt stress were detected in rice root. Most of their target genes are transcription factors. It is suggested that these miRNAs are involved in the salt response through post-transcriptional regulation of their target genes. In addition, 8 of them were conserved salt responsive miRNAs among plant species. Furthermore, the salt responsive tRFs of rice was examined in transcriptome level. 6 tRFs induced by salt stress were identified.

Key words: Oryza sativa L., salt stress, transcriptome, miRNAs, tRFs

Table 1

qRT-PCR primer sequences of salt stress related genes in rice"

名称
Name
引物序列
Primer sequence (5'-3')
osa-miR156a-F TGACAGAAGAGAGTGAGCAC
osa-miR167f-F TGAAGCTGCCAGCATGATCTG
osa-miR396e-5p-F TCCACAGGCTTTCTTGAACTG
EPlORYSAT000373812-F GCGGATGTAGCCAAGTGGATCA
EPlORYSAT000373840-F GGATTGTAGTTCAATTGGTCAGAGC
T156-OsSPL11-F ACCATGCAAACACCACTTCA
T156-OsSPL11-R TTGGCAAGAGCTCATTTGTG
T156-OsSPL13-F GTGCCAGGTGGAGAGGTG
T156-OsSPL13-R GTCGAACTCCGTCAGCTCAT
T167-OsARF6-F AGCCTGAGTACCTCCAGCAA
T167-OsARF6-R GGTGTAGACTGAGGGGTGGA
T167-Os06g03830-F GATGACCTTCGCCACAAACT
T167-Os06g03830-R CGTCGGATCGTACGGTATCT
T396-OsGRF2-F GTTGTCCAAGGAGCACTGC
T396-OsGRF2-R GTGGGGATGGAGATGGAGAG
Os01g0810100-F ATTCTGGGCACTGTTTGGAG
Os01g0810100-R GCAACATCTTGCCATGTGAG
Os04g0531300-F TGCCCACAAGAAAGGGATAG
Os04g0531300-R GCTCCCATTCCACCACTAAG
Osβ-Actin-F GGAAGTACAGTGTCTGGATTGGAG
Osβ-Actin-R TCTTGGCTTAGCATTCTTGGGT

Fig. 1

Phenotypes of rice seedlings at 21 days under NaCl A: Salt treatment of Nipponbare; B: Non salt treatment of Nipponbare; Bar: 1 cm"

Fig. 2

Histogram of the length of small molecular RNA"

Table 2

Differentially expressed miRNAs in response to salt stress in rice"

miRNA 染色体
Chr.
起始
Start
终止
End
长度
Length
(bp)
序列
Sequence (5'-3')
NP-RPM
平均值
Average of NP-RPM
NP-Na-RPM
平均值
Average of NP-Na-RPM
Log2
(NP-Na/NP)
表达差异
Differential
expression
osa-miR397a 6 28489785 28489898 21 UCAUUGAGUGCAGCGUUGAUG 3385.00 273.09 -3.631709 下调Down
osa-miR397b 2 3280781 3280898 21 UUAUUGAGUGCAGCGUUGAUG 14209.57 1461.91 -3.280937 下调Down
osa-miR1882e-3p 10 10320904 10321044 24 GAAAUGAUCUUGGACGUAAUCUAG 3760.37 649.34 -2.533830 下调Down
osa-miR396f-5p 2 35636546 35636721 22 UCUCCACAGGCUUUCUUGAACU 1173.18 321.53 -1.867414 下调Down
osa-miR396e-5p 4 34436820 34437003 21 UCCACAGGCUUUCUUGAACUG 1173.18 321.53 -1.867414 下调Down
osa-miR156a 1 22524147 22524246 20 UGACAGAAGAGAGUGAGCAC 2155.81 688.99 -1.645684 下调Down
osa-miR156b-5p 1 4666341 4666516 20 UGACAGAAGAGAGUGAGCAC 2155.81 688.99 -1.645684 下调Down
osa-miR156c-5p 1 4665975 4666123 20 UGACAGAAGAGAGUGAGCAC 2155.81 688.99 -1.645684 下调Down
osa-miR156d 2 4512884 4513012 20 UGACAGAAGAGAGUGAGCAC 2155.81 688.99 -1.645684 下调Down
osa-miR156e 4 25026327 25026430 20 UGACAGAAGAGAGUGAGCAC 2155.81 688.99 -1.645684 下调Down
osa-miR156f-5p 8 21478230 21478415 20 UGACAGAAGAGAGUGAGCAC 2155.81 688.99 -1.645684 下调Down
osa-miR156g-5p 2 8412516 8412618 20 CGACAGAAGAGAGUGAGCAC 2155.81 688.99 -1.645684 下调Down
osa-miR156h-5p 8 21491232 21491417 20 UGACAGAAGAGAGUGAGCAC 2155.81 688.99 -1.645684 下调Down
osa-miR156i 2 24119995 24120084 20 UGACAGAAGAGAGUGAGCAC 2155.81 688.99 -1.645684 下调Down
osa-miR156j-5p 6 26554795 26554959 22 GCUCGCUCCUCUUUCUGUCAGC 2155.81 688.99 -1.645684 下调Down
osa-miR167d-5p 7 4166404 4166295 21 UGAAGCUGCCAGCAUGAUCUG 2924.08 1169.08 -1.322607 下调Down
osa-miR167e-5p 2 3742241 3742513 21 UGAAGCUGCCAGCAUGAUCUG 2924.08 1169.08 -1.322607 下调Down
osa-miR167f 10 14723044 14723156 21 UGAAGCUGCCAGCAUGAUCUG 2924.08 1169.08 -1.322607 下调Down
osa-miR167g 3 3347682 3347763 21 UGAAGCUGCCAGCAUGAUCUG 2924.08 1169.08 -1.322607 下调Down
osa-miR167h-5p 12 25480618 25480737 21 UGAAGCUGCCAGCAUGAUCUG 2924.08 1169.08 -1.322607 下调Down
osa-miR167i-5p 6 27674749 27674949 21 UGAAGCUGCCAGCAUGAUCUG 2924.08 1169.08 -1.322607 下调Down
osa-miR167j 1 32686068 32686227 21 UGAAGCUGCCAGCAUGAUCUG 2924.08 1169.08 -1.322607 下调Down
osa-miR1432-5p 7 23401702 23401810 21 AUCAGGAGAGAUGACACCGAC 485.58 219.53 -1.145259 下调Down
osa-miR159f 1 6693112 6693299 21 CUUGGAUUGAAGGGAGCUCUA 874.14 1817.05 1.055665 上调Up
osa-miR159a.1 1 17681923 17682194 21 UUUGGAUUGAAGGGAGCUCUG 15079.03 32657.51 1.114871 上调Up
osa-miR159b 1 1215030 1215217 21 UUUGGAUUGAAGGGAGCUCUG 15079.03 32657.51 1.114871 上调Up
osa-miR168a-5p 2 1553154 1553240 21 UCGCUUGGUGCAGAUCGGGAC 398.64 916.89 1.201650 上调Up
osa-miR1876 10 4833365 4833521 24 AUAAGUGGGUUUGUGGGCUGGCCC 1462.10 3609.01 1.303566 上调Up
osa-miR1423-5p 4 19715117 19715252 24 AGGCAACUACACGUUGGGCGCUCG 265.74 1720.74 2.694957 上调Up
osa-miR164e 3 10542157 10542288 21 UGGAGAAGCAGGGCACGUGAG 75.61 558.04 2.883783 上调Up
osa-miR5077 3 14094752 14094842 19 GUUCGCGUCGGGUUCACCA 93.53 856.96 3.195773 上调Up

Fig. 3

The number of detected family members per miRNA family"

Fig. 4

qRT-PCR expression analysis of salt stress miRNAs and target genes in rice NP: Non salt treatment Nipponbare; NP-Na: Salt treatment Nipponbare; * indicates difference at the 0.05 level; ** indicates difference at the 0.01 level. The same as below"

Table 3

Source tRNA of tRFs related to salt stress in rice"

来源tRNA基因编号
Gene ID of source tRNA
基因注释
Gene expression
位置
Loction
长度
Length
(bp)
序列
Sequence (5'-3')
NP-RPM
平均值
NP-RPM average value
NP-Na-RPM
平均值
NP-Na-RPM average value
Log2
(NP-Na/NP)
ENSRNA049444301 反密码子为UUC的谷氨酸
tRNA tRNA-Glu for anticodon UUC
12:25043392..25043429 38 GAAAGCCAGATAT
CCTAACCGGACTA
GACGACAATGGA
54.91457551 79.26862858 0.529560894
ENSRNA049444701 反密码子为UUC的谷氨酸
tRNA tRNA-Glu for anticodon UUC
12:2735598..2735634 37 GCCATTGTCGTCTA
GTCCGGTTAGGAT
ACCTGGCTTT
280.0756319 532.1395357 0.925988127
EPlORYSAT000373797 反密码子为UCC的谷氨酸
tRNA tRNA tRNA-Glu (UCC)
Pt:15650..15686 37 GCCCCTATCGTCTA
GTGGTTCAGGACAT
CTCTCTTTC
51.33846231 85.59087607 0.737416929
EPlORYSAT000373812 反密码子为GUG的组氨酸
tRNA tRNA-His (GUG)
Pt:81050..81087 38 GGCGGATGTAGC
CAAGTGGATCAAG
GCAGTGGATTGTG
27.04710805 62.75454797 1.214245673
EPlORYSAT000373840 反密码子为GUC的天门
冬氨酸
tRNA tRNA-Asp (GUC)
Pt:16231..16267 37 GGGATTGTAGTTC
AATTGGTCAGAGC
ACCGCCCTGTC
45.81324826 183.8090975 2.004371412
ENSRNA049445145 反密码子为CGC的丙氨酸
tRNA tRNA-Ala for anticodon CGC
8:22194244..22194280 37 GGGGACGTAGCTCATATGGTAGAGCGCTCGCTTCGCA 3.948187725 64.83354259 4.037477913
ENSRNA049444418 反密码子为UUC的谷氨酸
tRNA tRNA-Glu for anticodon UUC
12:27018602..27018639 38 TCACCCAGACGACCCGGGTTCAAATCCCGGCAATGGAA 8.877923176 86.56822355 3.285543425
ENSRNA049446755 反密码子为GCC的甘氨酸
tRNA tRNA-Gly for anticodon GCC
3:25619176..25619211 36 ACGGTACAGACCC
GGGTTCGATTCCC
GGCTGGTGCA
5.511015306 72.72375321 3.722036619
EPlORYSAT000373797 反密码子为UCC的谷氨酸
tRNA tRNA-Glu(UCC)
Pt:15686..15722 37 CAAGGAGGCAGCG
GGGATTCGACTTC
CCCTGGGGGTA
24.28546159 47.55822306 0.969601905
EPlORYSAT000373840 反密码子为GUC的天门
冬氨酸
tRNA tRNA-Asp(GUC)
Pt:16267..16304 38 CAAGGCGGAAGCT
GCGGGTTCGAGCC
CCGTCAGTCCCG
14.74937311 52.34254363 1.827330398

Table 4

Predictive target genes for differential expression of tRFs in rice salt stress"

来源tRNA基因编号
Gene ID of source tRNA
靶基因编号
Target gene ID
位置
Location
基因注释
Gene description
EPlORYSAT000373812 Os01g0810100 1:34412916..34416988 叶绿体核糖核酸酶III蛋白
Chloroplast ribonuclease III domain protein
Os10g0119300 10:1234067..1241670 FH2结构域结合肌动蛋白
Actin-binding FH2 domain containing protein
Os03g0301700 3:10621704..10625395 钙调蛋白结合蛋白磷酸酶
Calmodulin-binding protein phosphatase
Os03g0435200 3:18355628..18365524 五肽重复蛋白
Pentatricopeptide repeat domain containing protein
EPlORYSAT000373840 Os04g0531300 4:26565544..26571685 tRNA -二氢吡啶合酶蛋白
tRNA-dihydrouridine synthase domain containing protein
Os11g0593500 11:22604874..22606587 环状F-box蛋白
Cyclin-like F-box domain containing protein
Os06g0128200 6:1485977..1490634 LMBR1膜内在蛋白
LMBR1 integral membrane protein
Os03g0562200 3:20188178..20194997 环状F-box蛋白
Cyclin-like F-box domain containing protein
Os03g0860700 3:36320679..36333253 肌球蛋白Myosin
Os01g0850100 1:36540164..36545196 磷脂酸类磷脂
Phosphatidic acid phosphatase-like protein
ENSRNA049445145 Os08g0389300 8:18398361..18407618 UbiA-异戊二烯转移酶家族蛋白
UbiA prenyltransferase family domain containing protein
Os10g0464400 10:17133478..17137843 卤酸脱卤酶类水解酶蛋白
Haloacid dehalogenase-like hydrolase domain containing protein
ENSRNA049444418 Os08g0134900 8:1988346..1990818 保守假设蛋白Conserved hypothetical protein
Os01g0267800 1:9192164..9193439 丝氨酸/苏氨酸蛋白激酶蛋白
Serine/threonine protein kinase domain containing protein
Os03g0320100 3:11549564..11551862 α-N-阿拉伯呋喃糖苷酶 A
Alpha-N-arabinofuranosidase A
Os07g0484800 7:17787901..17801227 腺嘌呤磷酸核糖转移酶蛋白
Adenine phosphoribosyltransferase like protein
Os09g0333600 9:10071433..10085739 多效性耐药蛋白4 Pleiotropic drug resistance protein 4
Os09g0529700 9:20744838..20748509 液泡蛋白分选;内吞体分选转运复合体
Vacuolar protein sorting; endocyte sorting and transport complex
Os02g0250700 2:8518506..8535685 表达蛋白Expressed protein
Os12g0256600 12:8809699..8811919 保守假设蛋白Conserved hypothetical protein
Os08g0226100 8:7698342..7699299 保守假设蛋白Conserved hypothetical protein
Os05g0400200 5:19470226..19475222 逆转录转座子蛋白Ty1亚类
Retrotransposon protein Ty1-copia subclass
Os05g0126200 5:1497942..1499638 保守假设蛋白Conserved hypothetical protein
ENSRNA049446755 Os08g0387300 8:18299461..18299571 膜蛋白质Membrane protein
Os03g0320100 3:11549564..11551862 α-N-阿拉伯呋喃糖苷酶A
Alpha-N-arabinofuranosidase A
Os05g0400200 5:19470226..19475222 逆转录转座子蛋白Ty1亚类
Retrotransposon protein Ty1-copia subclass
EPlORYSAT000373840 Os03g0165300 3:3513371..3517214 保守假设蛋白Conserved hypothetical protein
Os12g0274450 12:10072058..10075165 保守假设蛋白Conserved hypothetical protein
Os04g0271700 4:11375483..11377317 玉米素葡萄糖基转移酶UDP-glycosyltransferase

Fig. 5

qRT-PCR expression analysis of salt stress tRFs and target genes in rice"

Fig. 6

The potential regulating network of salt-responsive miRNAs and tRFs in rice roots"

[1] MO J B, LI D Y, ZHANG H J . Roles of ERF transcription factors in biotic and abiotic stress response in plants. Plant Physiology Journal, 2011,47(12):1145-1154.
[2] MUNNS R, TESTER M . Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008,59(1):651-681.
[3] JONES-RHOADES M W, BARTEL D P . Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 2004,14(6):787-799.
[4] BARTEL D P . MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297.
[5] ACHKAR N P, CAMBIAGNO D A, MANAVELLA P A . AmiRNA biogenesis: A dynamic pathway. Trends in Plant Science, 2016,21(12):1034-1044.
[6] JONES-RHOADES M W, BARTEL D P, BARTEL B . MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology, 2006,57(1):19-53.
[7] KHRAIWESH B, ZHU J K, ZHU J H . Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica Et Biophysica Acta, 2012,1819(2):137-148.
[8] GAO P, BAI X, YANG L, LV D K, PAN X, LI Y, CAI H, JI W, CHEN Q, ZHU Y M . osa-miR393: A salinity- and alkaline stress-related microRNA gene. Molecular Biology Reports, 2011,38(1):237-242.
[9] YANG W, FAN T, HU X Y, CHENG T H, ZHANG M Y . Overexpressing osa-miR171c decreases salt stress tolerance in rice. Journal of Plant Biology, 2017,60(5):485-492.
[10] SUNKAR R, ZHOU X, ZHENG Y, ZHANG W, ZHU J K . Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biology, 2008,8(1):25-30.
[11] LU Y Z, FENG Z, LIU X Y, BIAN L Y, XIE H, ZHANG C L, MYSORE K S, LIANG J S . miR393 and miR390 synergistically regulate lateral root growth in rice under different conditions. BMC Plant Biology, 2018,18(1):261-273.
[12] KUMAR P, ANAYA J, MUDUNURI S B, DUTTA A . Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biology, 2014,12(1):78-92.
[13] SOBALA A, HUTVANGER G . Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdisciplinary Reviews RNA, 2011,2(6):853-862.
[14] LIAO J Y, MA L M, GUO Y H, ZHANG Y C, ZHOU H, SHAO P, CHEN Y Q, QU L H . Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS ONE, 2010,5(5):e10563.
[15] KUMAR P, KUSCU C, DUTTA A . Biogenesis and function of transfer RNA-related fragments (tRFs). Trends in Biochemical Sciences, 2016,41(8):679-689.
[16] PEDERSON T . Regulatory RNAs derived from transfer RNA? RNA, 2010,16(10):1865-1869.
[17] COLE C, SOBALA A, LU C, THATCHER S R, BOWMAN A, BROWN J M, GREEN P J, BARTON G J, HUTVAGNER G . Filtering of deep sequencing data reveals the existence of abundant Dicer- dependent small RNAs derived from tRNAs. RNA, 2009,15(12):2147-2160.
[18] YAMASAKI S, IVANOV P, HU G F, ANDERSON P . Angiogenin cleaves tRNA and promotes stress-induced translational repression. The Journal of Cell Biology, 2009,185(1):35-42.
[19] VENKATESH T, SURESH P S, TSUTSUMI R . tRFs: miRNAs in disguise. Gene, 2016,579(2):133-138.
[20] COUVILLION M T, SACHIDANANDAM R, COLLINS K . A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo. Genes Development, 2010,24(24):2742-2747.
[21] TELONIS A G, LOHER P, HONDA S, JING Y, PALAZZO J, KIRINO Y, RIGOUTSOS I . Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget, 2015,6(28):24797-24822.
[22] CHEN C J, LIU Q, ZHANG Y C, QU L H, CHEN Y Q, GUATHERET D . Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biology, 2011,8(3):538-547.
[23] KIM D, LANGMEAD B, SALZBERG S L . HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015,12(4):357-360.
[24] PERTEA M, PERTEA G M, ANTONESCU C M, CHANG T C, MENDELL J T, SALZBERG S L . Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 2015,33(3):290-295.
[25] DING D, WANG Y J, HAN M S, FU Z Y, LI W H, LIU Z H, HU Y M, TANG J H . MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS ONE, 2012,7(6):e39578.
[26] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25(4):402-408.
[27] ZHANG Q, ZHAO C Z, LI M, SUN W, LIU Y, XIA H, SUN M G, LI A Q, LI C S, ZHAO S Z, HOU L, PICIMBOM J F, WANG X J, ZHAO Y X . Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response. BMC Plant Biology, 2013,13(1):180-192.
[28] BAEV V, NAYDENOV M, VACHEV T, APOSTOLOVA E, MEHTEROV N, GOZMANVA M, MINKOV G, SBALOK G, YAHUBYAN G . Insight into small RNA abundance and expression in high- and low-temperature stress response using deep sequencing in Arabidopsis. Plant Physiology and Biochemistry, 2014,11(16):105-114.
[29] JIAN X Y, ZHANG L, LI G L, ZHANG L, WANG X J, CAO X F, FANG X H, CHEN F . Identification of novel stress-regulated microRNAs fromOryza sativa L. Genomics, 2010,95(1):47-55.
[30] 董园园, 刘秀明, 姚娜, 赵利旦, 李海燕 . 红花miR397a基因表达及对靶基因LAC2的调控作用. 西北农林科技大学学报, 2016,44(7):173-180.
DONG Y Y, LIU X M, YAO N, ZHAO L D, LI H Y . Expression of safflower miR397a gene and its role in LAC2 regulation. Journal of Northwest A&F University. 2016,44(7):173-180. (in Chinese)
[31] 庞明利 . 番茄中miR397靶基因LeLAC~(miR397)的克隆与表达分析[D]. 泰安: 山东农业大学, 2008.
PANG M L . Cloning and expression analysis of LeLAC~(miR397), the target gene of miR397 in tomato[D]. Taian: Shandong Agricultural University, 2008. (in Chinese)
[32] CHEN L, LUAN Y S, ZHAI J M . Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Reports, 2015,34(12):2013-2025.
[33] MUHAMMA A, GRUBERM Y, KEN W, ABDELALI H . An insight into microRNA156 role in salinity stress responses of Alfalfa. Frontiers in Plant Science, 2017,8(356):1-15
[34] JODDER J, DAS R, SARKAR D, BHATTACHARJEE P, KUNDU P . Distinct transcriptional and processing regulations control miR167a level in tomato during stress. RNA Biology, 2018,15(1):130-143.
[35] GUTIERREZ L, BUSSELL J D, PACURAR D I, SCHWAMBACH J, PACURAR M, BELLINI C . Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of auxin response factor transcripts and microRNA abundance. The Plant Cell, 2009,21(10):3119-3132.
[36] 王丽丽, 赵韩生, 孙化雨, 董丽莉, 娄永峰, 高志民 . 毛竹miR397和miR1432的克隆及其逆境胁迫响应表达分析. 林业科学, 2015,51(6):63-70.
WANG L L, ZHAO H S, SUN H Y, DONG L L, LOU Y F, GAO Z M . Cloning and expression analysis of miR397 and miR1432 in Phyllostachys edulis under stresses. Scientia Silvae Sinicae, 2015,51(6):63-70. (in Chinese)
[37] YIN Z J, LI Y, YU J W, LIU Y D, LI CH, HAN X L, SHEN F F . Difference in miRNA expression profiles between two cotton cultivars with distinct salt sensitivity. Molecular Biology Reports, 2012,39(4):4961-4970.
[38] LI W, CUI X, MENG Z L, HUANG H X, XIE Q, WU H, JIN H L, ZHANG D B, LIANG W Q . Transcriptional regulation of Arabidopsis miR168a and ARGONAUTE1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiology, 2012,158(3):1279-1292.
[39] LIU H H, TIAN X, LI Y J, WU C A, ZHENG C C . Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 2008,14(5):836-843.
[40] 李春贺, 阴祖军, 刘玉栋, 沈法富 . 盐胁迫条件下不同耐盐棉花miRNA差异表达研究 山东农业科学, 2009(7):12-17.
LI C H, YIN Z J, LIU Y D, SHEN F F . Differential expression of miRNA in different salt-tolerant cotton varieties under salt stress. Shandong Agricultural Sciences, 2009(7):12-17. (in Chinese)
[41] LEE Y S, SHIBATA Y, MALHOTRA A, DUTTA A . A novel class of small RNAs: tRNA-derived RNA fragments(tRFs). Genes Development, 2009,23(22):2639-2649.
[42] HORI H . Methylated nucleosides in tRNA and tRNA methyltransferases. Frontiers in Genetics, 2014,5:144.
[43] WANG Q, LEE I, REN J, AJAY S S, LEE Y S, BAO X . Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Molecular Therapy, 2013,21(2):368-379.
[44] DETZER A, ENGEL C, WUNSCHE W, SCZAKIEL G . Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells. Nucleic Acids Research, 2011,39(7):2727-2741.
[45] BABIARZ J E, RUBY J G, WANG Y, BARTEL D P, BLELLOCH R . Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Development, 2008,22(20):2773-2785.
[46] GOODARZI H, LIU X, NGUYEN H B, ZHANG S, FISH L, TAVAZOIE S . Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell, 2015,161(4):790-802.
[47] PAVON-ETERNOD M, GOMES S, GESLAIN R, DAI Q, ROSNER M R, PAN T . tRNA overexpression in breast cancer and functional consequences. Nucleic Acids Research, 2009,37(21):7268-7280.
[48] ZHOU Y, GOODENBOUR J M, GODLEY L A, WICKREMA A, PAN T . High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma. Biochemical and Biophysical Research Communication, 2009,385(2):160-164.
[1] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[2] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[3] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[4] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[5] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[6] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[7] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[8] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[9] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[10] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[11] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[12] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[13] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[14] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[15] DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!