Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (4): 669-682.doi: 10.3864/j.issn.0578-1752.2020.04.001
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING(),JiHua TANG()
[1] | MO J B, LI D Y, ZHANG H J . Roles of ERF transcription factors in biotic and abiotic stress response in plants. Plant Physiology Journal, 2011,47(12):1145-1154. |
[2] | MUNNS R, TESTER M . Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008,59(1):651-681. |
[3] | JONES-RHOADES M W, BARTEL D P . Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 2004,14(6):787-799. |
[4] | BARTEL D P . MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297. |
[5] | ACHKAR N P, CAMBIAGNO D A, MANAVELLA P A . AmiRNA biogenesis: A dynamic pathway. Trends in Plant Science, 2016,21(12):1034-1044. |
[6] | JONES-RHOADES M W, BARTEL D P, BARTEL B . MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology, 2006,57(1):19-53. |
[7] | KHRAIWESH B, ZHU J K, ZHU J H . Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica Et Biophysica Acta, 2012,1819(2):137-148. |
[8] | GAO P, BAI X, YANG L, LV D K, PAN X, LI Y, CAI H, JI W, CHEN Q, ZHU Y M . osa-miR393: A salinity- and alkaline stress-related microRNA gene. Molecular Biology Reports, 2011,38(1):237-242. |
[9] | YANG W, FAN T, HU X Y, CHENG T H, ZHANG M Y . Overexpressing osa-miR171c decreases salt stress tolerance in rice. Journal of Plant Biology, 2017,60(5):485-492. |
[10] | SUNKAR R, ZHOU X, ZHENG Y, ZHANG W, ZHU J K . Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biology, 2008,8(1):25-30. |
[11] | LU Y Z, FENG Z, LIU X Y, BIAN L Y, XIE H, ZHANG C L, MYSORE K S, LIANG J S . miR393 and miR390 synergistically regulate lateral root growth in rice under different conditions. BMC Plant Biology, 2018,18(1):261-273. |
[12] | KUMAR P, ANAYA J, MUDUNURI S B, DUTTA A . Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biology, 2014,12(1):78-92. |
[13] | SOBALA A, HUTVANGER G . Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdisciplinary Reviews RNA, 2011,2(6):853-862. |
[14] | LIAO J Y, MA L M, GUO Y H, ZHANG Y C, ZHOU H, SHAO P, CHEN Y Q, QU L H . Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS ONE, 2010,5(5):e10563. |
[15] | KUMAR P, KUSCU C, DUTTA A . Biogenesis and function of transfer RNA-related fragments (tRFs). Trends in Biochemical Sciences, 2016,41(8):679-689. |
[16] | PEDERSON T . Regulatory RNAs derived from transfer RNA? RNA, 2010,16(10):1865-1869. |
[17] | COLE C, SOBALA A, LU C, THATCHER S R, BOWMAN A, BROWN J M, GREEN P J, BARTON G J, HUTVAGNER G . Filtering of deep sequencing data reveals the existence of abundant Dicer- dependent small RNAs derived from tRNAs. RNA, 2009,15(12):2147-2160. |
[18] | YAMASAKI S, IVANOV P, HU G F, ANDERSON P . Angiogenin cleaves tRNA and promotes stress-induced translational repression. The Journal of Cell Biology, 2009,185(1):35-42. |
[19] | VENKATESH T, SURESH P S, TSUTSUMI R . tRFs: miRNAs in disguise. Gene, 2016,579(2):133-138. |
[20] | COUVILLION M T, SACHIDANANDAM R, COLLINS K . A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo. Genes Development, 2010,24(24):2742-2747. |
[21] | TELONIS A G, LOHER P, HONDA S, JING Y, PALAZZO J, KIRINO Y, RIGOUTSOS I . Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget, 2015,6(28):24797-24822. |
[22] | CHEN C J, LIU Q, ZHANG Y C, QU L H, CHEN Y Q, GUATHERET D . Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biology, 2011,8(3):538-547. |
[23] | KIM D, LANGMEAD B, SALZBERG S L . HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015,12(4):357-360. |
[24] | PERTEA M, PERTEA G M, ANTONESCU C M, CHANG T C, MENDELL J T, SALZBERG S L . Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 2015,33(3):290-295. |
[25] | DING D, WANG Y J, HAN M S, FU Z Y, LI W H, LIU Z H, HU Y M, TANG J H . MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS ONE, 2012,7(6):e39578. |
[26] | LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25(4):402-408. |
[27] | ZHANG Q, ZHAO C Z, LI M, SUN W, LIU Y, XIA H, SUN M G, LI A Q, LI C S, ZHAO S Z, HOU L, PICIMBOM J F, WANG X J, ZHAO Y X . Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response. BMC Plant Biology, 2013,13(1):180-192. |
[28] | BAEV V, NAYDENOV M, VACHEV T, APOSTOLOVA E, MEHTEROV N, GOZMANVA M, MINKOV G, SBALOK G, YAHUBYAN G . Insight into small RNA abundance and expression in high- and low-temperature stress response using deep sequencing in Arabidopsis. Plant Physiology and Biochemistry, 2014,11(16):105-114. |
[29] | JIAN X Y, ZHANG L, LI G L, ZHANG L, WANG X J, CAO X F, FANG X H, CHEN F . Identification of novel stress-regulated microRNAs fromOryza sativa L. Genomics, 2010,95(1):47-55. |
[30] | 董园园, 刘秀明, 姚娜, 赵利旦, 李海燕 . 红花miR397a基因表达及对靶基因LAC2的调控作用. 西北农林科技大学学报, 2016,44(7):173-180. |
DONG Y Y, LIU X M, YAO N, ZHAO L D, LI H Y . Expression of safflower miR397a gene and its role in LAC2 regulation. Journal of Northwest A&F University. 2016,44(7):173-180. (in Chinese) | |
[31] | 庞明利 . 番茄中miR397靶基因LeLAC~(miR397)的克隆与表达分析[D]. 泰安: 山东农业大学, 2008. |
PANG M L . Cloning and expression analysis of LeLAC~(miR397), the target gene of miR397 in tomato[D]. Taian: Shandong Agricultural University, 2008. (in Chinese) | |
[32] | CHEN L, LUAN Y S, ZHAI J M . Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Reports, 2015,34(12):2013-2025. |
[33] | MUHAMMA A, GRUBERM Y, KEN W, ABDELALI H . An insight into microRNA156 role in salinity stress responses of Alfalfa. Frontiers in Plant Science, 2017,8(356):1-15 |
[34] | JODDER J, DAS R, SARKAR D, BHATTACHARJEE P, KUNDU P . Distinct transcriptional and processing regulations control miR167a level in tomato during stress. RNA Biology, 2018,15(1):130-143. |
[35] | GUTIERREZ L, BUSSELL J D, PACURAR D I, SCHWAMBACH J, PACURAR M, BELLINI C . Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of auxin response factor transcripts and microRNA abundance. The Plant Cell, 2009,21(10):3119-3132. |
[36] | 王丽丽, 赵韩生, 孙化雨, 董丽莉, 娄永峰, 高志民 . 毛竹miR397和miR1432的克隆及其逆境胁迫响应表达分析. 林业科学, 2015,51(6):63-70. |
WANG L L, ZHAO H S, SUN H Y, DONG L L, LOU Y F, GAO Z M . Cloning and expression analysis of miR397 and miR1432 in Phyllostachys edulis under stresses. Scientia Silvae Sinicae, 2015,51(6):63-70. (in Chinese) | |
[37] | YIN Z J, LI Y, YU J W, LIU Y D, LI CH, HAN X L, SHEN F F . Difference in miRNA expression profiles between two cotton cultivars with distinct salt sensitivity. Molecular Biology Reports, 2012,39(4):4961-4970. |
[38] | LI W, CUI X, MENG Z L, HUANG H X, XIE Q, WU H, JIN H L, ZHANG D B, LIANG W Q . Transcriptional regulation of Arabidopsis miR168a and ARGONAUTE1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiology, 2012,158(3):1279-1292. |
[39] | LIU H H, TIAN X, LI Y J, WU C A, ZHENG C C . Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 2008,14(5):836-843. |
[40] | 李春贺, 阴祖军, 刘玉栋, 沈法富 . 盐胁迫条件下不同耐盐棉花miRNA差异表达研究 山东农业科学, 2009(7):12-17. |
LI C H, YIN Z J, LIU Y D, SHEN F F . Differential expression of miRNA in different salt-tolerant cotton varieties under salt stress. Shandong Agricultural Sciences, 2009(7):12-17. (in Chinese) | |
[41] | LEE Y S, SHIBATA Y, MALHOTRA A, DUTTA A . A novel class of small RNAs: tRNA-derived RNA fragments(tRFs). Genes Development, 2009,23(22):2639-2649. |
[42] | HORI H . Methylated nucleosides in tRNA and tRNA methyltransferases. Frontiers in Genetics, 2014,5:144. |
[43] | WANG Q, LEE I, REN J, AJAY S S, LEE Y S, BAO X . Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Molecular Therapy, 2013,21(2):368-379. |
[44] | DETZER A, ENGEL C, WUNSCHE W, SCZAKIEL G . Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells. Nucleic Acids Research, 2011,39(7):2727-2741. |
[45] | BABIARZ J E, RUBY J G, WANG Y, BARTEL D P, BLELLOCH R . Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Development, 2008,22(20):2773-2785. |
[46] | GOODARZI H, LIU X, NGUYEN H B, ZHANG S, FISH L, TAVAZOIE S . Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell, 2015,161(4):790-802. |
[47] | PAVON-ETERNOD M, GOMES S, GESLAIN R, DAI Q, ROSNER M R, PAN T . tRNA overexpression in breast cancer and functional consequences. Nucleic Acids Research, 2009,37(21):7268-7280. |
[48] | ZHOU Y, GOODENBOUR J M, GODLEY L A, WICKREMA A, PAN T . High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma. Biochemical and Biophysical Research Communication, 2009,385(2):160-164. |
[1] | XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605. |
[2] | LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390. |
[3] | ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274. |
[4] | LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044. |
[5] | QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101. |
[6] | WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878. |
[7] | YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911. |
[8] | ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582. |
[9] | YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278. |
[10] | PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103. |
[11] | SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010. |
[12] | LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035. |
[13] | HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708. |
[14] | ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525. |
[15] | DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60. |
|