Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (11): 2306-2314.doi: 10.3864/j.issn.0578-1752.2012.11.021

• VETERINARY SCIENCE • Previous Articles     Next Articles

Association Analysis of Three SNPs Within ANGPTL6 Gene with Growth Traits in Luxi Cattle

 LI  Ai-Min, MA  Yun, YANG  Dong-Ying, 蓝Xian-Yong , HU  Shen-Rong, LEI  Chu-Chao, ZHANG  Chun-Lei, CHEN  Hong   

  1. 1.西北农林科技大学动物科技学院,陕西杨凌 712100
    2.信阳师范学院生命科学学院,河南信阳 464000
    3.德州学院生物系,山东德州 253023
    4.江苏师范大学细胞与分子生物学研究所,江苏徐州 221116
  • Received:2011-12-31 Online:2012-06-01 Published:2012-04-24

Abstract: 【Objective】 The purpose of this study is to reveal the genetic variation characteristics of bovine ANGPTL6 gene and find several candidate molecular markers that related to growth traits of Luxi cattle, thus for accumulating some basic information for molecular breeding of Luxi cattle breed.【Method】As investigative materials blood samples collected from 183 Luxi cows were used and sequence variants within ANGPTL6 gene were detected by DNA pool sequencing and PCR-RFLP technology.【Result】The results showed that three novel SNPs within the intron region of ANGPTL6 gene were identified in Luxi cattle breed. χ2 test showed that three loci of the Luxi cattle population were all in Hardy-Weinberg equilibrium (P>0.05). Analysis of genetic diversity indicated T2359C and G3258T loci were at intermediate polymorphic status, but C2403A locus was at low polymorphic status. Further, the linkage disequilibrium and haplotypes were analyzed among three SNPs, suggested that they are all little linked. Interestingly, haplotype of TCG (wild-type) was dominant (with frequency of 44.3%). The variance analysis showed that the different genotypes of single and combined site were all significantly or extremely significantly associated with growth traits of Luxi cattle, and the growth traits of heterozygous individuals were all higher than the homozygous individuals.【Conclusion】The three novel SNPs are all significantly related to growth traits of Luxi cattle, and the heterozygous individuals are all more superior than the homozygous individuals, which suggested these results could apply to molecular breeding industry of Luxi cattle.

Key words: ANGPTL6 gene, polymorphism, association, growth trait, Luxi cattle

[1]Oike Y, Yasunaga K, Ito Y, Matsumoto S, Maekawa H, Morisada T, Arai F, Nakagata N, Takeya M, Masuho Y, Suda T. Angiopoietin- related growth factor (AGF) promotes epidermal proliferation, remodeling, and regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9494-9499.

[2]Hato T, Tabata M, Oike Y. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends in Cardiovascular Medicine, 2008, 18(1): 6-14.

[3]Kadomatsu T, Tabata M, Oike Y. Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases. The FEBS Journal, 2011, 278(4): 559-564.

[4]Legry V, Goumidi L, Huyvaert M, Cottel D, Ferrières J, Arveiler D, Bingham A, Wagner A, Ruidavets J B, Ducimetière P. Association between angiopoietin-like 6 (ANGPTL6) gene polymorphisms and metabolic syndrome-related phenotypes in the French MONICA Study. Diabetes & Metabolism, 2009, 35(4): 287-292.

[5]Oike Y, Akao M, Kubota Y, Suda T. Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends in Molecular Medicine, 2005, 11(10): 473-479.

[6]Mirzaei K, Hossein-Nezhad A, Chamari M, Shahbazi S. Evidence of a role of ANGPTL6 in resting metabolic rate and its potential application in treatment of obesity. Minerva Endocrinologica, 2011, 36(1): 13-21.

[7]Nei M, Roychoudhury A K. Sampling variances of heterozygosity and genetic distance. Genetics, 1974, 76(2): 379-390.

[8]Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(10): 5269-5273.

[9]Botstein D, White R L, Skolnick M, Davis R. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32(3): 314-331.

[10]Shi Y Y, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Research, 2005, 15(2): 97-98.

[11]Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, He L, Shi Y. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Research, 2009, 19(4): 519-523.

[12]Norton N, Williams N M, O'Donovan M C, Owen M. DNA pooling as a tool for large-scale association studies in complex traits. Animals of Medicine, 2004, 36(2): 146-152.

[13]Oike Y, Akao M, Yasunaga K, Yamauchi T, Morisada T, Ito Y, Urano T, Kimura Y, Kubota Y, Maekawa H, Miyamoto T, Miyata K, Matsumoto S, Sakai J, Nakagata N, Takeya M, Koseki H, Ogawa Y, Kadowaki T, Suda T. Angiopoietin-related growth factor antagonizes obesity and insulin resistance. Nature Medicine, 2005, 11(4): 400-408.

[14]Ingelman-Sundberg M, Sim S C. Intronic polymorphisms of cytochromes P450. Human Genomics, 2010, 4(6): 402-405.

[15]Ju H, Lim B, Kim M, Noh S M, Kim W H, Ihm C, Choi B Y, Kim Y S, Kang C. SERPINE1 intron polymorphisms affecting gene expression are associated with diffuse-type gastric cancer susceptibility. Cancer, 2010, 116(18): 4248-4255.

[16]Munshi A, Rajeshwar K, Kaul S, Chandana E, Shafi G, Anila A N, Balakrishna N, Alladi S, Jyothy A. VNTR polymorphism in intron 4 of the eNOS gene and the risk of ischemic stroke in a South Indian population. Brain Research Bulletin, 2010, 82(5-6): 247-250.

[17]Watanabe E, Buchman T G, Hirasawa H, Zehnbauer B A. Association between lymphotoxin-alpha (tumor necrosis factor-beta) intron polymorphism and predisposition to severe sepsis is modified by gender and age. Critical Care Medicine, 2010, 38(1): 181-193.

[18]Orozco G, Hinks A, Eyre S, Ke X, Gibbons L J, Bowes J, Flynn E, Martin P, Wilson A G, Bax D E, Morgan A W, Emery P, Steer S, Hocking L, Reid D M, Wordsworth P, Harrison P, Thomson W, Barton A, Worthington J. Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23. Human Molecular Genetics, 2009, 18(14): 2693-2699.

[19]Ono M, Shimizugawa T, Shimamura M, Yoshida K, Noji-Sakikawa C, Ando Y, Koishi R, Furukawa H. Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. Journal of Biological Chemistry, 2003, 278(43): 41804-41809.

[20]Ge H, Yang G, Huang L, Motola D L, Pourbahrami T, Li C. Oligomerization and regulated proteolytic processing of angiopoietin- like protein 4. Journal of Biological Chemistry, 2004, 279(3): 2038-2045.

[21]Ge H, Yang G, Yu X, Pourbahrami T, Li C. Oligomerization state-dependent hyperlipidemic effect of angiopoietin-like protein 4. Journal of Lipid Research, 2004, 45(11): 2071-2079.

[22]Ge H, Cha J Y, Gopal H, Harp C, Yu X, Repa J J, Li C. Differential regulation and properties of angiopoietin-like proteins 3 and 4. Journal of Lipid Research, 2005, 46(7): 1484-1490.

[23]Camenisch G, Pisabarro M T, Sherman D, Kowalski J, Nagel M, Hass P, Xie M H, Gurney A, Bodary S, Liang X H, Clark K, Beresini M, Ferrara N, Gerber H P. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. Journal of Biological Chemistry, 2002, 277(19): 17281-17290.

[24]Le Jan S, Amy C, Cazes A, Monnot C, Lamande N, Favier J, Philippe J, Sibony M, Gasc J M, Corvol P, Germain S. Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. American Journal of Pathology, 2003, 162(5): 1521-1528.

[25]Victor N, Ivy A, Jiang B H, Agani F H. Involvement of HIF-1 in invasion of Mum2B uveal melanoma cells. Clinical & Experimental Metastasis, 2006, 23(1): 87-96.

[26]Kaplan R, Zhang T, Hernandez M, Gan F X, Wright S D, Waters M G, Cai T Q. Regulation of the angiopoietin-like protein 3 gene by LXR. Journal of Lipid Research, 2003, 44(1): 136-143.

[27]Yoon J C, Chickering T W, Rosen E D, Dussault B, Qin Y, Soukas A, Friedman J M, Holmes W E, Spiegelman B M. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Molecular and Cellular Biology, 2000, 20(14): 5343-5349.
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[3] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[4] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[5] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[6] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[7] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[8] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[9] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[10] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[11] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
[12] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[13] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[14] CAI Ni,YAN DuoZi,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Adhesin Gene mad2 Knockout and Functional Effects on Biological Characteristics and Inducing Plant Responses in Metarhizium anisopliae [J]. Scientia Agricultura Sinica, 2021, 54(22): 4800-4812.
[15] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!