Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (18): 3484-3500.doi: 10.3864/j.issn.0578-1752.2022.18.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds

XiaoChuan LI(),ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI   

  1. Bijie Institute of Agriculture Science, Bijie 551700, Guizhou
  • Received:2022-04-12 Accepted:2022-07-07 Online:2022-09-16 Published:2022-09-22

Abstract:

【Objective】To evaluate the late blight resistance in field. To use SNP markers to analyze the genetic diversity of late blight resistance of potato germplasm and discern the genetic segments that may affect the phenotype of potato late blight resistance, and to provide a theoretical basis for the innovation and utilization of potato late blight resistant germplasm.【Method】Field resistance to late blight was evaluated in potato germplasm at multiple locations and over the course of several years. SNP markers were detected using a dd-RAD simplified genome sequencing strategy. The population genetic structure was analyzed using Admixture, principal component analysis was conducted using GCTA, a phylogenetic tree was constructed using fastTree, population genetic diversity parameters were calculated using the populations command in the Stacks package, selective sweep parameters were calculated using vcftools, protein sequences were aligned using Clustal Omega, and a proteins phylogenetic tree was drawn using MEGA6. Genome-wide association analysis was constructed using GEMMA 0.98.1 and QQ and manhattan plots were drawn using CMplot.【Result】Through years of evaluation of late blight field resistance in multiple locations, potato germplasm of 101 late blight resistant varieties (lines) and 21 susceptible varieties were obtained. A total of 8 697 602 relatively evenly distributed SNPs were obtained using dd-RAD simplified genome sequencing on these germplasms. This germplasm can be further divided into 6 populations through structural analysis, principal component analysis and phylogenetic analysis. The average nucleotide diversity (π) within the 6 populations ranged from 0.2055 to 0.2572 and the fixation index (Fst) among the six populations ranged from 0.156909 to 0.187336, revealing a relatively large genetic diversity for these germplasms. The expected heterozygosity (He) within the 6 populations ranged from 0.187 to 0.2297 and the observed heterozygosity (Ho) ranged from 0.0829 to 0.1186. The values of Ho were less than those of He in all six populations. Meanwhile, the inbreeding coefficient (Fis) for the six populations ranged from 0.2412 to 0.3554, indicating inbreeding events during the breeding process. To identify the genetic segments that may affect the phenotype of potato late blight resistance, π ratios and Fst among different late blight resistance germplasms in the whole potato genome were calculated using 20 kb as the window length and 5 kb as the step length. The 745 genetic segments which had a π ratio value in the lowest 5% and a Fst value in highest 10% were further analyzed by performing a selective sweep analysis. These selected segments contain a total of 507 genes, including 4 NBS-LRR genes. A genome-wide association analysis was also conducted, yielding 9 SNP highly associated with late blight resistance. Of the 69 genes located in the genome within 50 kb around the 9 SNPs, 15 genes were predicted to be involved in stress response, and 12 genes were predicted to be involved in removing peroxide radicals.【Conclusion】Large amount of SNPs, which are relatively evenly distributed in the potato genome, can be genotyped by dd-RAD simplified genome sequencing. Potato late blight field resistance germplasm has a large genetic diversity, but had inbreeding events in the process of breeding. Population structure analysis can reveal the genetic relationship between potato germplasms, which can further provide a theoretical basis for parental selection in breeding. Selective sweep and genome-wide association analyses help to isolate genetic segments that may affect late blight resistance traits.

Key words: potato (Solanum tuberosum L.), late blight (Phytophthora infestans), single nucleotide polymorphism (SNP), genetic diversity, selective sweep, association mapping

Table 1

The 122 potato germplasm and 2d-RAD simplified genome sequencing results"

序号
Serial
品种(系)
Varieties (lines)
数据量
Total bases (bp)
高质量序列数
HQ reads
序列比对数
Mapped reads
序列比对比
Mapping rate (%)
覆盖度
Coverage (%)
代号*
Code
1 云薯801 YunShu801 1389519882 9887037 9820720 99.33 15.86 X14
2 L0277-17 1479741228 10573903 10516208 99.45 17.45 X67
3 云薯105 YunShu105 1430954730 10217553 10151185 99.35 17.33 X65
4 会薯14号HuiShu14 1475603937 10491378 10412675 99.25 17.69 X16
5 会薯8号HuiShu8 1724226138 12327810 12244428 99.32 17.89 X59
6 毕薯2号BiShu2 1630027647 11604162 11524406 99.31 17.50 X56
7 13-10-34 1457291493 10464271 10391818 99.31 18.53 X19
8 37-47 1381932198 9859731 9801329 99.41 17.06 X20
9 Nicola 1517566095 10836793 10759790 99.29 17.89 V11
10 Katahdin 2005973730 14308809 14210061 99.31 18.08 V13
11 会薯13号HuiShu13 1513824426 10822275 10750664 99.34 16.87 X53
12 丽薯10号LiShu10 2074351050 14945235 14855932 99.40 18.44 X79
13 云薯107 YunShu107 1808600760 12934108 12849969 99.35 18.82 X62
14 86-4 1773098289 12852561 12769137 99.35 19.27 X78
15 S04-109 1553937930 11214590 11132884 99.27 17.59 X101
16 宣薯5号XuanShu5 1522850355 10889989 10826007 99.41 18.03 X70
17 11-48 1544878800 11048219 10967798 99.27 17.90 X7
18 定薯5号DingShu5 1235218653 8850250 8781613 99.22 16.64 X33
19 毕薯8号BiShu8 1849000239 13074100 12968752 99.19 17.76 X36
20 288-39 2031266196 14592056 14486152 99.27 18.60 X41
21 92-101 1427750136 10224526 10132842 99.10 16.06 X31
22 167-327 1233568926 8833599 8752753 99.08 15.32 X24
23 77-29 1607038884 11485513 11406544 99.31 18.07 X8
24 Agria 1873257894 13391597 13304811 99.35 18.36 V4
25 定薯3号DingShu3 1939569498 14050420 13959591 99.35 21.62 X95
26 鄂薯18号EShu18 1748400651 12591486 12507551 99.33 19.14 X94
27 A153 1546019631 11036891 10967645 99.37 17.67 X58
28 77-21 2340564876 16498728 16352763 99.12 27.14 X4
29 43-36 1785437622 12769189 12689774 99.38 18.40 X38
30 104-376 2081927016 15013206 14909294 99.31 19.49 X75
31 198-151 1506050649 10766415 10707633 99.45 18.30 X69
32 225-177 1428782715 10123094 10060117 99.38 17.33 X12
33 43-20 1217961666 8719306 8665729 99.39 16.04 X32
34 中薯17号ZhongShu17 1636463898 11773432 11589241 98.44 20.53 V21
35 Favorita 1749736224 12528593 12449651 99.37 19.32 V3
36 Russet Burbank 1915560153 13773752 13690282 99.39 22.08 V20
37 Norchip 1232854965 8755118 8690255 99.26 16.97 V16
38 Spunta 1701510795 12281997 12189765 99.25 17.37 V1
39 S10-557 1800904824 12904151 12826113 99.40 16.87 X74
40 S10-676 1875586428 13457582 13376099 99.39 17.68 X71
41 S04-921 1369934361 9804477 9747198 99.42 17.17 X66
42 云薯902 YunShu902 2269214694 16348796 16240617 99.34 18.44 X89
43 LZ111 1701482616 12279442 12210831 99.44 18.88 X77
44 S06-277 1976278086 14233248 14130408 99.28 18.36 X100
45 A89 1705085901 12127056 12058833 99.44 19.33 X68
46 Kennebec 1894451013 13515960 13429500 99.36 18.93 V2
47 12-9 1642531869 11661138 11584044 99.34 16.91 X55
48 云薯1号YunShu1 1932156747 13982565 13887872 99.32 20.44 X96
49 云薯505 YunShu505 2278091020 16058092 15921163 99.15 25.27 X3
50 丽薯13号LiShu13 1792673208 12943700 12860661 99.36 18.37 X90
51 宣薯6号XuanShu6 1743643143 12416240 12333510 99.33 18.19 X57
52 16-811-92 2571656553 18433648 18323584 99.40 18.79 X81
53 16-81-19 C5 1566249921 11152065 11073521 99.30 18.36 X44
54 105-148 1830419676 13169922 13060177 99.17 18.40 X72
55 YS481 2176126065 15681885 15582664 99.37 18.08 X92
56 Superior 1795602987 12872912 12799481 99.43 19.35 V12
57 毕薯10号BiShu10 1946519667 13906796 13820590 99.38 18.21 X40
58 10-61 1881900756 13451123 13366356 99.37 18.91 X64
59 32-80 1839399849 13188933 13101780 99.34 19.30 X35
60 19-182 1542493908 10949872 10868390 99.26 18.30 X9
61 19-75-22 1418241816 10277631 10215203 99.39 20.37 X48
62 33-46 1433188962 10193577 10125468 99.33 16.44 X15
63 C149 1663146900 11887115 11796792 99.24 18.77 X6
64 6-25 1966347081 14091871 13993199 99.30 19.31 X39
65 Desiree 1741237884 12436565 12357551 99.36 18.31 V5
66 Hertha 1184096367 8370420 8327303 99.48 16.57 V15
67 4-151 1457695764 10419341 10333207 99.17 17.23 X5
68 25-2 1341393498 9611717 9544222 99.30 16.70 X34
69 24-37-55 1976929830 14344412 14259611 99.41 21.19 X86
70 Chieftain 1999068759 14306469 14194123 99.21 19.47 V6
71 Shepody 1696532877 12146034 12060607 99.30 18.70 V9
72 Ranger Russet 1745461386 12518041 12422160 99.23 19.28 V18
73 Snowden 2128781160 15119156 15004489 99.24 19.65 V7
74 Felsina 2037316590 14511003 14421521 99.38 21.57 V19
75 Atlantic 1752787368 12542637 12455169 99.30 19.79 V8
76 Lenape 1054845711 7540802 7470305 99.07 17.88 V17
77 丽薯18号LiShu18 1983366639 14258000 14169149 99.38 19.30 X73
78 BP0806-30 1665025128 11779252 11694069 99.28 18.13 X60
79 BP0806-21 1712587932 12322410 12234910 99.29 17.99 X106
80 鄂薯14号EShu14 957120660 6750190 6701577 99.28 16.68 X2
81 Belchip 994979286 7074600 6985059 98.73 16.27 V14
82 Innovator 2129532228 15201441 15094352 99.30 20.18 V10
83 24-2-74 1512989658 10836722 10732355 99.04 17.65 X47
84 丽薯6号LiShu6 1335983409 9559009 9479823 99.17 18.40 X29
85 NSN8 1707356961 12237252 12148835 99.28 17.14 X98
86 YSN3 1918037115 13780834 13684547 99.30 18.49 X93
87 合作88 HeZuo88 1241992494 8892503 8826214 99.25 17.50 X49
88 cip88 1592733159 11381458 11294212 99.23 18.37 X50
89 c88 1114612254 7962710 7903628 99.26 16.30 X51
90 威芋6号WeiYu6 1698505965 12078111 11949277 98.93 17.52 X17
91 威芋7号WeiYu7 1089760050 7749041 7680101 99.11 15.71 X1
92 V2011-2 1350470763 9632054 9534464 98.99 17.40 X11
93 Z59 1266584391 9067253 9018186 99.46 18.61 X63
94 12-1-4 1493397441 10657657 10595044 99.41 18.36 X61
95 WY08002 1340769375 9582631 9512250 99.27 16.92 X52
96 11-86-90 2101533741 15105304 15001569 99.31 18.42 X83
97 青薯9号QingShu9 1995336018 14349098 14254442 99.34 18.41 X76
98 云薯401 YunShu401 1565585901 11348147 11277951 99.38 20.10 X42
99 会薯15号HuiShu15 1314918630 9407429 9347588 99.36 16.58 X30
100 0401-11 1672961841 12084421 11968695 99.04 19.40 X99
101 威薯9号WeiShu9 1728903294 12517795 12432832 99.32 19.66 X97
102 H3 1367316783 9812205 9723683 99.10 17.92 X54
103 2005-1 1671491790 12050460 11974544 99.37 17.86 X104
104 23-61-259 1225347075 8768959 8702442 99.24 15.53 X25
105 19-61-96 2114742438 15292497 15184121 99.29 20.07 X87
106 27-81-72 1291962231 9201567 9126131 99.18 17.03 X28
107 会薯16号HuiShu16 1872061542 13363101 13282357 99.40 19.22 X37
108 川芋A50 ChuanYuA50 1426170996 10109290 10017617 99.09 17.12 X13
109 23-13-5 1264771449 9051622 8975710 99.16 16.74 X27
110 23-57-63 1244052630 8919865 8861964 99.35 16.49 X26
111 黔芋7号QianYu7 1345688424 9563048 9495424 99.29 18.20 X10
112 22-91-24 1732358151 12397229 12322974 99.40 18.39 X85
113 18-81-325 1247259735 8913644 8805094 98.78 16.25 X21
114 22-92-256 1175470803 8422225 8337731 99.00 16.58 X22
115 18-91-127 1660783212 11832737 11752580 99.32 18.56 X45
116 27-3-52 2069760663 14913871 14796774 99.21 18.70 X82
117 200-10-50 1721414934 12260394 12144291 99.05 19.31 X18
118 225-10-21 1145114208 8192235 8107691 98.97 15.94 X23
119 22-83-38 1928771919 13864980 13742071 99.11 18.21 X88
120 278-10-74 2072509092 14889774 14797496 99.38 18.15 X80
121 24-79-59 1460479347 10417428 10343662 99.29 17.79 X46
122 22-69-90 1375713009 9810708 9739261 99.27 17.58 X43

Table 2

SNP identification in the 122 potato germplasm"

SNP类型SNP type 数目Number 占比Percentage (%)
外显子区域Exotic total 同义突变Synonymous SNP 182507 2.10
非同义突变Nonsynonymous SNP 209566 2.41
获得终止密码子的 SNP Stopgain 4602 0.05
丢失终止密码子的 SNP Stoploss 569 0.01
总计Total 397244 4.57
拼接接头区域Splicing 1762 0.02
内含子区域Intronic 970743 11.16
基因间区域Intergenic 6650230 76.46
5′UTR区域5′UTR 46263 0.53
3′UTR区域3′UTR 98348 1.13
UTR5; UTR3 29 0.00
转录起始位点上游1 kb的区域Upstream 1 kb 247351 2.84
转录终止位点下游1 kb的区域Downstream 1 kb 251705 2.89
其他Others 33956 0.39
总计Total 8697602 100

Fig. 1

SNP density heat map from 2d-RAD simplified genome sequencing Heat map is displayed in 1 Mb window size, with SNP density color bar on the right side"

Fig. 2

Population structure analysis of the 122 potato germplasm A: The cv error plot with K-value ranging from 2-20 in population structure analysis; B: Population structure with K-value ranging from 2-20; C: Principal component analysis of the 122 potato germplasm; D: Phylogenetic tree of 122 potato genotypes"

Table 3

Genetic diversity parameters within the population"

群体 Population 核苷酸多样性 Pi (π) 观测杂合度 Obs Het (Ho) 期望杂合度 Exp Het (He) 近交系数 Fis
0.2055 0.0829 0.187 0.2858
0.2572 0.1186 0.2297 0.3319
0.2137 0.091 0.1913 0.2716
0.2188 0.1051 0.1942 0.2412
0.2098 0.0918 0.1898 0.2692
0.2319 0.0838 0.2124 0.3554

Table 4

The matrix of fixation index (Fst) among populations"

群体 Population II III IV V VI
I 0.159407 0.172889 0.172479 0.174660 0.165741
II 0.163408 0.156909 0.176573 0.170987
III 0.170947 0.183461 0.158484
IV 0.187336 0.159748
V 0.160706

Fig. 3

Selective sweep analysis A: Chromosomal distribution of 745 selected genetic segments that may affect potato late blight resistance traits; B: GO terms with most genes and the No. of genes in the terms; C: Phylogenetic tree of 4 NBS-LRR genes and the cloned late blight resistance (R) genes"

Fig. 4

Genome-wide association analysis A: Manhattan plot of -log10(P) of each SNPs in potato genome; B: QQ plot of expected -log10(P) and observed -log10(P) of each SNP; C: GO terms with most genes which located nearby the highly associated SNPs"

[1] KAMOUN S. Nonhost resistance to Phytophthora: Novel prospects for a classical problem. Current Opinion in Plant Biology, 2001, l4: 295-300.
[2] GUO L, ZHU X Q, HU C H, RISTAINO J B. Genetic structure of Phytophthora infestans populations in China indicates multiple migration events. Phytopathology, 2010, 100(10): 997.
doi: 10.1094/PHYTO-05-09-0126
[3] 杨露, 王勇, 吴石平. 贵州马铃薯晚疫病菌群体遗传多样性分析. 贵州农业科学, 2019, 47(3): 64-67.
YANG L, WANG Y, WU S P. Genetic diversity analysis of Phytophthora infestans population in Guizhou province. Guizhou Agriculture Science, 2019, 47(3): 64-67. (in Chinese)
[4] YUEN J E, ANDERSSON B. What is the evidence for sexual reproduction of Phytophthora infestans in Europe? Plant Pathology, 2013, 62(3): 485-491.
doi: 10.1111/j.1365-3059.2012.02685.x
[5] VAN DER LEE T, TESTA A, VAN'T KLOOSTER J, VAN DEN BERG-VELTHUIS G, GOVERS F. Chromosomal deletion in isolates of Phytophthora infestans correlates with virulence on R3, R10, and R11 potato lines. Molecular Plant-Microbe Interactions, 2001, 14(12): 1444-1452.
doi: 10.1094/MPMI.2001.14.12.1444
[6] PARK T H, VLEESHOUWERS V G A A, JACOBSEN E, VAN DER VOSSEN E, VISSER R G F. Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): A perspective of cisgenesis. Plant Breeding, 2009, 128(2): 109-117.
doi: 10.1111/j.1439-0523.2008.01619.x
[7] VAN DER VOSSEN E A, GROS J, SIKKEMA A, MUSKENS M, WOUTERS D, WOLTERS P, PEREIRA A, ALLEFS S. The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. The Plant Journal, 2005, 44(2): 208-222.
doi: 10.1111/j.1365-313X.2005.02527.x
[8] BALLVORA A, ERCOLANO M R, WEISS J, MEKSEM K, BORMANN C A, OBERHAGEMANN P, SALAMINI F, GEBHARDT C. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. The Plant Journal, 2002, 30(3): 361-371.
doi: 10.1046/j.1365-313X.2001.01292.x
[9] LOKOSSOU A A, PARK T H, VAN ARKEL G, ARENS M, RUYTER-SPIRA C, MORALES J, WHISSON S C, BIRCH P R, VISSER R G, JACOBSEN E, VAN DER VOSSEN E A. Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Molecular Plant-Microbe Interactions, 2009, 22(6): 630-641.
doi: 10.1094/MPMI-22-6-0630
[10] HUANG S, VAN DER VOSSEN E A, KUANG H, VLEESHOUWERS V G, ZHANG N, BORM T J, VAN ECK H J, BAKER B, JACOBSEN E, VISSER R G. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. The Plant Journal, 2005, 42: 251-261.
doi: 10.1111/j.1365-313X.2005.02365.x
[11] LI G, HUANG S, GUO X, LI Y, YANG Y, GUO Z, KUANG H, RIETMAN H, BERGERVOET M, VLEESHOUWERS V G, VAN DER VOSSEN E A, QU D, VISSER R G, JACOBSEN E, VOSSEN J H. Cloning and characterization of R3b; Members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Molecular Plant-Microbe Interactions, 2011, 24(10): 1132-1142.
doi: 10.1094/MPMI-11-10-0276
[12] VOSSEN J H, VAN ARKEL G, BERGERVOET M, JO K R, JACOBSEN E, VISSER R G. The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. Theoretical and Applied Genetics, 2016, 129(9): 1785-1796.
[13] VAN DER VOSSEN E, SIKKEMA A, HEKKERT B T, GROS J, STEVENS P, MUSKENS M, WOUTERS D, PEREIRA A, STIEKEMA W, ALLEFS S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. The Plant Journal, 2003, 36: 867-882.
doi: 10.1046/j.1365-313X.2003.01934.x
[14] SONG J, BRADEEN J M, NAESS S K, RAASCH J A, WIELGUS S M, HABERLACH G T, LIU J, KUANG H, AUSTIN-PHILLIPS S, BUELL C R, HELGESON J P, JIANG J. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9128-9133.
[15] VLEESHOUWERS V G, RIETMAN H, KRENEK P, CHAMPOURET N, YOUNG C, OH S K, WANG M, BOUWMEESTER K, VOSMAN B, VISSER R G, JACOBSEN E, GOVERS F, KAMOUN S, VAN DER VOSSEN E A. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE, 2008, 3: e2875.
doi: 10.1371/journal.pone.0002875
[16] WANG M, ALLEFS S, VAN DEN BERG R G, VLEESHOUWERS V G, VAN DER VOSSEN E A, VOSMAN B. Allele mining in Solanum: Conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical and Applied Genetics, 2008, 116(7): 933-943.
doi: 10.1007/s00122-008-0725-3
[17] FOSTER S J, PARK T H, PEL M, BRIGNETI G, SLIWKA J, JAGGER L, VAN DER VOSSEN E, JONES J D. Rpi-vnt1.1, a Tm-22 homolog from Solanum venturii, confers resistance to potato late blight. Molecular Plant- Microbe Interactions, 2009, 22: 589-600.
doi: 10.1094/MPMI-22-5-0589
[18] ŚLIWKA J, ŚWIĄTEK M, TOMCZYŃSKA I, STEFAŃCZYK E, CHMIELARZ M, ZIMNOCH- GUZOWSKA E. Influence of genetic background and plant age on expression of the potato late blight resistance gene Rpi-phu1during incompatible interactions with Phytophthora infestans. Plant Pathology, 2013, 62(5): 1072-1080.
doi: 10.1111/ppa.12018
[19] WITEK K, JUPE F, WITEK A I, BAKER D, CLARK M D, JONES J D. Accelerated cloning of a potato late blight-resistance gene using Ren Seq and SMRT sequencing. Nature Biotechnology, 2016, 34: 656-660.
doi: 10.1038/nbt.3540
[20] HERMSEN J G T H, RAMANNA M S. Double-bridge hybrids of Solanum bulbocastanum and cultivars of Solanum tuberosum. Euphytica, 1973, 22(3): 457-466.
doi: 10.1007/BF00036641
[21] HAVERKORT A J, BOONEKAMP P M, HUTTEN R, JACOBSEN E, LOTZ L A P, KESSELG J T, VOSSEN J H, VISSER R G F. Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: Scientific and societal advances in the DuRPh project. Potato Research, 2016, 59(1): 35-66.
doi: 10.1007/s11540-015-9312-6
[22] PETERSON B K, WEBER J N, KAY E H, FISHER H S, HOEKSTRA H E. Double digest RADseq: An inexpensive method for De Novo SNP discovery and genotyping in model and non-model species. PLoS ONE, 2012, 7(5): e37135.
doi: 10.1371/journal.pone.0037135
[23] SEVERN-ELLIS A A, SCHEBEN A, NEIK TX, SAAD NSM, PRADHAN A, BATLEY J. Genotyping for species identification and diversity assessment using double-digest restriction site-associated DNA sequencing (ddRAD-Seq). Methods in Molecular Biology, 2020, 2107: 159-187.
[24] CHEN S, ZHOU Y, CHEN Y, GU J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): i884-i890.
[25] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.
doi: 10.1093/bioinformatics/btp324
[26] POTATO GENOME SEQUENCING CONSORTIUM. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475: 189-195.
doi: 10.1038/nature10158
[27] PHAM G M, HAMILTON J P, WOOD J C, BURKE J T, ZHAO H, VAILLANCOURT B, OU S, JIANG J, BUELL C R. Construction of a chromosome-scale long-read reference genome assembly for potato. GigaScience, 2020, 9(9): giaa100.
doi: 10.1093/gigascience/giaa100
[28] ZHU P, HE L, LI Y, HUANG W, XI F, LIN L, ZHI Q, ZHANG W, TANG Y T, GENG C, LU Z, XU X. OTG- snpcaller: An optimized pipeline based on TMAP and GATK for SNP calling from ion torrent data. PLoS ONE, 2014, 9(5): e97507.
doi: 10.1371/journal.pone.0097507
[29] WANG K, LI M, HAKONARSON H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38(16): e164.
doi: 10.1093/nar/gkq603
[30] YANG J, LEE S H, GODDARD M E, VISSCHER P M. GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88(1): 76-82.
doi: 10.1016/j.ajhg.2010.11.011
[31] PRICE M N, DEHAL P S, ARKIN A P. FastTree 2--Approximately maximum-likelihood trees for large alignments. PLoS ONE, 2010, 5(3): e9490.
doi: 10.1371/journal.pone.0009490
[32] ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 2009, 19: 1655-1664.
doi: 10.1101/gr.094052.109
[33] DAVEY J W, HOHENLOHE P A, ETTER P D, BOONE J Q, CATCHEN J M, BLAXTER M L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 2011, 12(7): 499-510.
doi: 10.1038/nrg3012
[34] DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R, 1000 GENOMES PROJECT ANALYSIS GROUP. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.
doi: 10.1093/bioinformatics/btr330
[35] RAUDVERE U, KOLBERG L, KUZMIN I, ARAK T, ADLER P, PETERSON H, VILO J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists. Nucleic Acids Research, 2019, 47(W1): 191-198.
[36] SIEVERS F, WILM A, DINEEN D, GIBSON T J, KARPLUS K, LI W, LOPEZ R, MCWILLIAM H, REMMERT M, SÖDING J, THOMPSON J D, HIGGINS D G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 2011, 7: 539.
doi: 10.1038/msb.2011.75
[37] TAMURA K, STECHER G, PETERSON D, FILIPSKI A, KUMAR S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 2013, 30: 2725-2729.
doi: 10.1093/molbev/mst197
[38] ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 2012, 44(7): 821-824.
doi: 10.1038/ng.2310
[39] UITDEWILLIGEN J G, WOLTERS A M, D’HOOP B B, BORM T J, VISSER R G, VAN ECK H J. A next- generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS ONE, 2013, 8: e62355.
doi: 10.1371/journal.pone.0062355
[40] WANG S, MEYER E, MCKAY J K, MATZ M V. 2b-rad: A simple and flexible method for genome-wide genotyping. Nature Methods, 2012, 9: 808-810.
doi: 10.1038/nmeth.2023
[41] VOS P G, PAULO M J, VOORRIPS R E, VISSER R G, VAN ECK H J, VAN EEUWIJK F A. Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. Theoretical and Applied Genetics, 2017, 130: 123-135.
doi: 10.1007/s00122-016-2798-8
[42] D'HOOP B B, PAULO M J, KOWITWANICH K, SENGERS M, VISSER R G, VAN ECK H J, VAN EEUWIJK F A. Population structure and linkage disequilibrium unravelled in tetraploid potato. Theoretical and Applied Genetics, 2010, 121: 1151-1170.
doi: 10.1007/s00122-010-1379-5
[43] SIMKO I, COSTANZO S, HAYNES K G, CHRIST B J, JONES R W. Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theoretical and Applied Genetics, 2004, 108: 217-224.
doi: 10.1007/s00122-003-1431-9
[44] DUAN Y, DUAN S, XU J, ZHENG J, HU J, LI X, LI B, LI G, JIN L. Late blight resistance evaluation and genome- wide assessment of genetic diversity in wild and cultivated potato species. Frontiers in Plant Science, 2021, 12: 710468.
doi: 10.3389/fpls.2021.710468
[45] WANG Y, RASHID MAR, LI X, YAO C, LU L, BAI J, LI Y, XU N, YANG Q, ZHANG L, BRYAN GJ, SUI Q PAN Z. Collection and evaluation of genetic diversity and population structure of potato landraces and varieties in China. Frontiers in Plant Science, 2019, 10: 139.
doi: 10.3389/fpls.2019.00139
[46] HIRSCH C N, HIRSCH C D, FELCHER K, COOMBS J, ZARKA D, VAN DEYNZE A, DE JONG W, VEILLEUX R E, JANSKY S, BETHKE P, DOUCHES D S, BUELL C R. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3-Genes Genomes Genetics, 2013, 3(6): 1003-1013.
[47] ABOU-TALEB E M, ABOSHOSHA S M, EL-SHERIF E M, EL-KOMY M H. Genetic diversity among late blight resistant and susceptible potato genotypes. Saudi Journal of Biological Sciences, 2010, 17(2): 133-138.
doi: 10.1016/j.sjbs.2010.02.006
[48] HUANG X H, HAN B. Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology, 2014, 65: 531-551.
doi: 10.1146/annurev-arplant-050213-035715
[49] LI X, XU J, DUAN S, BIAN C, HU J, SHEN H, LI G, JIN L. Pedigree-based deciphering of genome-wide conserved patterns in an elite potato parental line. Frontiers in Plant Science, 2018, 9: 690.
doi: 10.3389/fpls.2018.00690
[50] DUAN Y, LIU J, BIAN C, DUAN S, XU J, JIN, L. Construction of fingerprinting and analysis of genetic diversity with SSR markers for eighty-eight approved potato cultivars (Solanum tuberosum L.) in China. Acta Agronomica Sinica, 2009, 35: 1451-1457.
doi: 10.3724/SP.J.1006.2009.01451
[51] DUAN Y, LIU J, XU J, BIAN C, DUAN S, PANG W, HU J, LI G, JIN L. DNA fingerprinting and genetic diversity analysis with simple sequence repeat markers of 217 potato cultivars (Solanum tuberosum L.) in China. American Journal of Potato Research, 2018, 96: 21-32.
doi: 10.1007/s12230-018-9685-6
[52] PLAISTED R, HOOPES R. The past record and future prospects for the use of exotic potato germplasm. American Journal of Potato Research, 1989, 66: 603-627.
[53] 隋启君. 中国马铃薯育种对策浅见. 中国马铃薯, 2001, 15(5): 259-264.
SUI Q J. Some suggestions of improving the work if potato breeding in China. China Potato, 2001, 15(5): 259-264. (in Chinese)
[54] NEI M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(12): 3321-3323.
[55] NEI M. F-statistics and analysis of gene diversity in subdivided populations. Annals of Human Genetics, 1977, 41(2): 225-233.
doi: 10.1111/j.1469-1809.1977.tb01918.x
[56] ZHOU Q, TANG D, HUANG W, YANG Z, ZHANG Y, HAMILTON J P, VISSER R, BACHEM C, BUELL C R, ZHANG Z, ZHANG C, HUANG S. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics, 2020, 52(10): 1018-1023.
doi: 10.1038/s41588-020-0699-x
[57] NEI M, MILLER J C. A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics, 1990, 125(4): 873-879.
doi: 10.1093/genetics/125.4.873
[58] HOLSINGER K E, WEIR B S. Genetics in geographically structured populations: Defining, estimating and interpreting F(ST). Nature Reviews Genetics, 2009, 10(9): 639-650.
doi: 10.1038/nrg2611
[59] NIELSEN R, WILLIAMSON S, KIM Y, HUBISZ M J, CLARK A G, BUSTAMANTE C. Genomic scans for selective sweeps using SNP data. Genome Research, 2005, 15(11): 1566-1575.
doi: 10.1101/gr.4252305
[60] ZENG L, TU X L, DAI H, HAN F M, LU B S, WANG M S, NANAEI H A, TAJABADIPOUR A, MANSOURI M, LI X L, JI L L, IRWIN D M, ZHOU H, LIU M, ZHENG H K, ESMAILIZADEH A, WU D D. Whole genomes and transcriptomes reveal adaptation and domestication of pistachio. Genome Biology, 2019, 20(1): 79.
doi: 10.1186/s13059-019-1686-3
[61] LU K, WEI L, LI X, WANG Y, WU J, LIU M, ZHANG C, CHEN Z, XIAO Z, JIAN H, CHENG F, ZHANG K, DU H, CHENG X, QU C, QIAN W, LIU L, WANG R, ZOU Q, YING J, XU X, MEI J, LIANG Y, CHAI YR, TANG Z, WAN H, NI Y, HE Y, LIN N, FAN Y, SUN W, LI N N, ZHOU G, ZHENG H, WANG X, PATERSON A H, LI J. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nature Communications, 2019, 10(1): 1154.
doi: 10.1038/s41467-019-09134-9
[62] WU D, LIANG Z, YAN T, XU Y, XUAN L, TANG J, ZHOU G, LOHWASSER U, HUA S, WANG H, CHEN X, WANG Q, ZHU L, MAODZEKA A, HUSSAIN N, LI Z, LI X, SHAMSI IH, JILANI G, WU L, ZHENG H, ZHANG G, CHALHOUB B, SHEN L, YU H, JIANG L. Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Molecular Plant, 2019, 12(1): 30-43.
doi: 10.1016/j.molp.2018.11.007
[63] SU T, WANG W, LI P, ZHANG B, LI P, XIN X, SUN H, YU Y, ZHANG D, ZHAO X, WEN C, ZHOU G, WANG Y, ZHENG H, YU S, ZHANG F. A genomic variation map provides insights into the genetic basis of spring Chinese cabbage (Brassica rapa ssp. pekinensis) selection. Molecular Plant, 2018, 11(11): 1360-1376.
doi: 10.1016/j.molp.2018.08.006
[64] SUN J, MA D, TANG L, ZHAO M, ZHANG G, WANG W, SONG J, LI X, LIU Z, ZHANG W, XU Q, ZHOU Y, WU J, YAMAMOTO T, DAI F, LEI Y, LI S, ZHOU G, ZHENG H, XU Z, CHEN W. Population genomic analysis and De Novo assembly reveal the origin of weedy rice as an evolutionary game. Molecular Plant, 2019, 12(5): 632-647.
doi: 10.1016/j.molp.2019.01.019
[65] SIMKO I, HAYNES K G, EWING E E, COSTANZO S, CHRIST B J, JONES R W. Mapping genes for resistance to Verticillium alboatrum in tetraploid and diploid potato populations using haplotype association tests and genetic linkage analysis. Molecular Genetics and Genomics, 2004, 271: 522-531.
doi: 10.1007/s00438-004-1010-z
[66] SCHÖNHALS E M, DING J, RITTER E, PAULO M J, CARA N, TACKE E, HOFFERBERT H R, LÜBECK J, STRAHWALD J, GEBHARDT C. Physical mapping of QTL for tuber yield, starch content and starch yield in tetraploid potato (Solanum tuberosum L.) by means of genome wide genotyping by sequencing and the 8.3 K SolCAP SNP array. BMC Genomics, 2017, 18(1): 642.
doi: 10.1186/s12864-017-3979-9
[67] SCHUMACHER C, THÜMECKE S, SCHILLING F, KÖHL K, KOPKA J, SPRENGER H, HINCHA D K, WALTHER D, SEDDIG S, PETERS R, ZUTHER E, HAAS M, HORN R. Genome-wide approach to identify quantitative trait loci for drought tolerance in tetraploid potato (Solanum tuberosum L.). International Journal of Molecular Sciences, 2021, 22(11): 6123.
doi: 10.3390/ijms22116123
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[3] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[4] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[5] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[6] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[7] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[8] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[9] ZHANG MaoNing,HUANG BingYan,MIAO LiJuan,XU Jing,SHI Lei,ZHANG ZhongXin,SUN ZiQi,LIU Hua,QI FeiYan,DONG WenZhao,ZHENG Zheng,ZHANG XinYou. Genetic Analysis of Peanut Kernel Traits in a Nested-crossing Population by Major Gene Plus Polygenes Mixed Model [J]. Scientia Agricultura Sinica, 2021, 54(13): 2916-2930.
[10] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[11] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[12] ShuGuang LI,YongCe CAO,JianBo HE,WuBin WANG,GuangNan XING,JiaYin YANG,TuanJie ZHAO,JunYi GAI. Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1743-1755.
[13] ZaiDong LIU,Shan MENG,JianBo HE,GuangNan XING,WuBin WANG,TuanJie ZHAO,JunYi GAI. A Comparative Study on Linkage and Association QTL Mapping for Seed Isoflavone Contents in a Recombinant Inbred Line Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1756-1772.
[14] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[15] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!