Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (18): 3484-3500.doi: 10.3864/j.issn.0578-1752.2022.18.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
XiaoChuan LI(),ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI
[1] | KAMOUN S. Nonhost resistance to Phytophthora: Novel prospects for a classical problem. Current Opinion in Plant Biology, 2001, l4: 295-300. |
[2] |
GUO L, ZHU X Q, HU C H, RISTAINO J B. Genetic structure of Phytophthora infestans populations in China indicates multiple migration events. Phytopathology, 2010, 100(10): 997.
doi: 10.1094/PHYTO-05-09-0126 |
[3] | 杨露, 王勇, 吴石平. 贵州马铃薯晚疫病菌群体遗传多样性分析. 贵州农业科学, 2019, 47(3): 64-67. |
YANG L, WANG Y, WU S P. Genetic diversity analysis of Phytophthora infestans population in Guizhou province. Guizhou Agriculture Science, 2019, 47(3): 64-67. (in Chinese) | |
[4] |
YUEN J E, ANDERSSON B. What is the evidence for sexual reproduction of Phytophthora infestans in Europe? Plant Pathology, 2013, 62(3): 485-491.
doi: 10.1111/j.1365-3059.2012.02685.x |
[5] |
VAN DER LEE T, TESTA A, VAN'T KLOOSTER J, VAN DEN BERG-VELTHUIS G, GOVERS F. Chromosomal deletion in isolates of Phytophthora infestans correlates with virulence on R3, R10, and R11 potato lines. Molecular Plant-Microbe Interactions, 2001, 14(12): 1444-1452.
doi: 10.1094/MPMI.2001.14.12.1444 |
[6] |
PARK T H, VLEESHOUWERS V G A A, JACOBSEN E, VAN DER VOSSEN E, VISSER R G F. Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): A perspective of cisgenesis. Plant Breeding, 2009, 128(2): 109-117.
doi: 10.1111/j.1439-0523.2008.01619.x |
[7] |
VAN DER VOSSEN E A, GROS J, SIKKEMA A, MUSKENS M, WOUTERS D, WOLTERS P, PEREIRA A, ALLEFS S. The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. The Plant Journal, 2005, 44(2): 208-222.
doi: 10.1111/j.1365-313X.2005.02527.x |
[8] |
BALLVORA A, ERCOLANO M R, WEISS J, MEKSEM K, BORMANN C A, OBERHAGEMANN P, SALAMINI F, GEBHARDT C. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. The Plant Journal, 2002, 30(3): 361-371.
doi: 10.1046/j.1365-313X.2001.01292.x |
[9] |
LOKOSSOU A A, PARK T H, VAN ARKEL G, ARENS M, RUYTER-SPIRA C, MORALES J, WHISSON S C, BIRCH P R, VISSER R G, JACOBSEN E, VAN DER VOSSEN E A. Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Molecular Plant-Microbe Interactions, 2009, 22(6): 630-641.
doi: 10.1094/MPMI-22-6-0630 |
[10] |
HUANG S, VAN DER VOSSEN E A, KUANG H, VLEESHOUWERS V G, ZHANG N, BORM T J, VAN ECK H J, BAKER B, JACOBSEN E, VISSER R G. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. The Plant Journal, 2005, 42: 251-261.
doi: 10.1111/j.1365-313X.2005.02365.x |
[11] |
LI G, HUANG S, GUO X, LI Y, YANG Y, GUO Z, KUANG H, RIETMAN H, BERGERVOET M, VLEESHOUWERS V G, VAN DER VOSSEN E A, QU D, VISSER R G, JACOBSEN E, VOSSEN J H. Cloning and characterization of R3b; Members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Molecular Plant-Microbe Interactions, 2011, 24(10): 1132-1142.
doi: 10.1094/MPMI-11-10-0276 |
[12] | VOSSEN J H, VAN ARKEL G, BERGERVOET M, JO K R, JACOBSEN E, VISSER R G. The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. Theoretical and Applied Genetics, 2016, 129(9): 1785-1796. |
[13] |
VAN DER VOSSEN E, SIKKEMA A, HEKKERT B T, GROS J, STEVENS P, MUSKENS M, WOUTERS D, PEREIRA A, STIEKEMA W, ALLEFS S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. The Plant Journal, 2003, 36: 867-882.
doi: 10.1046/j.1365-313X.2003.01934.x |
[14] | SONG J, BRADEEN J M, NAESS S K, RAASCH J A, WIELGUS S M, HABERLACH G T, LIU J, KUANG H, AUSTIN-PHILLIPS S, BUELL C R, HELGESON J P, JIANG J. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9128-9133. |
[15] |
VLEESHOUWERS V G, RIETMAN H, KRENEK P, CHAMPOURET N, YOUNG C, OH S K, WANG M, BOUWMEESTER K, VOSMAN B, VISSER R G, JACOBSEN E, GOVERS F, KAMOUN S, VAN DER VOSSEN E A. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE, 2008, 3: e2875.
doi: 10.1371/journal.pone.0002875 |
[16] |
WANG M, ALLEFS S, VAN DEN BERG R G, VLEESHOUWERS V G, VAN DER VOSSEN E A, VOSMAN B. Allele mining in Solanum: Conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical and Applied Genetics, 2008, 116(7): 933-943.
doi: 10.1007/s00122-008-0725-3 |
[17] |
FOSTER S J, PARK T H, PEL M, BRIGNETI G, SLIWKA J, JAGGER L, VAN DER VOSSEN E, JONES J D. Rpi-vnt1.1, a Tm-22 homolog from Solanum venturii, confers resistance to potato late blight. Molecular Plant- Microbe Interactions, 2009, 22: 589-600.
doi: 10.1094/MPMI-22-5-0589 |
[18] |
ŚLIWKA J, ŚWIĄTEK M, TOMCZYŃSKA I, STEFAŃCZYK E, CHMIELARZ M, ZIMNOCH- GUZOWSKA E. Influence of genetic background and plant age on expression of the potato late blight resistance gene Rpi-phu1during incompatible interactions with Phytophthora infestans. Plant Pathology, 2013, 62(5): 1072-1080.
doi: 10.1111/ppa.12018 |
[19] |
WITEK K, JUPE F, WITEK A I, BAKER D, CLARK M D, JONES J D. Accelerated cloning of a potato late blight-resistance gene using Ren Seq and SMRT sequencing. Nature Biotechnology, 2016, 34: 656-660.
doi: 10.1038/nbt.3540 |
[20] |
HERMSEN J G T H, RAMANNA M S. Double-bridge hybrids of Solanum bulbocastanum and cultivars of Solanum tuberosum. Euphytica, 1973, 22(3): 457-466.
doi: 10.1007/BF00036641 |
[21] |
HAVERKORT A J, BOONEKAMP P M, HUTTEN R, JACOBSEN E, LOTZ L A P, KESSELG J T, VOSSEN J H, VISSER R G F. Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: Scientific and societal advances in the DuRPh project. Potato Research, 2016, 59(1): 35-66.
doi: 10.1007/s11540-015-9312-6 |
[22] |
PETERSON B K, WEBER J N, KAY E H, FISHER H S, HOEKSTRA H E. Double digest RADseq: An inexpensive method for De Novo SNP discovery and genotyping in model and non-model species. PLoS ONE, 2012, 7(5): e37135.
doi: 10.1371/journal.pone.0037135 |
[23] | SEVERN-ELLIS A A, SCHEBEN A, NEIK TX, SAAD NSM, PRADHAN A, BATLEY J. Genotyping for species identification and diversity assessment using double-digest restriction site-associated DNA sequencing (ddRAD-Seq). Methods in Molecular Biology, 2020, 2107: 159-187. |
[24] | CHEN S, ZHOU Y, CHEN Y, GU J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): i884-i890. |
[25] |
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.
doi: 10.1093/bioinformatics/btp324 |
[26] |
POTATO GENOME SEQUENCING CONSORTIUM. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475: 189-195.
doi: 10.1038/nature10158 |
[27] |
PHAM G M, HAMILTON J P, WOOD J C, BURKE J T, ZHAO H, VAILLANCOURT B, OU S, JIANG J, BUELL C R. Construction of a chromosome-scale long-read reference genome assembly for potato. GigaScience, 2020, 9(9): giaa100.
doi: 10.1093/gigascience/giaa100 |
[28] |
ZHU P, HE L, LI Y, HUANG W, XI F, LIN L, ZHI Q, ZHANG W, TANG Y T, GENG C, LU Z, XU X. OTG- snpcaller: An optimized pipeline based on TMAP and GATK for SNP calling from ion torrent data. PLoS ONE, 2014, 9(5): e97507.
doi: 10.1371/journal.pone.0097507 |
[29] |
WANG K, LI M, HAKONARSON H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38(16): e164.
doi: 10.1093/nar/gkq603 |
[30] |
YANG J, LEE S H, GODDARD M E, VISSCHER P M. GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88(1): 76-82.
doi: 10.1016/j.ajhg.2010.11.011 |
[31] |
PRICE M N, DEHAL P S, ARKIN A P. FastTree 2--Approximately maximum-likelihood trees for large alignments. PLoS ONE, 2010, 5(3): e9490.
doi: 10.1371/journal.pone.0009490 |
[32] |
ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 2009, 19: 1655-1664.
doi: 10.1101/gr.094052.109 |
[33] |
DAVEY J W, HOHENLOHE P A, ETTER P D, BOONE J Q, CATCHEN J M, BLAXTER M L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 2011, 12(7): 499-510.
doi: 10.1038/nrg3012 |
[34] |
DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R, 1000 GENOMES PROJECT ANALYSIS GROUP. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.
doi: 10.1093/bioinformatics/btr330 |
[35] | RAUDVERE U, KOLBERG L, KUZMIN I, ARAK T, ADLER P, PETERSON H, VILO J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists. Nucleic Acids Research, 2019, 47(W1): 191-198. |
[36] |
SIEVERS F, WILM A, DINEEN D, GIBSON T J, KARPLUS K, LI W, LOPEZ R, MCWILLIAM H, REMMERT M, SÖDING J, THOMPSON J D, HIGGINS D G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 2011, 7: 539.
doi: 10.1038/msb.2011.75 |
[37] |
TAMURA K, STECHER G, PETERSON D, FILIPSKI A, KUMAR S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 2013, 30: 2725-2729.
doi: 10.1093/molbev/mst197 |
[38] |
ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 2012, 44(7): 821-824.
doi: 10.1038/ng.2310 |
[39] |
UITDEWILLIGEN J G, WOLTERS A M, D’HOOP B B, BORM T J, VISSER R G, VAN ECK H J. A next- generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS ONE, 2013, 8: e62355.
doi: 10.1371/journal.pone.0062355 |
[40] |
WANG S, MEYER E, MCKAY J K, MATZ M V. 2b-rad: A simple and flexible method for genome-wide genotyping. Nature Methods, 2012, 9: 808-810.
doi: 10.1038/nmeth.2023 |
[41] |
VOS P G, PAULO M J, VOORRIPS R E, VISSER R G, VAN ECK H J, VAN EEUWIJK F A. Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. Theoretical and Applied Genetics, 2017, 130: 123-135.
doi: 10.1007/s00122-016-2798-8 |
[42] |
D'HOOP B B, PAULO M J, KOWITWANICH K, SENGERS M, VISSER R G, VAN ECK H J, VAN EEUWIJK F A. Population structure and linkage disequilibrium unravelled in tetraploid potato. Theoretical and Applied Genetics, 2010, 121: 1151-1170.
doi: 10.1007/s00122-010-1379-5 |
[43] |
SIMKO I, COSTANZO S, HAYNES K G, CHRIST B J, JONES R W. Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theoretical and Applied Genetics, 2004, 108: 217-224.
doi: 10.1007/s00122-003-1431-9 |
[44] |
DUAN Y, DUAN S, XU J, ZHENG J, HU J, LI X, LI B, LI G, JIN L. Late blight resistance evaluation and genome- wide assessment of genetic diversity in wild and cultivated potato species. Frontiers in Plant Science, 2021, 12: 710468.
doi: 10.3389/fpls.2021.710468 |
[45] |
WANG Y, RASHID MAR, LI X, YAO C, LU L, BAI J, LI Y, XU N, YANG Q, ZHANG L, BRYAN GJ, SUI Q PAN Z. Collection and evaluation of genetic diversity and population structure of potato landraces and varieties in China. Frontiers in Plant Science, 2019, 10: 139.
doi: 10.3389/fpls.2019.00139 |
[46] | HIRSCH C N, HIRSCH C D, FELCHER K, COOMBS J, ZARKA D, VAN DEYNZE A, DE JONG W, VEILLEUX R E, JANSKY S, BETHKE P, DOUCHES D S, BUELL C R. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3-Genes Genomes Genetics, 2013, 3(6): 1003-1013. |
[47] |
ABOU-TALEB E M, ABOSHOSHA S M, EL-SHERIF E M, EL-KOMY M H. Genetic diversity among late blight resistant and susceptible potato genotypes. Saudi Journal of Biological Sciences, 2010, 17(2): 133-138.
doi: 10.1016/j.sjbs.2010.02.006 |
[48] |
HUANG X H, HAN B. Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology, 2014, 65: 531-551.
doi: 10.1146/annurev-arplant-050213-035715 |
[49] |
LI X, XU J, DUAN S, BIAN C, HU J, SHEN H, LI G, JIN L. Pedigree-based deciphering of genome-wide conserved patterns in an elite potato parental line. Frontiers in Plant Science, 2018, 9: 690.
doi: 10.3389/fpls.2018.00690 |
[50] |
DUAN Y, LIU J, BIAN C, DUAN S, XU J, JIN, L. Construction of fingerprinting and analysis of genetic diversity with SSR markers for eighty-eight approved potato cultivars (Solanum tuberosum L.) in China. Acta Agronomica Sinica, 2009, 35: 1451-1457.
doi: 10.3724/SP.J.1006.2009.01451 |
[51] |
DUAN Y, LIU J, XU J, BIAN C, DUAN S, PANG W, HU J, LI G, JIN L. DNA fingerprinting and genetic diversity analysis with simple sequence repeat markers of 217 potato cultivars (Solanum tuberosum L.) in China. American Journal of Potato Research, 2018, 96: 21-32.
doi: 10.1007/s12230-018-9685-6 |
[52] | PLAISTED R, HOOPES R. The past record and future prospects for the use of exotic potato germplasm. American Journal of Potato Research, 1989, 66: 603-627. |
[53] | 隋启君. 中国马铃薯育种对策浅见. 中国马铃薯, 2001, 15(5): 259-264. |
SUI Q J. Some suggestions of improving the work if potato breeding in China. China Potato, 2001, 15(5): 259-264. (in Chinese) | |
[54] | NEI M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(12): 3321-3323. |
[55] |
NEI M. F-statistics and analysis of gene diversity in subdivided populations. Annals of Human Genetics, 1977, 41(2): 225-233.
doi: 10.1111/j.1469-1809.1977.tb01918.x |
[56] |
ZHOU Q, TANG D, HUANG W, YANG Z, ZHANG Y, HAMILTON J P, VISSER R, BACHEM C, BUELL C R, ZHANG Z, ZHANG C, HUANG S. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics, 2020, 52(10): 1018-1023.
doi: 10.1038/s41588-020-0699-x |
[57] |
NEI M, MILLER J C. A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics, 1990, 125(4): 873-879.
doi: 10.1093/genetics/125.4.873 |
[58] |
HOLSINGER K E, WEIR B S. Genetics in geographically structured populations: Defining, estimating and interpreting F(ST). Nature Reviews Genetics, 2009, 10(9): 639-650.
doi: 10.1038/nrg2611 |
[59] |
NIELSEN R, WILLIAMSON S, KIM Y, HUBISZ M J, CLARK A G, BUSTAMANTE C. Genomic scans for selective sweeps using SNP data. Genome Research, 2005, 15(11): 1566-1575.
doi: 10.1101/gr.4252305 |
[60] |
ZENG L, TU X L, DAI H, HAN F M, LU B S, WANG M S, NANAEI H A, TAJABADIPOUR A, MANSOURI M, LI X L, JI L L, IRWIN D M, ZHOU H, LIU M, ZHENG H K, ESMAILIZADEH A, WU D D. Whole genomes and transcriptomes reveal adaptation and domestication of pistachio. Genome Biology, 2019, 20(1): 79.
doi: 10.1186/s13059-019-1686-3 |
[61] |
LU K, WEI L, LI X, WANG Y, WU J, LIU M, ZHANG C, CHEN Z, XIAO Z, JIAN H, CHENG F, ZHANG K, DU H, CHENG X, QU C, QIAN W, LIU L, WANG R, ZOU Q, YING J, XU X, MEI J, LIANG Y, CHAI YR, TANG Z, WAN H, NI Y, HE Y, LIN N, FAN Y, SUN W, LI N N, ZHOU G, ZHENG H, WANG X, PATERSON A H, LI J. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nature Communications, 2019, 10(1): 1154.
doi: 10.1038/s41467-019-09134-9 |
[62] |
WU D, LIANG Z, YAN T, XU Y, XUAN L, TANG J, ZHOU G, LOHWASSER U, HUA S, WANG H, CHEN X, WANG Q, ZHU L, MAODZEKA A, HUSSAIN N, LI Z, LI X, SHAMSI IH, JILANI G, WU L, ZHENG H, ZHANG G, CHALHOUB B, SHEN L, YU H, JIANG L. Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Molecular Plant, 2019, 12(1): 30-43.
doi: 10.1016/j.molp.2018.11.007 |
[63] |
SU T, WANG W, LI P, ZHANG B, LI P, XIN X, SUN H, YU Y, ZHANG D, ZHAO X, WEN C, ZHOU G, WANG Y, ZHENG H, YU S, ZHANG F. A genomic variation map provides insights into the genetic basis of spring Chinese cabbage (Brassica rapa ssp. pekinensis) selection. Molecular Plant, 2018, 11(11): 1360-1376.
doi: 10.1016/j.molp.2018.08.006 |
[64] |
SUN J, MA D, TANG L, ZHAO M, ZHANG G, WANG W, SONG J, LI X, LIU Z, ZHANG W, XU Q, ZHOU Y, WU J, YAMAMOTO T, DAI F, LEI Y, LI S, ZHOU G, ZHENG H, XU Z, CHEN W. Population genomic analysis and De Novo assembly reveal the origin of weedy rice as an evolutionary game. Molecular Plant, 2019, 12(5): 632-647.
doi: 10.1016/j.molp.2019.01.019 |
[65] |
SIMKO I, HAYNES K G, EWING E E, COSTANZO S, CHRIST B J, JONES R W. Mapping genes for resistance to Verticillium alboatrum in tetraploid and diploid potato populations using haplotype association tests and genetic linkage analysis. Molecular Genetics and Genomics, 2004, 271: 522-531.
doi: 10.1007/s00438-004-1010-z |
[66] |
SCHÖNHALS E M, DING J, RITTER E, PAULO M J, CARA N, TACKE E, HOFFERBERT H R, LÜBECK J, STRAHWALD J, GEBHARDT C. Physical mapping of QTL for tuber yield, starch content and starch yield in tetraploid potato (Solanum tuberosum L.) by means of genome wide genotyping by sequencing and the 8.3 K SolCAP SNP array. BMC Genomics, 2017, 18(1): 642.
doi: 10.1186/s12864-017-3979-9 |
[67] |
SCHUMACHER C, THÜMECKE S, SCHILLING F, KÖHL K, KOPKA J, SPRENGER H, HINCHA D K, WALTHER D, SEDDIG S, PETERS R, ZUTHER E, HAAS M, HORN R. Genome-wide approach to identify quantitative trait loci for drought tolerance in tetraploid potato (Solanum tuberosum L.). International Journal of Molecular Sciences, 2021, 22(11): 6123.
doi: 10.3390/ijms22116123 |
[1] | JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247. |
[2] | YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639. |
[3] | HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425. |
[4] | CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628. |
[5] | XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108. |
[6] | TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315. |
[7] | LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405. |
[8] | WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842. |
[9] | ZHANG MaoNing,HUANG BingYan,MIAO LiJuan,XU Jing,SHI Lei,ZHANG ZhongXin,SUN ZiQi,LIU Hua,QI FeiYan,DONG WenZhao,ZHENG Zheng,ZHANG XinYou. Genetic Analysis of Peanut Kernel Traits in a Nested-crossing Population by Major Gene Plus Polygenes Mixed Model [J]. Scientia Agricultura Sinica, 2021, 54(13): 2916-2930. |
[10] | YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509. |
[11] | Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829. |
[12] | ShuGuang LI,YongCe CAO,JianBo HE,WuBin WANG,GuangNan XING,JiaYin YANG,TuanJie ZHAO,JunYi GAI. Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1743-1755. |
[13] | ZaiDong LIU,Shan MENG,JianBo HE,GuangNan XING,WuBin WANG,TuanJie ZHAO,JunYi GAI. A Comparative Study on Linkage and Association QTL Mapping for Seed Isoflavone Contents in a Recombinant Inbred Line Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1756-1772. |
[14] | CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582. |
[15] | JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165. |
|