Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 217-235.doi: 10.3864/j.issn.0578-1752.2023.02.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs

LIN Ping(),WANG KaiLiang,YAO XiaoHua,REN HuaDong()   

  1. Research Institute of Subtropical Forestry, Chinese Academy of Forestry/Key Laboratory of Tree Breeding of Zhejiang Province, Hangzhou 311400
  • Received:2022-08-25 Accepted:2022-10-24 Online:2023-01-16 Published:2023-02-07

Abstract:

【Objective】Camellia oleifera is a traditional woody oil plant and been widely cultivated in China. In order to facilitate the protection and precise management of C. oleifera cultivars and avoid the phenomenon of homonyms and synonyms, single-nucleotide polymorphism (SNP) marker database of C. oleifera cultivars was established, and a set of core SNPs were selected to construct molecular fingerprint and ID for each cultivar. 【Method】The RNA of developing seeds of 221 C. oleifera clones was extracted and RNA-seq were performed. Using C. oleifera var. ‘Nanyongensis’ genome sequence as reference, high-quality SNPs for C. oleifera were screened and the genotyping of accessions was carried out. Furthermore, the genetic diversity of C. oleifera population and subpopulations were analyzed using SNP data, including observed heterozygosity, expected heterozygosity and polymorphism information content (PIC) of the SNPs, etc. The SNP loci were further filtered by their polymorphism and location information to obtain the optimal combination of core SNP loci. Sanger-seq was performed to verify the core SNP loci. The fingerprints of each clone were formed according to the genotypes of the core SNPs. The molecular IDs of C. oleifera clones were finally constructed by combining the basic information and fingerprint of C. oleifera clones. 【Result】A total of 1 849 953 high-quality SNP loci were obtained from the transcriptomes of C. oleifera. The average values of observed heterozygosity, expected heterozygosity, fixed index, PIC and minor allele frequency of the C. oleifera population were 0.2966, 0.2462, -0.2048, 0.2073, and 0.1648, respectively. The genetic differentiation among the subpopulations of C. oleifera was minor with the high level gene flow, while the main variation was inside of the subpopulation. Filtered by PIC, LD, etc., 31 core SNP loci were screened out to distinguish all C. oleifera clones. The genotypes of all accessions in the eight core loci were further detected using Sanger-seq, and the verified rates were over 91.36%. All C. oleifera clones used in this study can be distinguished using the DNA fingerprints constructed by the 31 core SNPs. Based on the fingerprint of 31 SNP markers and the basic information of C. oleifera clones, a molecular ID of each clone, which composed of 66 digits, was formed finally. 【Conclusion】According to the polymorphism information of SNP markers, 31 core SNP loci were catched. And all C. oleifera clones were accurately distinguished. Furthermore, The DNA fingerprints of 221 C. oleifera clones were constructed by the 31 SNP markers. A unique molecular identity code for each germplasm was constructed using the DNA fingerprints and the converted serial codes from information of the C. oleifera clones. Finally, the bar codes and quick response (QR) codes are generated as the molecular ID, which can be quickly identified by the code scanning equipment.

Key words: Camellia oleifera, cultivar identification, single-nucleotide polymorphism (SNP), DNA fingerprint, molecular ID

Table 1

Genetic diversity information of C. oleifera population"

群体
Pop
样本数
Sample No.
Na Ne Ho He F-index Nei π PIC Shannon MAF SNP位点数
SNP No.
亚群Ⅰ Subpop Ⅰ 46 1.3064 1.3728 0.2958 0.2431 -0.2169 0.2464 0.000158 0.2039 0.3922 0.1654 1849953
亚群Ⅱ Subpop Ⅱ 31 1.3064 1.374 0.2973 0.2427 -0.2250 0.2475 0.000158 0.2032 0.3903 0.1679 1849953
亚群Ⅲ Subpop Ⅲ 38 1.3006 1.3662 0.2906 0.2383 -0.2198 0.2422 0.000155 0.1998 0.3845 0.1638 1849953
亚群Ⅳ Subpop Ⅳ 35 1.307 1.3717 0.2965 0.2417 -0.2268 0.246 0.000157 0.2025 0.3893 0.1664 1849953
亚群Ⅴ Subpop Ⅴ 42 1.3104 1.3772 0.3011 0.2449 -0.2297 0.2484 0.000159 0.205 0.3939 0.1678 1849953
亚群Ⅵ Subpop Ⅵ 15 1.3105 1.3751 0.3013 0.2396 -0.2578 0.2497 0.000160 0.1992 0.3807 0.1817 1849925
亚群Ⅶ Subpop Ⅶ 8 1.2989 1.3573 0.2893 0.2234 -0.2950 0.2426 0.000155 0.1840 0.3484 0.2076 1843321
亚群Ⅷ Subpop Ⅷ 5 1.3037 1.3504 0.2945 0.2102 -0.4010 0.2397 0.000152 0.1700 0.3186 0.2526 1774982
全体 All 220 1.3062 1.3739 0.2966 0.2462 -0.2048 0.2468 - 0.2073 0.3991 0.1648 1849953

Fig. 1

Statistics of SNPs of C. oleifera population in this study A: Statistics of variants type; B: Statistics of variants location; C: Statistics of variants function"

Table 2

The details of Fst (above diagonal) and Nm (below diagonal) among subpopulations"

群体
Pop
亚群Ⅰ
Subpop Ⅰ
亚群Ⅱ
Subpop Ⅱ
亚群Ⅲ
Subpop Ⅲ
亚群Ⅳ
Subpop Ⅳ
亚群Ⅴ
Subpop Ⅴ
亚群Ⅵ
Subpop Ⅵ
亚群Ⅶ
Subpop Ⅶ
亚群Ⅷ
Subpop Ⅷ
亚群Ⅰ SubpopⅠ - 0.0015 0.0040 0.0022 0.0047 0.0000 0.0000 0.0058
亚群Ⅱ Subpop Ⅱ 161.8740 - 0.0035 0.0010 0.0028 0.0001 0.0000 0.0064
亚群Ⅲ Subpop Ⅲ 62.6660 71.1826 - 0.0034 0.0046 0.0015 0.0000 0.0085
亚群Ⅳ Subpop Ⅳ 115.9860 247.3711 73.8063 - 0.0033 0.0000 0.0000 0.0060
亚群Ⅴ Subpop Ⅴ 52.9548 88.4173 53.6558 74.4734 - 0.0004 0.0000 0.0080
亚群Ⅵ Subpop Ⅵ - 4343.6263 168.3339 - 686.0412 - 0.0000 0.0045
亚群Ⅶ Subpop Ⅶ - - - - - - - 0.0012
亚群Ⅷ Subpop Ⅷ 42.7958 38.8365 29.1307 41.2443 30.9227 55.1133 217.1238 -

Table 3

Details of 31 core SNP loci"

序号
No.
核心位点
Loci
PIC 染色体
Chr.
等位基因
Alleles
位置
Location
所在的基因
Gene
基因注释
Gene annotation
功能类型
Function_type
功能
Function
1 SNP-1-16341109 0.4701 Chr.1 A/G 外显子
Exonic
Scaffold 1-snap-gene-163.21 异青霉素N合酶
Isopenicillin N synthase
非同义突变
Nonsynonymous
外显子1:c.A137G:p.N46S *
Exon1: c.A137G:p.N46S
2 SNP-1-22551920 0.4890 Chr.1 C/T 5′非编码区
5′UTR
Scaffold 1-snap-gene-225.31 丝状植物蛋白7亚型X2
Filament-like plant protein 7 isoform X2
- c.-1603G>A#
3 SNP-1-34038354 0.4867 Chr.1 T/A 3′非编码区
3′UTR
Scaffold 1-snap-gene-340.25 GATA转录组因子28
GATA transcription factor 28-like
- c.1337T>A&
4 SNP-1-49052505 0.4941 Chr.1 A/G 外显子
Exonic
Scaffold 1-snap-gene-490.28 磷酸核糖胺-甘氨酸连接酶
Phosphoribosylamine-glycine ligase
同义突变
Synonymous
外显子5:c.T1368C:p.H456H
Exon5:c.T1368C:p.H456H
5 SNP-1-110833857 0.4679 Chr.1 G/C 外显子
Exonic
Scaffold 1-snap-gene-1108.1 40S核糖体蛋白s24-1
40S ribosomal protein s24-1
同义突变
Synonymous
外显子3:c.C117G:p.A39A
Exon3:c.C117G:p.A39A
6 SNP-1-115890029 0.4882 Chr.1 A/G 外显子
Exonic
Scaffold 1-processed-gene-1159.31 - 同义突变
Synonymous
外显子1:c.T369C:p.G123G
Exon1:c.T369C:p.G123G
7 SNP-1-188555309 0.4968 Chr.1 T/G 3′非编码区
3′UTR
Scaffold 1-snap-gene-1885.48 ATP依赖的DNA解旋酶2亚基KU80
ATP-dependent DNA helicase 2 subunit KU80
- c. 104A>C
8 SNP-2-4697104 0.4656 Chr.2 T/A 5′非编码区
5′UTR
Scaffold 2-snap-gene-47.0 通用应激蛋白a相似蛋白
Universal stress protein a-like protein
- c.-51T>A
9 SNP-2-102046792 0.4620 Chr.2 C/A 3′非编码区
3′UTR
Scaffold 2-snap-gene-1020.8 胼胝质合成酶12
Callose synthase 12
- c.121C>A
10 SNP-3-58564519 0.4883 Chr.3 C/T 外显子
Exonic
Scaffold 3-processed-gene-585.38 未知蛋白LOC103487192
Uncharacterized protein LOC103487192
同义突变
Synonymous
外显子3:c.G201A:p.V67V
Exon3:c.G201A:p.V67V
11 SNP-4-5589980 0.4644 Chr.4 T/G 外显子
Exonic
Scaffold 4-snap-gene-56.9 嘌呤通透酶4
Probable purine permease 4
同义突变
Synonymous
外显子2:c.A1131C:p.G377G
Exon2:c.A1131C:p.G377G
12 SNP-5-59238652 0.4836 Chr.5 G/C 外显子
Exonic
Scaffold 5-snap-gene-592.4 40s核糖体蛋白s8
40s ribosomal protein s8
同义突变
Synonymous
外显子3:c.C417G:p.V139V
Exon3:c.C417G:p.V139V
13 SNP-5-135461353 0.4702 Chr.5 T/C 外显子
Exonic
Scaffold 5-snap-gene-1354.5 驱动蛋白近似蛋白KIN-7N
Kinesin-like protein KIN-7N
同义突变
Synonymous
外显子17:c.A1842G:p.S614S
Exon17:c.A1842G:p.S614S
14 SNP-5-175443498 0.4721 Chr.5 T/G 5′非编码区
5′UTR
Scaffold 5-processed-gene-1754.17 黄酮3-羟化酶
Flavanone 3-hydroxylase
- c.-19T>G
15 SNP-6-123202382 0.4872 Chr.6 A/C 外显子
Exonic
Scaffold 6-snap-gene-1232.1 RNA聚合酶Ⅱ转录亚基1中间体
Mediator of RNA polymerase II transcription subunit 1
非同义突变
Nonsynonymous
外显子8:c.A1694C:p.K565T
Eon8:c.A1694C:p.K565T
16 SNP-6-125991240 0.4871 Chr.6 T/C 外显子
Exonic
Scaffold 6-snap-gene-1260.11 寡肽转运体4
Oligopeptide transporter 4
非同义突变
Nonsynonymous
外显子3:c.T821C:p.V274A
Exon3:c.T821C:p.V274A
17 SNP-7-134929316 0.4606 Chr.7 T/C 外显子
Exonic
Scaffold 7-snap-gene-1349.44 辅素样蛋白1亚型
Auxilin-like protein 1 isoform X1
同义突变
Synonymous
外显子2:c.A2022G:p.Q674Q
Exon2:c.A2022G:p.Q674Q
序号
No.
核心位点
Loci
PIC 染色体
Chr.
等位基因
Alleles
位置
Location
所在的基因
Gene
基因注释
Gene annotation
功能类型
Function_type
功能
Function
18 SNP-8-37227126 0.4672 Chr.8 C/T 外显子
Exonic
Scaffold 8-snap-gene-372.3 2-甲基丁醛肟单氧化酶
2-methylbutanal oxime monooxygenase
非同义突变
Nonsynonymous
外显子2:c.G949A:p.V317I
Exon2:c.G949A:p.V317I
19 SNP-9-10583849 0.4926 Chr.9 A/T 外显子
Exonic
Scaffold 9-snap-gene-105.30 磷脂转运ATP酶4
Probable phospholipid-transporting ATPase 4
同义突变
Synonymous
外显子:7:c.T2460A:p.T820T
Exon7:c.T2460A:p.T820T
20 SNP-9-23224047 0.4819 Chr.9 T/C 外显子
Exonic
Scaffold 9-snap-gene-232.15 水解酶6结构域包含蛋白
Abhydrolase_6 domain-containing protein
同义突变
Synonymous
外显子3:c.T450C:p.L150L
Exon3:c.T450C:p.L150L
21 SNP-9-89305797 0.4999 Chr.9 T/C 外显子
Exonic
Scaffold 9-snap-gene-893.6 抗病性蛋白
Disease resistance protein
非同义突变
Nonsynonymous
外显子2:c.A496G:p.S166G
Exon2:c.A496G:p.S166G
22 SNP-9-95564863 0.4817 Chr.9 G/T 外显子
Exonic
Scaffold 9-snap-gene-955.13 复制蛋白A 70kDa DNA结合亚基B
Replication protein A 70 kDa DNA-binding subunit B
非同义突变
Nonsynonymous
外显子13:c.C1768A:p.H590N
Exon13:c.C1768A:p.H590N
23 SNP-10-146191194 0.4586 Chr.10 G/C 外显子
Exonic
Scaffold 10-processed-gene-1462.14 未知蛋白LOC100853376
Uncharacterized protein LOC100853376
非同义突变
Nonsynonymous
外显子1:c.G85C:p.D29H
Exon1:c.G85C:p.D29H
24 SNP-11-126349400 0.4999 Chr.11 C/T 外显子
Exonic
Scaffold 11-snap-gene-1263.11 未知蛋白LOC107417301亚型X1
Uncharacterized protein LOC107417301 isoform X1
同义突变
Synonymous
外显子3:c.C1398T:p.F466F
Exon3:c.C1398T:p.F466F
25 SNP-11-150316502 0.4675 Chr.11 G/A 外显子
Exonic
Scaffold 11-snap-gene-1503.37 细胞色素P450 CYP72A219
Cytochrome P450 CYP72A219
同义突变
Synonymous
外显子6:c.G465A:p.Q155Q
Exon6:c.G465A:p.Q155Q
26 SNP-11-175529761 0.4925 Chr.11 G/C 外显子
Exonic
Scaffold 11-snap-gene-1755.2 mRNA去壳蛋白4增强子
Enhancer of mRNA-decapping protein 4-like
非同义突变
Nonsynonymous
外显子12:c.G4011C:p.K1337N
Exon12:c.G4011C:p.K1337N
27 SNP-12-38432972 0.4699 Chr.12 C/G 外显子
Exonic
Scaffold 12-snap-gene-384.1 多药物和有毒物质排出转运
Multidrug and toxic extrusion transporter
同义突变
Synonymous
外显子1:c.G132C:p.S44S
Exon1:c.G132C:p.S44S
28 SNP-12-88588135 0.4907 Chr.12 G/A 5′非编码区
5′UTR
Scaffold 12-snap-gene-885.8 网状内皮素相似蛋白B5
Reticulon-like protein B5
- c.-74C>T
29 SNP-13-180557942 0.4952 Chr.13 T/C 外显子
Exonic
Scaffold 13-snap-gene-1805.53 富含半胱氨酸/组氨酸的C1结构域家族蛋白
Cysteine/Histidine-rich C1 domain family protein
同义突变
Synonymous
外显子3:c.T1047C:p.Y349Y
Exon3:c.T1047C:p.Y349Y
30 SNP-14-86914708 0.4819 Chr.14 T/C 外显子
Exonic
Scaffold 14-snap-gene-869.1 纤溶酶原激活蛋白抑制因子1 RNA结合蛋白
Plasminogen activator inhibitor 1 RNA-binding protein
同义突变
Synonymous
外显子4:c.T672C:p.D224D
Exon4:c.T672C:p.D224D
31 SNP-14-87149383 0.4983 Chr.14 G/T 外显子
Exonic
Scaffold 14-snap-gene-871.12 蛋白霜霉病抗性6
Protein downy mildew resistance 6
非同义突变
Nonsynonymous
外显子3:c.G659T:p.S220I
Exon3:c.G659T:p.S220I

Table 4

Details of primers used in Sanger sequencing for eight core SNP loci"

位点
Loci
正向引物
Forward Primer (5'-3')
反向引物
Reverse Primer (5'-3')
退火温度
Tm
(℃)
产物
Product
(bp)
SNP在产物上的位置
SNP location on the product (bp)
SNP-1-34038354 CGTGTCACAACCTAGTTCCC ACCAAGGACGCAGTTCTTC 40.7 350 216
SNP-1-110833857 AGAGATTAAGATGTAACAACCAGT CACTGTCCTCAGATAATTGATGTT 36.7 425 274
SNP-11-175529761 AGGGGTAGTGTTTCTTGGATTTTC CAGGTCATCAGCATGGAGTTG 44.3 404 198
SNP-14-86914708 GGAATGAATTTAAACGTGATGGT TTCTCTACTTCTCACTACATACTT 38 434 273
SNP-14-87149383 TTGGCTCCGACATACCTAAGA GCAGGCTCAACCACTTCAT 47.8 383 182
SNP-2-4697104 GGACACCAGACAGAGGAATAATC GTTATCCACAGCCCACTTCAG 49.7 372 241
SNP-5-175443498 ATCACACTGTAGTAGCGGACAA CACACGCCTCCACAATCTTC 46.8 455 241
SNP-9-23224047 ACGGTGATGCTGTGTTCTT TGCTTGGAATAATTGAATCCTGTG 38.2 437 177

Table 5

The summary of Sanger sequencing validation of eight core SNPs identified by the RNA-seq analysis"

SNP位点
SNP loci
总数量
Total No.
验证数量
Verified
验证率
Verification rate (%)
基因型1
Genotype 1
RNA-
seq
Sanger 基因型2
Genotype 2
RNA-
seq
Sanger 基因型3
Genotype 3
RNA-
seq
Sanger
SNP-1-34038354 220 209 95.00 TT 71 66 AT 115 111 AA 34 32
SNP-1-110833857 220 209 95.00 GG 27 27 CG 111 108 CC 82 77
SNP-11-175529761 220 201 91.36 GG 68 64 CG 111 104 CC 41 33
SNP-14-86914708 220 208 94.55 TT 43 41 CT 94 86 CC 83 81
SNP-14-87149383 220 209 95.00 GG 60 60 GT 114 108 TT 46 41
SNP-2-4697104 220 208 94.55 TT 82 79 AT 114 107 AA 24 23
SNP-5-175443498 215 203 94.42 TT 36 32 TG 94 91 GG 85 80
SNP-9-23224047 220 209 95.00 TT 76 73 CT 110 105 CC 34 31
合计Total 1755 1662 94.70 - - - - - - - - -

Fig. 2

Sanger-seq verification results of some core SNP loci"

Fig. 3

The fingerprint of 221 clones of eight subpopulations constructed by 31 core SNP genotypes"

Fig. 4

Molecular ID of CL53#"

Fig. 5

Molecular IDs of 221 C. oleifera clones"

Fig. 6

KASPar verification results of some core SNPs"

[1] 庄瑞林. 中国油茶(第2版). 北京: 中国林业出版社, 2008.
ZHUANG R L. Oil-tea Camellia in China (2nd ed). Beijing: China Forestry Publishing House, 2008. (in Chinese)
[2] LIN P, WANG K L, WANG Y P, HU Z K, YAN C, HUANG H, MA X J, CAO Y Q, LONG W, LIU W X, LI X L, FAN Z Q, LI J Y, YE N, REN H D, YAO X H, YIN H F. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biology, 2022, 23(1): 14.
doi: 10.1186/s13059-021-02599-2 pmid: 35012630
[3] 姚小华, 王开良, 任华东, 林萍. 油茶资源与科学利用研究. 北京: 科学出版社, 2012.
YAO X H, WANG K L, REN H D, LIN P. The Research on Oil Camellia Resources and Its Scientific Utilization. Beijing: Science Press, 2012. (in Chinese)
[4] 林萍, 周长富, 姚小华, 曹永庆. 普通油茶两个Δ-12脂肪酸脱氢酶基因序列特征及表达模式研究. 林业科学研究, 2016, 29(5): 743-751.
LIN P, ZHOU C F, YAO X H, CAO Y Q. Sequence and expression characterization of two genes encoding Δ-12 fatty acid desaturases from Camellia oleifera. Forest Research, 2016, 29(5): 743-751. (in Chinese)
[5] 孙正文. 陆地棉种质资源SNP指纹图谱构建及重要农艺性状全基因组关联分析[D]. 保定: 河北农业大学, 2017.
SUN Z W. SNP fingerprint and genome-wide association studies of important agronomic traits for upland cotton[D]. Baoding: Agricultural University of Hebei, 2017. (in Chinese)
[6] 魏中艳, 李慧慧, 李骏, Gamar Y A, 马岩松, 邱丽娟. 应用SNP精准鉴定大豆种质及构建可扫描身份证. 作物学报, 2018, 44(3): 315-323.
doi: 10.3724/SP.J.1006.2018.00315
WEI Z Y, LI H H, LI J, GAMAR Y A, MA Y S, QIU L J. Accurate identification of varieties by nucleotide polymorphisms and establishment of scannable variety IDs for soybean germplasm. Acta Agronomica Sinica, 2018, 44(3): 315-323. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00315
[7] 朱国忠, 张芳, 付洁, 李乐晨, 牛二利, 郭旺珍. 适于陆地棉品种身份鉴定的SNP核心位点筛选与评价. 作物学报, 2018, 44(11): 1631-1639.
doi: 10.3724/SP.J.1006.2018.01631
ZHU G Z, ZHANG F, FU J, LI L C, NIU E L, GUO W Z. Genome- wide screening and evaluation of SNP core loci for identification of upland cotton varieties. Acta Agronomica Sinica, 2018, 44(11): 1631-1639. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01631
[8] 樊晓静, 于文涛, 蔡春平, 林浥, 王泽涵, 房婉萍, 张见明, 叶乃兴. 利用SNP标记构建茶树品种资源分子身份证. 中国农业科学, 2021, 54(8): 1751-1772.
FAN X J, YU W T, CAI C P, LIN Y, WANG Z H, FANG W P, ZHANG J M, YE N X. Construction of molecular ID for tea cultivars by using of single-nucleotide polymorphism (SNP) markers. Scientia Agricultura Sinica, 2021, 54(8): 1751-1772. (in Chinese)
[9] 王琰琰. 雪茄烟种质资源SNP指纹图谱构建及群体遗传分析[D]. 北京: 中国农业科学院, 2021.
WANG Y Y. Construction of a SNP fingerprinting database and population genetic analysis of cigar tobacco germplasm resources in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[10] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证. 作物学报, 2022, 48(4): 908-919.
doi: 10.3724/SP.J.1006.2022.14034
CHEN X H, LIN Y X, WANG Q, DING M, WANG H G, CHEN L, GAO Z J, WANG R Y, QIAO Z J. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR. Acta Agronomica Sinica, 2022, 48(4): 908-919. (in Chinese)
doi: 10.3724/SP.J.1006.2022.14034
[11] 陈永忠, 张智俊, 谭晓风. 油茶优良无性系的RAPD分子鉴别. 中南林业科技大学学报, 2005, 25(4): 40-45.
CHEN Y Z, ZHANG Z J, TAN X F. Identification of oil tea (Camellia oleifera) superior clones by RAPD molecular marker. Journal of Central South Forestry University, 2005, 25(4): 40-45. (in Chinese)
[12] 温强, 雷小林, 叶金山, 江梅, 左继林, 黄丽莉, 江香梅, 徐林初. 油茶高产无性系的ISSR分子鉴别. 中南林业科技大学学报(自然科学版), 2008, 28(1): 39-43.
WEN Q, LEI X L, YE J S, JIANG M, ZUO J L, HUANG L L, JIANG X M, XU L C. Identification of Camellia oleifera superior clones by ISSR molecular markers. Journal of Central South University of Forestry and Technology (Natural Science Edition), 2008, 28(1): 39-43. (in Chinese)
[13] 范海艳, 曹福祥, 彭继庆, 龙绛雪, 邓明, 司书斌. 博白大果油茶ISSR-PCR反应体系的建立与优化. 中南林业科技大学学报(自然科学版), 2011, 31(4):97-103.
FAN H Y, CAO F X, PENG J Q, LONG J X, DENG M, SI S B. Establishment and optimization of ISSR-PCR reaction system of Camellia gigantocarpa. Journal of Central South University of Forestry and Technology (Natural Science Edition), 2011, 31(4): 97-103. (in Chinese)
[14] 代惠萍, 赵桦, 吴三桥, 孙志峰, 魏安智. 秦巴山区油茶品种遗传多样性的ISSR分析. 西北林学院学报, 2014, 29(2): 107-111.
DAI H P, ZHAO H, WU S Q, SUN Z F, WEI A Z. ISSR analysis of genetic diversity of Camellia oleifera in Qinba mountains. Journal of Northwest Forestry University, 2014, 29(2): 107-111. (in Chinese)
[15] 曹志华, 束庆龙, 曹翠萍, FINKELDEY R. 安徽主要油茶良种的抗炭疽病鉴定和AFLP遗传多样性分析. 全国油茶技术协作组油茶学术交流会论文集. 杭州: 浙江科学技术出版社, 2013: 54-60.
CAO Z H, SHU Q L, CAO C P, FINKELDEY R. Identification of resistance to anthracnose and AFLP genetic diversity analysis of major Camellia oleifera cultivars in Anhui province. Oil tea academic exchange meeting of national oil tea technology cooperation group. Hangzhou: Zhejiang Science and Technology Press, 2013: 54-60. (in Chinese)
[16] 林萍, 姚小华, 王开良, 郑婷婷, 滕建华. 油茶长林系列优良无性系的SRAP分子鉴别及遗传分析. 农业生物技术学报, 2010, 18(2): 272-279.
LIN P, YAO X H, WANG K L, ZHENG T T, TENG J H. Identification and genetic analysis of Camellia oleifera Changlin series superior clones by SRAP molecular marker. Journal of Agricultural Biotechnology, 2010, 18(2): 272-279. (in Chinese)
[17] 郑婷婷. 油茶种质资源遗传多样性分析与无性系鉴别[D]. 重庆: 西南大学, 2010.
ZHENG T T. Analysis of genetic diversity of Camellia oleifera and clone identification[D]. Chongqing: Southwest University, 2010. (in Chinese)
[18] 李海波, 丁红梅, 陈友吾, 徐梁, 李楠, 胡传久. 12个油茶品种的SSR特征指纹鉴别. 中国粮油学报, 2017, 32(10): 171-178.
LI H B, DING H M, CHEN Y W, XU L, LI N, HU C J. Identification of 12 superior cultivars of Camellia oleifera by using simple sequence repeat feature indexes. Journal of the Chinese Cereals and Oils Association, 2017, 32(10): 171-178. (in Chinese)
[19] HUANG X M, CHEN J M, YANG X Q, DUAN S H, LONG C, GE G, RONG J. Low genetic differentiation among altitudes in wild Camellia oleifera, a subtropical evergreen hexaploid plant. Tree Genetics & Genomes, 2018, 14(2): 1-12.
[20] LIN P, YIN H F, YAN C, YAO X H, WANG K L. Association genetics identifies single nucleotide polymorphisms related to kernel oil content and quality in Camellia oleifera. Journal of Agricultural and Food Chemistry, 2019, 67(9): 2547-2562.
doi: 10.1021/acs.jafc.8b03399
[21] CUI X Y, LI C H, QIN S Y, HUANG Z B, GAN B, JIANG Z W, HUANG X M, YANG X Q, LI Q, XIANG X G, CHEN J K, ZHAO Y, RONG J. High-throughput sequencing-based microsatellite genotyping for polyploids to resolve allele dosage uncertainty and improve analyses of genetic diversity, structure and differentiation: A case study of the hexaploid Camellia oleifera. Molecular Ecology Resources, 2022, 22(1): 199-211.
doi: 10.1111/1755-0998.13469
[22] SHEN T F, HUANG B, XU M, ZHOU P Y, NI Z X, GONG C, WEN Q, CAO F L, XU L. The reference genome of Camellia chekiangoleosa provides insights into camellia evolution and tea oil biosynthesis. Horticulture Research, 2022, 9: uhab083.
doi: 10.1093/hr/uhab083
[23] GONG W F, XIAO S X, WANG L K, LIAO Z Y, CHANG Y H, MO W J, HU G X, LI W Y, ZHAO G, ZHU H G, HU X M, JI K, XIANG X F, SONG Q L, YUAN D Y, JIN S X, ZHANG L. Chromosome-level genome of Camellia lanceoleosa provides a valuable resource for understanding genome evolution and self-incompatibility. The Plant Journal, 2022, 110(3): 881-898.
doi: 10.1111/tpj.15739
[24] DU H S, YANG J J, CHEN B, ZHANG X F, ZHANG J, YANG K, GENG S S, WEN C L. Target sequencing reveals genetic diversity, population structure, core-SNP markers, and fruit shape-associated loci in pepper varieties. BMC Plant Biology, 2019, 19(1): 578.
doi: 10.1186/s12870-019-2122-2 pmid: 31870303
[25] 李志远, 于海龙, 方智远, 杨丽梅, 刘玉梅, 庄木, 吕红豪, 张扬勇. 甘蓝SNP标记开发及主要品种的DNA指纹图谱构建. 中国农业科学, 2018, 51(14): 2771-2788.
LI Z Y, YU H L, FANG Z Y, YANG L M, LIU Y M, ZHUANG M, LÜ H H, ZHANG Y Y. Development of SNP markers in cabbage and construction of DNA fingerprinting of main varieties. Scientia Agricultura Sinica, 2018, 51(14): 2771-2788. (in Chinese)
[26] 魏庆镇, 王五宏, 胡天华, 胡海娇, 汪精磊, 包崇来. 浙茄类型茄子品种DNA指纹图谱构建. 浙江农业学报, 2019, 31(11): 1863-1870.
doi: 10.3969/j.issn.1004-1524.2019.11.12
WEI Q Z, WANG W H, HU T H, HU H J, WANG J L, BAO C L. Construction of DNA fingerprinting of Zhejiang eggplant varieties. Acta Agriculturae Zhejiangensis, 2019, 31(11): 1863-1870. (in Chinese)
doi: 10.3969/j.issn.1004-1524.2019.11.12
[27] 李梓榕, 袁雄, 陈叶, 郑兴飞, 胡中立, 李兰芝. 基于全基因组SNP高效鉴定水稻种质资源并构建指纹图谱. 分子植物育种, 2020, 18(18): 6050-6057.
LI Z R, YUAN X, CHEN Y, ZHENG X F, HU Z L, LI L Z. Effective identification for varieties by genome-wide SNPs and establishment of fingerprint for rice germplasm. Molecular Plant Breeding, 2020, 18(18): 6050-6057. (in Chinese)
[28] 刘丽华, 刘阳娜, 张明明, 李宏博, 庞斌双, 赵昌平. 我国75份小麦品种SNP和SSR指纹图谱构建与比较分析. 中国农业科技导报, 2020, 22(5): 15-23.
doi: 10.13304/j.nykjdb.2019.1023
LIU L H, LIU Y N, ZHANG M M, LI H B, PANG B S, ZHAO C P. Construction and comparative analysis of SNP and SSR fingerprints of 75 wheat cultivars in China. Journal of Agricultural Science and Technology, 2020, 22(5): 15-23. (in Chinese)
doi: 10.13304/j.nykjdb.2019.1023
[29] 张昆鹏. 利用SNP标记构建油菜品种指纹图谱及定位下卷叶性状基因的研究[D]. 南京: 南京农业大学, 2013.
ZHANG K P. Studies on rapeseed variety fingerprints and mapping of gene of the down-curly leaf by use of SNP markers in Brassica napus L.[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[30] 顾炳朝, 岳绪国, 杨军, 巫章平, 曹小宏, 朱建飞. 油菜品种镇油6号的指纹图谱分析. 江苏农业科学, 2015, 43(1): 87-89.
GU B C, YUE X G, YANG J, WU Z P, CAO X H, ZHU J F. Fingerprint analysis of Rape variety ‘Zhenyou No. 6’. Jiangsu Agricultural Sciences, 2015, 43(1): 87-89. (in Chinese)
[31] 匡猛. 基于SSR与SNP标记的棉花品种鉴定与指纹库构建研究[D]. 保定: 河北农业大学, 2016.
KUANG M. Cotton variety identification and construction of DNA fingerprinting database based on SSR and SNP markers[D]. Baoding: Agricultural University of Hebei, 2016. (in Chinese)
[32] 李乐晨, 朱国忠, 苏秀娟, 郭旺珍. 适于海岛棉指纹图谱构建的SNP核心位点筛选与评价. 作物学报, 2019, 45(5): 647-655.
doi: 10.3724/SP.J.1006.2019.84123
LI L C, ZHU G Z, SU X J, GUO W Z. Genome-wide screening and evaluation of SNP core loci for fingerprinting construction of cotton accessions (G. barbadense). Acta Agronomica Sinica, 2019, 45(5): 647-655. (in Chinese)
doi: 10.3724/SP.J.1006.2019.84123
[33] 乔大河, 郭燕, 杨春, 李燕, 陈娟, 陈正武. 贵州省主要栽培茶树品种指纹图谱构建与遗传结构分析. 植物遗传资源学报, 2019, 20(2): 412-425.
QIAO D H, GUO Y, YANG C, LI Y, CHEN J, CHEN Z W. Fingerprinting construction and genetic structure analysis of the main cultivated tea varieties in Guizhou province. Journal of Plant Genetic Resources, 2019, 20(2): 412-425. (in Chinese)
[34] 李娟, 林建勇, 欧汉彪, 刘雄盛, 姜英, 梁瑞龙. 基于SLAF-seq技术的闽楠SNP标记开发及遗传多样性分析. 分子植物育种, 2021, 19(13): 4517-4524.
LI J, LIN J Y, OU H B, LIU X S, JIANG Y, LIANG R L. Marker development and analysis of genetic diversity of phoebe bournei germplasms using SLAF-seq technology. Molecular Plant Breeding, 2021, 19(13): 4517-4524. (in Chinese)
[35] 姚小华. 中国油茶品种志. 北京: 中国林业出版社, 2016: 39-59.
YAO X H. Oil-tea Camellia cultivars in China. Beijing: China Forestry Press, 2016: 39-59. (in Chinese)
[36] VAN DER-AUWERA G A, CARNEIRO M O, HARTL C, POPLIN R, DEL ANGEL G, LEVY-MOONSHINE A, JORDAN T, SHAKIR K, ROAZEN D, THIBAULT J, BANKS E, GARIMELLA K V, ALTSHULER D, GABRIEL S, DEPRISTO M A. From FastQ data to high confidence variant calls: The genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics, 2013, 43(1110): 11.10. 1-11.10.33.
[37] PFEIFER B, WITTELSBÜRGER U, RAMOS-ONSINS S E, LERCHER M J. PopGenome: An efficient swiss army knife for population genomic analyses in R. Molecular Biology and Evolution, 2014, 31(7): 1929-1936.
doi: 10.1093/molbev/msu136 pmid: 24739305
[38] WRIGHT S. The genetical structure of populations. Annals of Eugenics, 1951, 15(4): 323-354.
doi: 10.1111/j.1469-1809.1949.tb02451.x pmid: 24540312
[39] SU T B, LI P R, YANG J J, SUI G L, YU Y J, ZHANG D S, ZHAO X Y, WAGN W H, WEN C L, YU S C, ZHANG F L. Development of cost-effective single nucleotide polymorphism marker assays for genetic diversity analysis in Brassica rapa. Molecular Breeding, 2018, 38(4): 1-13.
doi: 10.1007/s11032-017-0759-9
[40] 张成才, 刘园, 姜燕华, 吴立赟, 王丽鸳, 韦康, 成浩. SSR标记鉴定浙江省主要无性系茶树品种的研究. 植物遗传资源学报, 2014, 15(5): 926-931.
ZHANG C C, LIU Y, JIANG Y H, WU L Y, WANG L Y, WEI K, CHENG H. Application of SSR markers in cultivar identification of clonal tea plant in Zhejiang province, China. Journal of Plant Genetic Resources, 2014, 15(5): 926-931. (in Chinese)
[41] 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管. 作物学报, 2022, 48(8): 1853-1870.
XU Y B, WANG B B, ZHANG J, ZHANG J N, LI J S. Enhancement of plant variety protection and regulation using molecular marker technology. Acta Agronomica Sinica, 2022, 48(8): 1853-1870. (in Chinese)
[42] BENTLEY N, GRAUKE L J, KLEIN P. Genotyping by sequencing (GBS) and SNP marker analysis of diverse accessions of pecan (Carya illinoinensis). Tree Genetics and Genomes, 2019, 15(1): 1-17.
doi: 10.1007/s11295-018-1309-2
[43] COLONNA V, D'AGOSTINO N, GARRISON E, ALBRECHTSEN A, MEISNER J, FACCHIANO A, CARDI T, TRIPODI P. Genomic diversity and novel genome-wide association with fruit morphology in Capsicum, from 746K polymorphic sites. Scientific Reports, 2019, 9: 10067.
doi: 10.1038/s41598-019-46136-5 pmid: 31296904
[44] WRIGHT S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 1965, 19(3): 395-420.
doi: 10.2307/2406450
[45] 黄勇. 小果油茶与普通油茶居群遗传结构及种间杂交渐渗. 应用生态学报, 2013, 24(8): 2345-2352.
HUANG Y. Population genetic structure and interspecific introgressive hybridization between Camellia meiocarpa and C. oleifera. Chinese Journal of Applied Ecology, 2013, 24(8): 2345-2352. (in Chinese)
[46] 陈昌文, 曹珂, 王力荣, 朱更瑞, 方伟超. 中国桃主要品种资源及其野生近缘种的分子身份证构建. 中国农业科学, 2011, 44(10): 2081-2093.
CHEN C W, CAO K, WANG L R, ZHU G R, FANG W C. Molecular ID establishment of main China peach varieties and peach related species. Scientia Agricultura Sinica, 2011, 44(10): 2081-2093. (in Chinese)
[47] 冉昆, 隋静, 王宏伟, 魏树伟, 张勇, 董冉, 董肖昌, 王少敏. 利用SSR荧光标记构建山东地方梨种质资源分子身份证. 果树学报, 2018, 35(S1): 71-78.
RAN K, SUI J, WANG H W, WEI S W, ZHANG Y, DONG R, DONG X C, WANG S M. Using the fluorescent labeled SSR markers to establish the molecular ID of pear germplasm resources in Shandong. Journal of Fruit Science, 2018, 35(S1): 71-78. (in Chinese)
[48] CHEN L N, MA Q G, CHEN Y K, WANG B Q, PEI D. Identification of major walnut cultivars grown in China based on nut phenotypes and SSR markers. Scientia Horticulturae, 2014, 168: 240-248.
doi: 10.1016/j.scienta.2014.02.004
[1] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[2] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
[3] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[4] BI QiuYan,DANG ZhiHong,ZHU WeiQi,GAO ZhanLin,HAN XiuYing,ZHAO JianJiang,WANG WenQiao,LU Fen,WU Jie. Identification of Major Pathogenic Fungi of Soybean in Hebei Province and Screening of Control Fungicides [J]. Scientia Agricultura Sinica, 2021, 54(1): 71-85.
[5] LI Yi, MA XianFeng, TANG Hao, LI Na, JIANG Dong, LONG GuiYou, LI DaZhi, NIU Ying, HAN RuiXi, DENG ZiNiu. SSR Markers Screening for Identification of Citrus Cultivar and Construction of DNA Fingerprinting Library [J]. Scientia Agricultura Sinica, 2018, 51(15): 2969-2979.
[6] ZHEN HaoYang, PENG Huan, KONG LingAn, HONG BaoYuan, ZHU GuiLan, WANG RuiHui, PENG DeLiang, WEN YanHua. Heterodera sojae, a New Cyst Nematode Record in China and Its Parasitism to Legume Crops [J]. Scientia Agricultura Sinica, 2018, 51(15): 2913-2924.
[7] WANG FengGe, LI Xin, YANG Yang, YI HongMei, JIANG Bin, ZHANG XianChen, HUO YongXue, ZHU Li, GE JianRong, WANG Rui, REN Jie, WANG Lu, TIAN HongLi, ZHAO JiuRan. SSR Analyser:A Special Software Suitable for SSR Fingerprinting of Plant Varieties [J]. Scientia Agricultura Sinica, 2018, 51(12): 2248-2262.
[8] XIE LiXue, ZHANG XiaoYan, ZHENG Shan, ZHANG LiJie, LI Tao. Molecular identification and specific detection of Telosma mosaic virus infecting passion fruit [J]. Scientia Agricultura Sinica, 2017, 50(24): 4725-4734.
[9] ZHAO YunLei, WANG HongMei, CHEN Wei, GONG HaiYan, SANG XiaoHui, CUI YanLi, ZHAO Pei. Elite Alleles-Based Molecular Detection for Verticillium Wilt Resistance in Cotton [J]. Scientia Agricultura Sinica, 2017, 50(2): 216-227.
[10] WANG FengGe, YANG Yang, YI HongMei, ZHAO JiuRan, REN Jie, WANG Lu, GE JianRong, JIANG Bin, ZHANG XianChen, TIAN HongLi, HOU ZhenHua. Construction of an SSR-Based Standard Fingerprint Database for Corn Variety Authorized in China [J]. Scientia Agricultura Sinica, 2017, 50(1): 1-14.
[11] HU Zhen-bang, GAO Yun-lai, QI Zhao-ming, JIANG Hong-wei, LIU Chun-yan, XIN Da-wei, HU Guo-hua, PAN Xiao-cheng, CHEN Qing-shan. Software Development of -ID Analysis for Crop Molecular Identity Construction [J]. Scientia Agricultura Sinica, 2016, 49(12): 2255-2266.
[12] TANG Yuan-jiang, CAO Wen-jing, WU Kun-lin. Genetic Diversity Analysis and Molecular Identification Card Construction of Chinese Cymbidium Germplasms Based on SRAP Markers [J]. Scientia Agricultura Sinica, 2015, 48(9): 1795-1806.
[13] LIU Juan, LIAO Kang, Mansuer·Nasir, SUN Qi, LIU Huan, JIA Yang. Analysis of Genetic Diversity and Construction of DNA Fingerprint Database of Xinjiang Apricot Varieties (Lines) [J]. Scientia Agricultura Sinica, 2015, 48(4): 748-758.
[14] HUANG Ting, MA Xiao, ZHANG Xin-quan, ZHANG Xin-yue, ZHANG Rui-zhen, FU Kai-xin. Comparation of SSR Molecular Markers Analysis of Annual Ryegrass Varieties in DUS Testing [J]. Scientia Agricultura Sinica, 2015, 48(2): 381-389.
[15] GAO Yuan, LIU Feng-zhi, WANG Kun, WANG Da-jiang, GONG Xin, LIU Li-jun. Establishment of Molecular ID for Some Apple Germplasm Resources [J]. Scientia Agricultura Sinica, 2015, 48(19): 3887-3898.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!