Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (6): 1042-1053.doi: 10.3864/j.issn.0578-1752.2012.06.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction and Application of SSR Molecular Markers System for Genetic Diversity Analysis of Chinese Tartary Buckwheat Germplasm Resources

 GAO  Fan, ZHANG  Zong-Wen, WU  Bin   

  1. 1.山西大学生命科学学院,太原 030006
    2.中国农业科学院作物科学研究所,北京 100081
    3.国际生物多样性中心东亚办事处,北京 100081
  • Received:2011-09-29 Online:2012-03-15 Published:2011-11-24

Abstract: 【Objective】 The SSR molecular markers system was optimized and constructed for genetic diversity analyses of Chinese tartary buckwheat germplasm resources, which is helpful for evaluating Chinese tartary buckwheat collections. 【Method】 The SSR-PCR system was optimized by [L16(45)]orthogonal design, the optimized gel concentration of PAGE was confirmed, and the genetic diversity of 50 tartary buckwheat accessions was analyzed by 19 SSR primer pairs screened from 250 ones of different crops. 【Result】The optimized SSR-PCR system was as follows: 30 ng DNA template, 150 μmol•L-1 dNTP, 0.1 μmol•L-1 primer, 2.0 U•L-1 TaqDNA polymerase, 2.0 mmol•L-1 Mg2+, 1×Taq buffer and ddH2O then added up to terminal volume of 25 μL with 6% PAGE for testing. The primers screening efficiency was 7.6%, and the primers from common buckwheat were applicable. A total of 157 alleles were detected by 19 primers, with 2-11 alleles for each primer pair, and the average was 7.42. Moreover, the averaged PIC and DP values were 0.8881 and 5.684, respectively. Using Popgen Ver.1.31, 50 accessions were clustered into 5 groups at GS 0.578. The clustering results revealed that the genetic diversity of accessions of tartary buckwheat was not correlated to their geographic origins. The genetic diversity of tartary buckwheat from Sichuan was very rich as genetic parameters were the highest. The core primers could be used to identify the similar accessions.【Conclusion】 The SSR molecular markers system was effective for assessment of genetic diversity of Chinese tartary buckwheat germplasm resources. SSR primers of common buckwheat could be used in tartary buckwheat. TBP5 and Fes2695 were SSR core primers. It showed a high genetic diversity in 50 Chinese tartary buckwheat accessions which could be classified into 5 groups.

Key words: tartary buckwheat, SSR, genetic diversity

[1]赵佐成, 周明德, 罗定泽, 侯  鑫, 王中仁, 沈国坤, 李发良, 曹吉祥. 四川省凉山州北部栽培苦荞麦的遗传多样性研究. 遗传学报, 2000, 27(12): 1084-1093.

Zhao Z C, Zhou M D, Luo D Z, Hou X, Wang Z R, Shen G K, Li F L, Cao J X. Genetic diversity of Fagoyrum tataricum cultivated in north Liangshan prefecture of Yi nationality, Sichuan, China. Acta Genetica Sinica, 2000, 27(12): 1084-1093. (in Chinese)

[2]Lin R F, Chai Y. Production, research and academic exchanges of China on buckwheat. Advances in Buckwheat Research, 2007: 7-12.

[3]魏益民, 张国权. 同源四倍体荞麦籽粒品质性状研究. 中国农业科学, 1995, 28(S): 34-40.

Wei Y M, Zhang G Q. Studies on the quality properties of autotetraploid buckwheat kernel. Scientia Agricultura Sinica, 1995, 28(S): 34-40. (in Chinese)

[4]徐丽华, 潘  宏, 赵英明. 荞麦——一种新兴的多用途作物. 杂粮作物, 1998,18(3): 1-4.

Xu L H, Pan H, Zhao Y M. A multi-purpose crop: Buckwheat. Rain Fed Crops, 1998, 18(3): 1-4. (in Chinese)

[5]高金峰, 张慧成, 高小丽, 卓  噶, 柴  岩, 李瑞国, 冯佰利. 西藏苦荞种质资源主要农艺性状分析. 河北农业大学学报, 2008, 31(2): 1-5.

Gao J F, Zhang H C, Gao X L, Zhuo G, Chai Y, Li R G, Feng B L. Analysis on the agronomic traits of tartary buckwheat in Tibet. Journal of Agricultural University of Hebei, 2008, 31(2): 1-5. (in Chinese)

[6]Ohnishi O, Asano N. Genetic diversity of Fagopyrum homotropicum, a wild species related to common buckwheat. Gentic Resources and Crop Evolution, 1999, 46: 389-398.

[7]Dvo?á?ek V, ?epková P, Michalová A, Kreft I. Seed storage protein polymorphism of buckwheat varieties (Fagopyrum esculentum Moench; Fagopyrum tataricum L.). Advances in Buckwheat Research, 2004: 412-418.

[8]Ohmishi O. Population genetic of cultivated common buckwheat of Fagopyrum esculentum Moench. Ⅳ. Allozyme variability in Nepal and koshmirion populations. Genetic, 1985, 60: 293-305.

[9]Senthikumaran R, Bisht I S, Bhat K V. Diversity in buckwheat (Fagopyrum spp.) landrace populations from north-western Indian Himalayas. Genetic Resources and Crop Evolution, 2008, 55: 287-302.

[10]Konishi T, Yasui Y, Ohnishi O. Original birthplace of cultivated common buckwheat inferred from genetic relationships among cultivated populations and natural populations of wild common buckwheat revealed by AFLP analysis. Genes and Genetic Systems, 2005, 80: 113-119.

[11]赵丽娟, 张宗文, 黎  裕, 王天宇. 苦荞种质资源遗传多样性的ISSR分析. 植物遗传资源学报, 2006, 7(2): 159-164. 

Zhao L J, Zhang Z W, Li Y, Wang T Y. Genetic diversity in tartary buckwheat based on ISSR markers. Journal of Plant Genetic Resources, 2006, 7(2): 159-164. (in Chinese)

[12]Li Y Q, Fan X L, Shi T L, Zhang Q B, Zhang Z W. SRAP marker reveals genetic diversity in tartary buckwheat in China. Frontiers of Agriculture in China, 2009, 3(4): 383-387.

[13]Ma K H, Kim N S, Lee G A, Lee S Y, Lee J K, Yi J Y, Park Y J, Kim T S, Gwag J G, Kwon S J. Development of SSR markers for studies of diversity in the genus Fagopyrum. Theoretical and Applied Genetics, 2009, 119: 1247-1254.

[14]王耀文, 夏  楠, 韩瑞霞, 李艳琴, 王安虎, 蔡光泽. 苦荞SSR-PCR反应体系的优化及引物筛选. 贵州农业科学, 2011, 39(4): 4-8.

Wang Y W, Xia N, Han R X, Li Y Q, Wang A H, Cai G Z. Optimization and primer selection of SSR-PCR reaction system in tartary buckwheat. Guizhou Agricultural Sciences, 2011, 39(4): 4-8. (in Chinese)

[15]莫日更朝格图, 王鹏科, 高金锋, 高小丽, 柴  岩. 苦荞地方种质资源的遗传多样性分析. 西北植物学报, 2010, 30(2): 255-261.

Morigengchaogetu, Wang P K, Gao J F, Gao X L, Chai Y. Genetic diversity of tartary buckwheat germplasms. Acta Botanica Boreali- Occidentalia Sinica, 2010, 30(2): 255-261. (in Chinese)

[16]Iwata H, Imon K, Tsumura Y, Ohsawa R. Genetic diversity among Japanese indigenous common buckwheat (Fagopyrum esculentum) cultivars as determined from amplified fragment length polymorphism and simple sequence repeat markers and quantitative agronomic traits. Genome, 2005, 48(3): 367-377.

[17]Konishi T, Iwata H, Yashiro K, Tsumura Y, Ohsawa R, Yasui Y, Ohnishi O. Development and characterization of microsatellite markers for common buckwheat. Breeding Science, 2006, 56: 277-285.

[18]Li Y Q, Shi T L, Zhang Z W. Development of microsatellite markers from tartary buckwheat. Biotechnology Letters, 2007, 29: 823-827.

[19]Yasui Y, Wang Y J, Ohnishi O, Campbell C G. Construction of genetic maps of common buckwheat (Fagopyrum esculentum Moench) and its wild relative, F.homtropicum ohnishi based on amplified fragment length polymorphism (AFLP) marks. The Proceeding of the 8th ISB, 2001: 225-232.

[20]Konishi T, Ohnishi O. A linkage map of common buckwheat based on microsatellite and AFLP markers. Fagopyrum, 2006, 23: 1-6.

[21]Manubens A, Lobos S, Jadue Y, Toro M, Messina R, Lladser M, Seelenfreund D. DNA isolation and AFLP fingerprinting of nectarine and peach varieties(Prunus persica). Plant Molecular Biology Reporter, 1999, 17(3): 255-267.

[22]Cheng F Y, Li C G, Liu Y W, Meng Q X, Zhang J L, Song D M, Liu H Z, Meng Z H. Optimization and testing for PCR system of rice by orthogonal design. Agricultural Science and Technology, 2010, 11(2): 61-64.

[23]韩凤龙, 李正玲, 胡  琳, 许为钢. 用于河南小麦品种特异性和一致性鉴定的SSR分子标记研究. 中国农业科学, 2010, 43(18): 3698-3704.

Han F L, Li Z L, Hu L, Xu W G. Distinctness and uniformity evaluation of wheat (Triticum aestivum) varieties in Henan by SSR molecular analysis. Scientia Agricultura Sinica, 2010, 43(18): 3698-3704. (in Chinese)

[24]Ramsay L. A simple sequence repeat-based linkage map of barely. Genetics, 2000, 156(4):1997-2005.

[25]邵秀玲, 原永兰, 尼秀媚, 范晓虹, 刘瑞军, 张德满, 常兆芝. 燕麦属进境检疫性杂草种子的SSR标记检测. 山东农业大学学报: 自然科学版, 2009, 40(4): 517-520.

Shao X L, Yuan Y L, Ni X M, Fan X H, Liu R J, Zhang D M, Chang Z Z. Detection of import quarantine weeds of Aveneae L. by SSR markers. Journal of Shandong University: Natural Science, 2009, 40(4): 517-520. (in Chinese)

[26]Wang X W, Kaga A, Tomooka N, Vaughan D A. The development of SSR markers by a new method in plants and their application to gene flow studies in Adzuki bean (Vigna angularis Willd. Ohwi & Ohashi). Theoretical and Applied Genetics, 2004, 109: 352-360.

[27]Yeh F Y, Boyle R, Ye T, Mao Z. POPGENE, the user-friendly shareware for population genetic analysis, version 1.31. Molecular Biology and Biotechnology Centre, Alberta: University of Alberta, 1997.

[28]Rohlf F. NTSYS-pc Numerical Taxonomy System, Exeter Publishing. NY: Setauket, 2002.

[29]李银霞, 李天红. 桃SSR反应体系的优化. 中国农业大学学报, 2005, 10(6): 57-61.

Li Y X, Li T H. Optimization of SSR reaction system of peach. Journal of China Agricultural University, 2005, 10(6): 57-61. (in Chinese)

[30]周延清. DNA分子标记技术在植物研究中的应用. 北京: 化学工业出版社, 2005: 131-143.

Zhou Y Q. The Application of DNA Molecular Markers in Study on Plants. Beijing: Chemical Industry Press, 2005: 131-143. (in Chinese)

[31]陈军方, 任正隆, 高丽锋, 贾继增. 从小麦EST序列中开发新的SSR引物. 作物学报, 2005, 31(2): 154-158.

Chen J F, Ren Z L, Gao L F, Jia J Z. Developing new SSR markers from EST of wheat. Acta Agronomica Sinica, 2005, 31(2): 154-158. (in Chinese)

[32]谭  萍, 王玉株, 李红宁, 张  萍, 赵饮虹. 十种栽培苦荞麦的随机扩增多态性DNA(RAPD)研究. 种子, 2006, 25(7): 46-49.

Tan P, Wang Y Z, Li H N, Zhang P, Zhao Y H. RAPD analysis on ten species of tartary buckwheat. Seed, 2006, 25(7): 46-49. (in Chinese)

[33]许  瑾,周小梅,范玲娟,王转花. 荞麦RAPD指纹图谱的建立及在品种鉴定中的应用. 山西大学学报: 自然科学版, 2006, 29(2):194-197.

Xu J, Zhou X M, Fan L J, Wang Z H. Generation of RAPD in buckwheat and its application in cultivars identification. Journal of Shanxi University: Natural Science Edition, 2006, 29(2):194-197. (in Chinese)

[34]侯雅君, 张宗文, 吴  斌, 李艳琴. 苦荞种质资源AFLP标记遗传多样性分析. 中国农业科学, 2009, 42(12): 4166-4174.

Hou Y J, Zhang Z W, Wu B, Li Y Q. Genetic diversity in tartary buckwheat revealed by AFLP analysis. Scientia Agricultura Sinica, 2009, 42(12): 4166-4174. (in Chinese)

[35]陈新民, 何中虎, 史建荣, 夏兰芹, Ward R, 周  阳, 蒋国梁. 利用SSR标记进行优质冬小麦品种(系)的遗传多样性研究. 作物学报, 2003, 29(1): 13-19.

Chen X M, He Z H, Shi J R, Xia L Q, Ward R, Zhou Y, Jiang G L. Genetic diversity of high quality winter wheat varieties (Lines) based on SSR markers. Acta Agronomica Sinica, 2003, 29(1): 13-19. (in Chinese)

[36]海  林, 王克晶, 杨  凯. 半野生大豆种质资源SSR位点遗传多样性分析. 西北植物学报, 2002, 22(4): 751-757.

Hai L, Wang K J, Yang K. Genetic diversity of semi-wild soybean using SSR markers. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(4): 751-757. (in Chinese)

[37]郝晓芬, 王节之, 王潞英, 王根全. SSR标记分析谷子遗传多样性. 山西农业科学, 2005, 33(4): 29-31.

Hao X F, Wang J Z, Wang L Y, Wang G Q. Genetic diversity of millet by SSR marker. Journal of Shanxi Agricultural Sciences, 2005, 33(4): 29-31. (in Chinese)

[38]聂永心, 张  丽, 潘光堂, 荣廷昭. 四川省常用玉米自交系SSR遗传多样性分析. 分子植物育种, 2005, 3(1): 43-51.

Nie Y X, Zhang L, Pan G T, Rong T Z. Genetic diversity of dominant maize inbred lines revealed by SSR in Sichuan province. Molecular Plant Breeding, 2005, 3(1): 43-51. (in Chinese)

[39]Tsuji K, Ohnishi O. Phylogenetic relationships among wild and cultivated tartary buckwheat (Fagopyrum tataricum Gaertn.) populations revealed by AFLP analyses. Genes and Genetic Systems, 2001, 76: 47-52.
[1] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[2] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[3] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[4] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[5] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[6] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[7] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[8] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[9] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[10] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[11] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[12] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[13] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[14] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[15] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!