Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (24): 5302-5315.doi: 10.3864/j.issn.0578-1752.2021.24.012

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region

TANG XiuJun1,2(),FAN YanFeng1(),JIA XiaoXu1,GE QingLian1,LU JunXian1,TANG MengJun1,HAN Wei1,GAO YuShi1,*()   

  1. 1Institute of Poultry, Chinese Academy of Agricultural Sciences/Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Yangzhou 225125, Jiangsu
    2College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095
  • Received:2020-08-14 Accepted:2021-10-15 Online:2021-12-16 Published:2021-12-28
  • Contact: YuShi GAO E-mail:tangxj0918@126.com;fanyanfeng@126.com;gaoys100@sina.com

Abstract:

【Objective】 The purpose of this study was to investigate the genetic diversity and origin characteristics of the whole sequence of mitochondrial DNA D-loop region in chicken breeds (complete set line) with different growth rates, so as to provide a theoretical basis for breeding and traceability of broiler breeds. 【Method】 15 broiler breeds with different growth rates were used as research materials, including eight yellow-feathered broiler lines (5 medium-fast and 3 slow lines), two local chicken breeds (Gushi chicken and Tibetan chicken), two introduced chicken breeds (Recessive White and Anka), one white-feathered broiler (Ross 308), 817 hybrid broiler and one commercial layer line (Dawu Brown Eggshell Hens). Chicken blood was collected, and DNA was PCR amplified. The full sequences of mtDNA D-loop region of 683 individuals from 15 chicken breeds were sequenced, and the genetic diversity and haplotype characteristics of each chicken breed were analyzed using DnaSP 5.10 software. The genetic distance between breeds was calculated using MEGA 4.0 software, and then a phylogenetic tree was constructed between different haplotypes and the red original chicken. 【Result】The full sequence size of the D-loop region of 15 chicken breeds ranged from 1 231 to 1 232 bp, and individuals with sequence length of 1 231 bp had C-base deletion at 859 bp. 45 variant loci were detected in 683 individuals, which were combined into 53 haplotypes and could be divided into four haplotype groups, including A, B, C and E. Among them, the medium-fast broilers, 817 hybrid broilers and high-yielding laying hens were all haplotype E as the dominant haplotype (≥48.89%); the dominant haplotypes were B haplotypes for Hongguang black chickens, A haplotypes for Jinghai yellow chickens, and four haplotypes were relatively balanced for Xueshan chickens (the proportion of E haplotypes ≤38.46% for three chicken breeds); the haplotypes of local chicken breeds were A and C haplotypes for Gushi chickens and A and B haplotypes for Tibetan chickens. The genetic diversity of the 15 chicken breeds ranged from 0.496 to 0.853 for Hd and from 0.00146 to 0.00673 for Pi. The relatively rich genetic diversity was found in the Xinxing Dwarf Yellow Chicken, Xueshan Chicken, Jinghai Yellow Chicken and Ross 308; the relatively low genetic diversity was found in the Tibetan Chicken, the High Laying Chicken, the Anka Chicken, the Xinxing partridge Chicken No. 4 and the Xugang Yellow Chicken No. 1. The range of Kiumura two-parameter distance of 15 chicken breeds was 0.0016-0.0113, among which the intra-breed genetic distance of Ross 308 was the largest while the intra-breed genetic distance of 817 hybrid broiler and high-yielding chicken was the smallest; the inter-breed genetic distance was the largest between high-yielding chicken and Tibetan chicken, and the smallest between high-yielding chicken and 817 hybrid broiler; the genetic distance between medium-fast broiler was relatively small while the genetic distance between medium-fast broiler, slow-fast and local chicken breeds was relatively large; the genetic distance between Jinghai and local chicken breeds was relatively large. Cluster analysis showed that the haplotypes A, B, and gallus gallus spadiceus were clustered in one group. Haplotype E and gallus gallus murghi were clustered in another group. Haplotype C was clustered with four subspecies of jungle fowl, including gallus gallus murghi, gallus gallus spadiceus, gallus gallus gallus and gallus gallus bankiva. 【Conclusion】The genetic diversity of mitochondrial D-loop region varied among different chicken breeds; E haplotypes were strongly correlated with broiler growth rate, and E haplotypes were the dominant haplotypes in all medium and fast populations, while the proportion of E haplotypes in slow populations was less than 40%; the national chicken population had multiple red proto-chicken maternal origins, indicating that it was domesticated under neutral selection. The results of the study provided a theoretical basis for broiler breed selection and tracing as well as resource exploitation.

Key words: chicken, mitochondrial DNA, D-loop region, genetic diversity, genetic origin

Table 1

The place of origin and sample size of 15 chicken breeds"

品种
Breed
文中简称
Abbreviation
来源
Source
采样数
Sampling number
墟岗黄鸡1号
Xugang yellow chicken No.1
XGH 广东省鹤山市墟岗黄畜牧有限公司
Guangdong Heshan Xuganghuang Animal Husbandry Co. LTD
45
新广铁脚麻鸡
Xinguang tiejiaoma chicken
XGT 佛山市高明区新广农牧有限公司
Foshan Gaoming Xinguang Agriculture and Animal Husbandry Co. LTD
38
新兴麻鸡4号
Xinxing partridge chicken No.4
XXM 广东温氏南方家禽育种有限公司
Guangdong Wenshi South Poultry Breeding Co. LTD
55
良凤花鸡
Liangfeng hua chicken
LFH 广西南宁市良凤农牧有限责任公司
Guangxi Nanning Liangfeng Agriculture and Animal Husbandry Co. LTD
53
新兴矮脚黄鸡
Xinxing dwarf yellow chicken
XXA 广东温氏食品集团有限公司
Guangdong Wens Food Group Co. LTD
46
雪山鸡
Xueshan chicken
XS 江苏立华牧业股份有限公司
Jiangsu Lihua Animal Husbandry Co. LTD
39
京海黄鸡
Jinghai yellow chicken
JHH 江苏京海禽业集团有限公司
Jiangsu Jinghai Poultry Industry Group Co. LTD
40
鸿光黑鸡
Hongguang black chicken
HGH 广西鸿光农牧有限公司
Guangxi Hongguang Agriculture and Animal Husbandry Co. LTD
77
固始鸡
Gushi chicken
GS 国家级地方鸡种基因库(江苏)
National Local Chicken Gene Bank (Jiangsu)
73
藏鸡
Tibetan chicken
Z 国家级地方鸡种基因库(江苏)
National Local Chicken Gene Bank (Jiangsu)
38
隐性白羽鸡
Recessive White
YXB 国家级地方鸡种基因库(江苏)
National Local Chicken Gene Bank (Jiangsu)
45
安卡鸡
Anka chicken
AK 国家级地方鸡种基因库(江苏)
National Local Chicken Gene Bank (Jiangsu)
29
罗斯308
Rose 308
LS 国家家禽生产性能测定站
National Poultry production performance testing station
34
817杂交肉鸡
817 hybrid broiler
817 国家家禽生产性能测定站
National Poultry production performance testing station
32
高产蛋鸡
High-yielding layer
E 国家家禽生产性能测定站
National Poultry production performance testing station
39

Table 2

The number of mtDNA D-loop region haplotypes in 15 chicken breeds"

单倍型
Haplotype
突变位点
Variable sites (bp)
总计
Total
单倍型类别
Haplotype category
品种 (个数)
Breeds (number)
111
1112222222 2222222222 2333333333 3333344677 89022
3691112233 4444555688 9011234566 6669914819 42511
3791272589 0236269113 6605102401 2371976612 60245
D-NC007237 TTTAGTACGA CGCCACATGA CCTCGCGTTA CCTCGCCGGG CCTCG
Hap_1..C..C............A..T....A.........T......T. 82 E1 XGH(6), XGT(11), XXM(8), LFH(17), XXA(3), XS(9), JHH(3),AK(10),LS(15)
Hap_2.....C............A..T....A.........T......T. 159 E2 XGH(30), XGT(14),XXM(36),LFH(14), XXA(13), XS(6),YXB(19), AK(16), LS(1), 817(6), E(4)
Hap_3...........A.....C...T.........TC............ 85 C1 XGH(5), XGT(12), XXM(5), LFH(2), XXA(7), XS(11),GS(28),YXB(14), LS(1)
Hap_4....A.......TT.T.CA..TCT..A..........A.A....A 27 B1 XGH(4), LFH(4), XXA(5), XS(4), YXB(2), AK(1), LS(7)
Hap_5....A.......TT.TGCA...CT..A.................A 1 B2 XGT(1)
Hap_6.C.....T.G..T..T.CA..TC...A.................. 13 A1 XXM(3), LFH(2),XXA(7),AK(1)
Hap_7.....C............A..T....A.........TA.....T. 5 E3 XXM(3),YXB(2)
Hap_8..C..C............A..T....A........TT......T. 4 E4 LFH(4)
Hap_9.....C...........CA..T...TA.........T......T. 6 E5 LFH(6)
Hap_10....A.......TT.T.CA..TCT..A..........A.A...T. 4 B3 LFH(4)
Hap_11..C..C............A..T....A.........T..A...T. 6 E6 XXA(6)
Hap_12.C.....T....T..T.CA..TC...A.................. 52 A2 XXA(4),XS(9),JHH(2),GS(37)
Hap_13.....C............A..T...TA.........T......T. 7 E7 XXA(1),817(6)
Hap_14 CC.....T....T..T.CA..TC...A.................. 16 A3 JHH(3),Z(13)
Hap_15....A.......TTTT.CA..TCT..A.................A 3 B4 JHH(3)
单倍型
Haplotype
突变位点
Variable sites(bp)
总计
Total
单倍型类别
Haplotype category
品种 (个数)
Breeds (number)
Hap_16.C.....T....T..T.CA..TC...A..........A....... 13 A4 JHH(13)
Hap_17....A.......TT.T.CA..T.T..A..........A......A 2 B5 JHH(2)
Hap_18....A.......TT.T.CA..TCT..A............A....A 7 B6 JHH(7)
Hap_19...........A.........T.........TC............ 3 C2 JHH(3)
Hap_20.C..A..T....T..T.CA..TC...A.................. 2 A5 JHH(2)
Hap_21.......... TA.....C...T.........TC............ 2 C3 JHH(2)
Hap_22....A.......TT.T.CA..TCT..A............A T...A 20 B7 HGH(20)
Hap_23....A.......TT.T.CA..TCT..A............. T...A 23 B8 HGH(23)
Hap_24....A.......TT.T.CA..TCT..A..........A.. T...A 1 B9 HGH(1)
Hap_25.C.....T....T..T.CA..TC...A... T......... T.... 4 A6 HGH(4)
Hap_26...........A.....C...T.........TC....... T.... 7 C4 HGH(3),GS(4)
Hap_27....A.......TT.T.CAG.TCT..A............. T...A 2 B10 HGH(2)
Hap_28....A.......TT.TGCA...CT..A............A T...A 2 B11 HGH(2)
Hap_29....A.......TT.T.CA. TTCT..A............A T...A 3 B12 HGH(3)
Hap_30....A.......TT.T.CA..TCT..A.C..........A T...A 2 B13 HGH(2)
Hap_31....A........T.T.CA..TCT..A............A T...A 1 B14 HGH(1)
Hap_32.....C............A..T....AC........T... T..T. 1 E8 HGH(1)
Hap_33....A.......TT.T.CA..TCT..A..........A.A T...A 3 B15 HGH(3)
Hap_34...........A.....C...T.........TC....A.. T.... 2 C5 HGH(2)
Hap_35....A.......TT.T.CA..TCT..A...........AA T...A 1 B16 HGH(1)
Hap_36.....C............A..T....A.........T... T..T. 4 E9 HGH(4)
Hap_37.C.....TA...T..T.CA..TC...A..........A.. T.... 1 A7 HGH(1)
Hap_38....A.......TT.T.CA..TCT..A......T...... T...A 1 B17 HGH(1)
Hap_39.....C............A..T....A......A..T... T..T. 1 E10 HGH(1)
Hap_40.....C............A..T....A.........TA.. T..T. 2 E11 HGH(2)
Hap_41...G.......A.....C...T..A......TC............ 1 C6 GS(1)
Hap_42...........A.....C...T.........TC........T... 2 C7 GS(1),AK(1)
Hap_43.C.....T....T..T.CA..TC...A..T............... 8 A8 GS(2),YXB(6)
Hap_44....A.......TT.T.CA. TTCT..A............A....A 24 B18 Z(24)
Hap_45....A.......TT.T.CA..TCT..A.................A 1 B19 Z(1)
Hap_46.C.....T....T..T.CA..TC...A................T. 1 A9 YXB(1)
Hap_47.....C............A..T....A.........T........ 1 E12 YXB(1)
Hap_48.C.....T.G..T..T.CA..TC...A...............C.. 7 A10 LS(7)
Hap_49....A.......TT.T.CA..TCT..A.......A..A.A....A 1 B20 LS(1)
Hap_50..C..C............A..T....A.......A.T......T. 1 E13 LS(1)
Hap_51.C.....T.G..T..T.CA..TC...A.......A.......C.. 1 A11 LS(1)
Hap_52.....C............A..T..............TA.....T. 24 E14 817(13),E(11)
Hap_53.....CG...........A..T...TA.........T......T. 31 E15 817(7),E(24)

Table 3

Summary of haplotype in different breeds based on complete sequence of D-loop region"

鸡种
Breed
总数
Total
单倍型个数Number of haplotypes (%)
A B C E
XGH 45 4(8.89%) 5(11.11%) 36(80.00%)
XGT 38 1(2.63%) 12(31.58%) 25(65.79%)
XXM 55 3(5.45%) 5(9.09%) 47(85.45%)
LFH 53 2(3.77%) 8(15.09%) 2(3.77%) 41(77.36%)
XXA 46 11(23.91%) 5(10.87%) 7(15.22%) 23(50.00%)
XS 39 9(23.08%) 4(10.26%) 11(28.21%) 15(38.46%)
JHH 40 20(50.00%) 12(30.00%) 5(12.50%) 3(7.50%)
HGH 77 5(6.49%) 59(76.62%) 5(6.49%) 8(10.39%)
GS 73 39(53.42%) 34(46.58%)
Z 38 13(34.21%) 25(65.79%)
YXB 45 7(15.56%) 2(4.44%) 14(31.11%) 22(48.89%)
AK 29 1(3.45%) 1(3.45%) 1(3.45%) 26(89.66%)
LS 34 8(23.53%) 8(23.53%) 1(2.94%) 17(50.00%)
817 32 32(100%)
E 39 39(100%)

Table 4

The Haplotype diversity K and Pi of D-loop region in 15 chicken breeds"

品种
Breed
变异位点数
No. of variable sites
单倍型数
No. of haplotype
平均核苷酸差异
Average number of nucleotide differences (K)
核苷酸多样度
Nucleotide diversity
(Pi)
单倍型多样度
Haplotype diversity
(Hd)
XGH 19 4 4.0465 0.00329±0.00078 0.529±0.078
XGT 19 4 4.9644 0.00403±0.00053 0.698±0.026
XXM 17 5 2.8431 0.00231±0.00057 0.546±0.072
LFH 24 8 5.2438 0.00426±0.00066 0.810±0.032
XXA 23 8 7.4899 0.00608±0.00043 0.851±0.026
XS 21 5 7.6167 0.00619±0.00036 0.800±0.024
JHH 24 10 6.9372 0.00564±0.00057 0.853±0.039
HGH 30 19 5.1490 0.00418±0.00056 0.840±0.029
GS 15 6 5.2870 0.00429±0.00013 0.600±0.034
Z 9 3 4.1920 0.00340±0.00036 0.496±0.054
YXB 21 7 6.5920 0.00535±0.00045 0.718±0.043
AK 23 5 2.6700 0.00217±0.00088 0.594±0.065
LS308 24 8 8.2820 0.00673±0.00047 0.738±0.055
817 4 4 1.8468 0.00150±0.00009 0.740±0.041
E 4 3 1.8030 0.00146±0.00016 0.545±0.063
总Total 45 53 7.9552 0.00646±0.00011 0.901±0.006

Table 5

The interspecies and intraspecies mean genetic distance of the 15 chicken breeds calculated by Kimura-2-parameter model"

品种
Breed
种内
Within breeds
XGH XGT XXM LFH XXA XS JHH HGH GS Z YXB AK LS308 817
XGH 0.0033
XGT 0.0041 0.0039
XXM 0.0023 0.0028 0.0035
LFH 0.0043 0.0039 0.0046 0.0035
XXA 0.0061 0.0052 0.0056 0.0049 0.0056
XS 0.0062 0.0056 0.0056 0.0054 0.0060 0.0062
JHH 0.0057 0.0079 0.0082 0.0079 0.0079 0.0071 0.0071
HGH 0.0042 0.0091 0.0098 0.0095 0.0090 0.0086 0.0086 0.0068
GS 0.0043 0.0074 0.0068 0.0072 0.0079 0.0067 0.0061 0.0061 0.0083
Z 0.0034 0.0094 0.0101 0.0098 0.0092 0.0083 0.0084 0.0058 0.0053 0.0075
YXB 0.0054 0.0048 0.0049 0.0045 0.0055 0.0059 0.0058 0.0074 0.0091 0.0062 0.0091
AK 0.0022 0.0028 0.0036 0.0023 0.0033 0.0050 0.0055 0.0080 0.0094 0.0076 0.0098 0.0047
LS308 0.0068 0.0060 0.0066 0.0058 0.0061 0.0066 0.0069 0.0073 0.0083 0.0077 0.0080 0.0069 0.0056
817 0.0015 0.0029 0.0038 0.0024 0.0036 0.0054 0.0060 0.0088 0.0104 0.0083 0.0110 0.0050 0.0023 0.0063
E 0.0015 0.0032 0.0042 0.0027 0.0039 0.0058 0.0064 0.0092 0.0107 0.0087 0.0113 0.0053 0.0026 0.0067 0.0016

Fig. 1

Neighbor-joining tree among 15 chicken breeds based on mitochondrial DNA complete D-loop sequence A, B, C and E stood for haplotype type of D-loop region"

Fig. 2

Median-joining (MJ) network showing genetic relationships among 53 haplotypes for mtDNA D-loop of 15 chicken breeds A1-A11, B1-B20, C1-C7 and E1-E15 all stood for haplotype type"

Fig. 3

Neighbor-joining tree based on mtDNA D-loop sequences GGG, Gallus gallus gallus; GGS, Gallus gallus spadiceus; GGM, Gallus gallus murghi ; GGJ, Gallus gallus jabouillei; GGB, Gallus gallus bankiva"

[2] ARMSTRONG E, IRIARTE A, MARTINEZ A M, FEIJOO M, VEGA-PLA J L, DELGADO J V, POSTIGLIONI A. Genetic diversity analysis of the Uruguayan Creole cattle breed using microsatellites and mtDNA markers. Genetics and molecular research, 2013, 12(2):1119-1131.
doi: 10.4238/2013.April.10.7
[3] ASATO Y, OSHIRO M, MYINT C K, YAMAMOTO Y I, KATO H, MARCO J D, MIMORI T, GOMEZ E A L, HASHIGUCHI Y, UEZATO H. Phylogenic analysis of the genus Leishmania by cytochrome b gene sequencing. Experimental Parasitology, 2009, 121(4):352-361. doi: 10.1016/j.exppara.2008.12.013
doi: 10.1016/j.exppara.2008.12.013
[4] 李雪娟, 黄原, 雷富民. 山鹧鸪属鸟类线粒体基因组的比较及系统发育研究. 遗传, 2014(9):912-920.
LI X J, HUANG Y, LEI F M. Comparative and phylogenomic analyses on mitochondrial genomes of Arborophila species. Hereditas, 2014(9):912-920.(in Chinese)
[5] MALTSEV A N, STAKHEEV V V, BOGDANOV A S, FOMINA E S, KOTENKOVA E V. Phylogenetic relationships of intraspecific forms of the house mouse Mus musculus: Analysis of variability of the control region (D-loop) of mitochondrial DNA. Doklady Biological Sciences, 2015, 465(1):285-288.
doi: 10.1134/S0012496615060058
[6] TAKASU M, ISHIHARA N, TOZAKI T, KAKOI H, MAEDA M, MUKOYAMA H. Genetic diversity of maternal lineage in the endangered kiso horse based on polymorphism of the mitochondrial DNA D-loop region. Journal of Veterinary Medical Science, 2014, 76(11):1451-1456.
doi: 10.1292/jvms.14-0231
[7] 张涛, 路宏朝. 宁强矮马线粒体DNA D-loop区的遗传多样性. 中国农业科学, 2012, 45(8):1587-1594.
ZHANG T, LU H Z. Genetic diversity of mitochondrial DNA D-loop sequences in Ningqiang pony. Scientia Agricultura Sinica, 2012, 45(8):
[8] 齐国强, 昝林森, 张桂香, 王志刚, 王均辉, 韩旭. 中国部分地方水牛品种mtDNA D-loop区遗传多样性与起源研究. 畜牧兽医学报, 2008(1):7-11.
QI G Q, ZAN L S, ZHANG G X, WANG Z G, WANG J H, HAN X. Mitochondrial DNA D-loop genetic diversity and origin of some Chinese domestic buffalo breeds. Chinese Journal of Animal and Veterinary Sciences, 2008(1):7-11. (in Chinese)
[9] 武艳平, 关伟军, 赵倩君, 何晓红, 浦亚斌, 霍俊宏, 敖红, 李奎, 马月辉. 山羊线粒体DNA D-loop区部分序列变异位点分析. 畜牧兽医学报, 2008, 39(8):1137-1141. doi: 10.3321/j.issn:0366-6964.2008.08.023.
doi: 10.3321/j.issn:0366-6964.2008.08.023
WU Y P, GUAN W J, ZHAO Q J, HE X H, PU Y B, HUO J H, AO H, LI K, MA Y H. Analysis on partial sequence of mitochondrial DNA D-loop region variation position of goat. Acta Veterinaria et Zootechnica Sinica, 2008, 39(8):1137-1141. doi: 10.3321/j.issn:0366-6964.2008.08.023. (in Chinese)
doi: 10.3321/j.issn:0366-6964.2008.08.023
[1] 赵华, 范梅华. 活鸡向冰鲜鸡消费转型亟需解决的六大问题. 中国畜牧杂志, 2015(16):8-10, 14.
ZHAO H, FAN M H. Six problems need to solve during the consumption of chilled chicken replacing live chicken. Chinese Journal of Animal Science, 2015(16):8-10, 14. (in Chinese)
[10] 郑立, 刘延鑫, 赵绪永, 靳双星, 邓红雨, 刘太宇. 河南3个驴种mtDNA D-loop区序列多态性及起源进化分析. 西北农林科技大学学报(自然科学版), 2011(4):29-34.
ZHENG L, LIU Y X, ZHAO X Y, JIN S X, DENG H Y, LIU T Y. Analysis of phylogenetic relationship and genetic diversity of mtDNA D-loop in three Henan donkey breeds. Journal of Northwest A & F University (Natural Science Edition), 2011(4):29-34. (in Chinese)
[11] LEE J C, TSAI L C, LIAO S P, LINACRE A, HSIEH H M. Evaluation of the polymorphic D-loop of Columba livia in forensic applications. Electrophoresis, 2010, 31(23/24):3889-3894. doi: 10.1002/elps.201000414.
doi: 10.1002/elps.201000414
[12] 李慧芳, 朱文奇, 杨宁, 宋卫涛, 王继文, 徐文娟, 王强, 陈宽维. 家鸭、媒鸭和野鸭mtDNA D-loop区的遗传变异. 畜牧兽医学报, 2011, 42(9):1213-1219.
LI H F, ZHU W Q, YANG N, SONG W T, WANG J W, XU W J, WANG Q, CHEN K W. The genetic variation of the mtDNA D-loop region in domestic ducks, Mei ducks and wild ducks. Acta Veterinaria et Zootechnica Sinica, 2011, 42(9):1213-1219. (in Chinese)
[13] 周蓉, 李佳琦, 李铀, 刘迺发, 房峰杰, 施丽敏, 王莹. 基于线粒体DNA的大石鸡种群遗传变异. 生物多样性, 2012, 20(4):451-459. doi: 10.3724/SP.J.1003.2012.09221.
doi: 10.3724/SP.J.1003.2012.09221
ZHOU R, LI J Q, LI Y, LIU N F, FANG F J, SHI L M, WANG Y. Genetic variation in rusty-necklaced partridge (Alectoris magna) detected by mitochondrial DNA. Biodiversity Science, 2012, 20(4):451-459. doi: 10.3724/SP.J.1003.2012.09221. (in Chinese)
doi: 10.3724/SP.J.1003.2012.09221
[14] 赵倩君, 关伟军, 郭军, 乔海云, 何晓红, 浦亚斌, 傅宝玲, 敖红, 李奎, 马月辉. 中国7个绵羊品种mtDNA D-loop区序列的系统发育与起源研究. 畜牧兽医学报, 2008(4):417-422.
ZHAO Q J, GUAN W J, GUO J, QIAO H Y, HE X H, PU Y B, FU B L, AO H, LI K, MA Y H. Origin and phylogenetics of seven Chinese sheep breeds based on D-loop sequence. Chinese Journal of Animal and Veterinary Sciences, 2008(4):417-422. (in Chinese)
[15] 高玉时, 贾晓旭, 唐修君, 唐梦君, 樊艳凤, 陆俊贤, 顾荣, 葛庆联, 苏一军. 基于线粒体基因组D-loop区全序列分析安义瓦灰鸡遗传多样性及其起源进化关系. 农业生物技术学报, 2015, 23(7):940-944. doi: 10.3969/j.issn.1674-7968.2015.07.011.
doi: 10.3969/j.issn.1674-7968.2015.07.011
GAO Y S, JIA X X, TANG X J, TANG M J, FAN Y F, LU J X, GU R, GE Q L, SU Y J. The genetic diversity and origin analysis of Anyi tile-like chickens (Gallus gallus domestiaus) based on mitochondrial DNAD-loop sequence. Journal of Agricultural Biotechnology, 2015, 23(7):940-944. doi: 10.3969/j.issn.1674-7968.2015.07.011. (in Chinese)
doi: 10.3969/j.issn.1674-7968.2015.07.011
[16] LIU Y P, WU G S, YAO Y G, MIAO Y W, LUIKART G, BAIG M, BEJA-PEREIRA A, DING Z L, PALANICHAMY M G, ZHANG Y P. Multiple maternal origins of chickens: out of the Asian jungles. Molecular Phylogenetics and Evolution, 2006, 38(1):12-19.
doi: 10.1016/j.ympev.2005.09.014
[17] MIAO Y W, PENG M S, WU G S, OUYANG Y N, YANG Z Y, YU N, LIANG J P, PIANCHOU G, BEJA-PEREIRA A, MITRA B, PALANICHAMY M G, BAIG M, CHAUDHURI T K, SHEN Y Y, KONG Q P, MURPHY R W, YAO Y G, ZHANG Y P. Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity, 2013, 110(3):277-282.
doi: 10.1038/hdy.2012.83
[18] 萨姆布鲁克J, 拉塞尔 D W. 分子克隆实验指南: 第三版. 北京: 科学出版社, 2002, 461-512.
SAMBROOK J, RUSSELL D W. Molecular cloning:a laboratory manual: the third edition. Science Press. Beijing. 2002, 461-512. (in Chinese)
[19] ROZAS J, SÁNCHEZ-DELBARRIO J C, MESSEGUER X, ROZAS R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics (Oxford, England), 2003, 19(18):2496-2497. doi: 10.1093/bioinformatics/btg359.
doi: 10.1093/bioinformatics/btg359
[20] TAMURA K, DUDLEY J, NEI M, KUMAR S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8):1596-1599. doi: 10.1093/molbev/msm092.
doi: 10.1093/molbev/msm092
[21] 包文斌, 束婧婷, 王存波, 张红霞, Steffen Weigend, 陈国宏. 中国家鸡和红色原鸡mtDNA控制区遗传多态性及系统进化分析. 畜牧兽医学报, 2008, 39(11):1449-1459. doi: 10.3321/j.issn:0366-6964.2008.11.001.
doi: 10.3321/j.issn:0366-6964.2008.11.001
BAO W B, SHU J T, WANG C B, ZHANG H X, WEIGEND S, CHEN G H. Investigation on genetic diversity and systematic evolution in Chinese domestic fowls and red jungle fowls by analyzing the mtDNA control region. Acta Veterinaria et Zootechnica Sinica, 2008, 39(11):1449-1459. doi: 10.3321/j.issn:0366-6964.2008.11.001. (in Chinese)
doi: 10.3321/j.issn:0366-6964.2008.11.001
[22] DANA N, MEGENS H J, CROOIJMANS R P M A, HANOTTE O, MWACHARO J, GROENEN M A M, ARENDONK J A M V. East Asian contributions to Dutch traditional and western commercial chickens inferred from mtDNA analysis. Animal Genetics, 2010, 42, 125-133.
doi: 10.1111/age.2011.42.issue-2
[23] LYIMO C M, WEIGEND A, MSOFFE P L, HOCKING P M, SIMIANER H, WEIGEND S. Maternal genealogical patterns of chicken breeds sampled in Europe. Animal Genetics, 2015, 46(4):447-451.
doi: 10.1111/age.2015.46.issue-4
[24] OSMAN S A M, YONEZAWA T, NISHIBORI M. Origin and genetic diversity of Egyptian native chickens based on complete sequence of mitochondrial DNA D-loop region. Poultry Science, 2016, 95(6):1248-1256.
doi: 10.3382/ps/pew029
[25] SMITH M A, WOODLEY N E, JANZEN D H, HALLWACHS W, HEBERT P D. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10):3657-3662. doi: 10.1073/pnas.0511318103.
doi: 10.1073/pnas.0511318103
[26] 潘建飞, 史兆国, 成述儒, 王川, 赵生国. 甘肃主要马群体遗传多样性及系统发育研究. 农业生物技术学报, 2014, 22(2):210-218. doi: 10.3969/j.issn.1674-7968.2014.02.010.
doi: 10.3969/j.issn.1674-7968.2014.02.010
PAN J F, SHI Z G, CHENG S R, WANG C. The study of genetic diversity and phylogenetic evolution in indigenous horses (Equus caballus) of Gansu. Journal of Agricultural Biotechnology, 2014, 22(2):210-218. doi: 10.3969/j.issn.1674-7968.2014.02.010. (in Chinese)
doi: 10.3969/j.issn.1674-7968.2014.02.010
[27] 中国畜禽遗传资源志 家禽志. 北京: 中国农业出版社, 2011, 331-333.
Animal genetic resources in China Poultry. China agriculture press. Beijing. 2011, 331-333. (in Chinese)
[28] FUMIHITO A, MIYAKE T, SUMI S, TAKADA M, OHNO S, KONDO N. One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proceedings of the National Academy of Sciences, USA. 1994, 91, 12505-12509.
[29] KANGINAKUDRU S, METTA M, JAKATI R D, NAGARAJU J. Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken. BMC Evolutionary Biology, 2008, 8:174. doi: 10.1186/1471-2148-8-174.
doi: 10.1186/1471-2148-8-174
[30] 贾晓旭, 唐修君, 樊艳凤, 陆俊贤, 黄胜海, 葛庆联, 高玉时, 韩威. 华东地区地方鸡品种mtDNA控制区遗传多样性. 生物多样性, 2017, 25(5):540-548. doi: 10.17520/biods.2017012.
doi: 10.17520/biods.2017012
JIA X X, TANG X J, FAN Y F, LU J X, HUANG S H, GE Q L, GAO Y S, HAN W. Genetic diversity of local chicken breeds in East China based on mitochondrial DNA D-loop region. Biodiversity Science, 2017, 25(5):540-548. doi: 10.17520/biods.2017012. (in Chinese)
doi: 10.17520/biods.2017012
[1] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[2] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[3] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[4] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[5] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[6] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[7] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[8] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[9] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[10] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[11] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[12] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[13] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[14] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[15] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!