Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (22): 4740-4749.doi: 10.3864/j.issn.0578-1752.2021.22.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata)

WANG Yan1(),FAN BaoJie1,CAO ZhiMin1,ZHANG ZhiXiao1,SU QiuZhu1,WANG Shen1,WANG XueQing2,PENG XiuGuo3,MEI Li4,WU YuHua1,LIU ShaoXing1,TIAN ShengMin1,XU JunJie1,JIANG ChunZhi1,WANG WeiJuan5,LIU ChangYou1(),TIAN Jing1()   

  1. 1Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetic and Breeding, Shijiazhuang 050035
    2Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050031
    3Shijiazhuang Botanical Garden, Shijiazhuang 050000
    4Beijing Agricultural Technology Extension Centre, Beijing 100029
    5Plant Protection Department of Chongli District, Zhangjiakou 076350, Hebei
  • Received:2021-05-06 Accepted:2021-07-02 Online:2021-11-16 Published:2021-11-19
  • Contact: ChangYou LIU,Jing TIAN E-mail:411678486@qq.com;35931915@qq.com;nkytianjing@163.com

Abstract:

【Objective】Bruchids are the main storage pests of cowpea. The discovery of bruchids resistance genes is helpful for breeding resistant varieties and reducing the harm of bruchids to cowpea production.【Method】In this study, a RIL population of 282 lines derived from the cross between Zhongjiang No.1 (a bruchid-susceptible cultivar) and Pant-lobia-1 (a bruchid-resistant cultivar) was used for phenotype identification of bruchids resistance by artificial inoculation of Callosobruchus chinensis and Callosobruchus maculates. The two parents were used to screen polymorphic markers from 3 992 SSR markers of mung bean, adzuki bean and cowpea. Genotypes of 282 lines were analyzed using the polymorphic SSR markers. Based on the phenotype identification and genotype analysis, a genetic linkage map was constructed and the bruchids resistance gene(s) of cowpea was located using Inclusive Composite Interval Mapping (ICIM-ADD). 【Result】The results showed that Zhongjiang No. 1 and F1 seeds were 100% susceptible to Callosobruchus chinensis and Callosobruchus maculates, and the damage rates of Pant-lobia-1 were 22.5% and 42.5%, respectively. It was speculated that the resistance of Pant-lobia-1 to bruchids was recessive inheritance. 182 polymorphic markers were obtained from 3 992 SSR markers of mung bean, adzuki bean and cowpea. Using those polymorphic SSR markers, a genetic linkage map with 11 linkage groups was constructed. The map covered a total length of 1 065.23 cM with an average interval of 5.85 cM between adjacent markers. Two bruchid-resistant QTLs from linkage groups 1 and 5 were discovered, which were temporarily named as vubr1-1 and vubr5-1. QTL vuvr1-1 was located between markers XD11-44 and HAAS_VR_2274, which genetic distance was 7.6 cM, explaining 7.16% and 6.92% of the phenotypic variation in the two bruchid-resistant tests respectively. QTL vubr5-1 was located between markers XD1-14 and CP185, which genetic distance was 2.9 cM, explaining 6.96% and 6.37% of the phenotypic variation in the two bruchid-resistant tests respectively. 【Conclusion】A genetic linkage map containing 11 linkage groups and 182 polymorphic markers was constructed. Two QTLs linked with bruchids resistance were identified on linkage groups 1 and 5.

Key words: Vigna unguiculata, SSR, bruchid resistance, genetic mapping, quantitative trait locus

Fig. 1

Seed of two parents and F1 plant"

Table 1

The seed damage rate of two parents and F1 plant"

品种名称
Name
处理Ⅰ被害率
Seed damage rate (Ⅰ) (%)
处理Ⅱ被害率
Seed damage rate (Ⅱ) (%)
中豇1号
Zhongjiang No.1
100.0 100.0
Pant-lobia-1 22.5** 42.5**
F1 100.0 100.0

Fig. 2

Frequency distributions of seed damage rate within the RIL population ♀: Zhongjiang No.1; ♂: Pant-lobia-1. The same as below"

Table 2

Analysis of polymorphic SSR markers used in this study"

物种
Species
标记数
No. of marker
有效扩增数(个/比率)
No. of effective amplified
多态性标记数(个/比率)
No. of polymorphic marker
标记来源
Source of marker
绿豆Mung bean 1972 1606(81.44%) 62(3.86%) 转录组Transcriptome
小豆Adzuki bean 1100 717(65.18%) 18(2.51%) 基因组Genome
豇豆Cowpea 920 862(93.70%) 102(11.83%) 基因组、CGKB Genome,CGKB
合计Total 3992 3185(80.11%) 182(6.07%)

Fig. 3

SSR profiles generated by marker JD6-28 in a part of RIL individuals of cowpea M: Marker"

Table 3

Markers of linkage groups and their distribution"

连锁群
Linkage group
标记数
No. of marker
连锁群长
Length (cM)
平均距离
Average interval (cM)
偏分离标记数
No. of distorted marker
LG1 26 185.91 7.15 0
LG2 28 133.21 4.76 16
LG3 20 110.87 5.54 8
LG4 18 127.32 7.07 11
LG5 18 109.25 6.07 0
LG6 13 79.74 6.13 2
LG7 16 86.65 5.42 3
LG8 4 29.71 7.43 0
LG9 9 51.43 5.71 0
LG10 14 84.79 6.06 4
LG11 16 66.35 4.15 1
总计Total 182 1065.23 5.58 45

Fig. 4

A genetic linkage map of cowpea *, **, and ***: Indicated markers exhibiting significant deviation from the expected segregation ratio at the 0.05, 0.01 and 0.001 levels, respectively"

Table 4

QTL mapping of bruchids resistance in cowpea RIL population"

性状
Trait
连锁群
Linkage group
位置
Position (cM)
标记区间
Marker interval
LOD 贡献率
PVE(%)
加性效应
Add
LOD阈值 Thresholda
CP-Br-C LG5 57 XD1-14—CP185 4.58 6.96 -5.30 2.69
CP-Br-C LG1 146 XD11-44—HAAS_VR_2274 3.86 7.16 -4.20 2.69
CP-Br-M LG1 146 XD11-44—HAAS_VR_2274 3.91 6.92 -4.29 2.68
CP-Br-M LG5 57 XD1-14—CP185 4.44 6.37 -3.70 2.68

Fig. 5

QTL mapping of bruchids resistance in cowpea A: Location map of QTL vubr1-1; B: Location map of QTL vubr5-1"

[1] BITTNER J A, SUSAN B, PITTENDRIGH B R, POPOVICS J S. Monitoring of the cowpea bruchid, Callosobruchus maculatus (Coleoptera: Bruchidae), feeding activity in cowpea seeds: Advances in sensing technologies reveals new insights. Journal of Economic Entomology, 2018, 111(3): 1469-1475.
doi: 10.1093/jee/toy086
[2] SANCHEZ L J, FARBER C, LEI J, ZHU-SALZMAN K, KUROUSKI D. Non-invasive and non-destructive detection of cowpea bruchid within cowpea seeds with a hand-held raman spectrometer. Analytical Chemistry, 2019, 91(3): 1733-1737.
doi: 10.1021/acs.analchem.8b05555
[3] 金文林, 谭瑞娟, 王进忠, 张志勇, 刘长安, 濮绍京, 赵波. 田间小豆绿豆象卵空间分布型初探. 植物保护, 2004, 30(6): 34-36.
JIN W L, TAN R J, WANG J Z, ZHANG Z Y, LIU C A, PU S J, ZHAO B. Preliminary analysis on spatial distribution patterns of Callosobruchus chinensis eggs in adzuki bean fields. Plant Protection, 2004, 30(6): 34-36. (in Chinese)
[4] 刘长友, 田静, 范保杰, 曹志敏, 苏秋竹, 张志肖, 王素华. 豇豆属3种主要食用豆类的抗豆象育种研究进展. 中国农业科学, 2010, 43(12): 2410-2417.
LIU C Y, TIAN J, FAN B J, CAO Z M, SU Q Z, ZHANG Z X, WANG S H. Advances in breeding research on bruchid-resistant cultivars of three main Vigna food legumes. Scientia Agricultura Sinica, 2010, 43(12): 2410-2417. (in Chinese)
[5] GUJAR G T, YADAV T D. Feeding of Callosobruchus maculatuts (Fab.) and Callosobruchus chinensis (Linn.) in green gram. Indian Journal of Entomology, 1978, 40(2): 108-112.
[6] BABARINDE S A, PITAN O, AJALA M O, OLATUNDE G O. Insectifugal and insecticidal potentials of two tropical botanical essential oils against cowpea seed bruchid. Environmental Science and Pollution Research, 2017, 24(24): 19785-19794.
doi: 10.1007/s11356-017-9589-x
[7] BABARINDE S A, PITAN O, OLATUNDE G O, AJALA M O. Chemical composition of the essential oil of nigeria grown hoslundia opposita Vahl (Lamiaceae) dried leaves and its bioactivity against cowpea seed bruchid. Chemistry & Biodiversity, 2017, 14(6): e1600418.
[8] SANG W, SPEAKMON M, ZHOU L, WANG Y, LEI C, PILLAI S D, ZHU-SALZMAN K. Detrimental effects of electron beam irradiation on the cowpea bruchid Callosobruchus maculatus. Pest Management Science, 2016, 72(4): 787-795.
doi: 10.1002/ps.2016.72.issue-4
[9] AMEVOIN K, SANON A, APOSSABA M, GLITHO I A. Biological control of bruchids infesting cowpea by the introduction of dinarmus basalis (Rondani) (Hymenoptera: Pteromalidae) adults into farmers' stores in West Africa. Journal of Stored Products Research, 2007, 43(3): 240-247.
doi: 10.1016/j.jspr.2006.06.004
[10] KOLAWOLE A O, OKONJI R E, AJELE J O. Tithonia diversifolia, cyperus rotundus and hyptis suaveloensis ethanol extracts combinatorially and competitively inhibit affinity purified cowpea storage bruchid(Callosobrochus maculatus) glutathione S-transferase. Arthropod-Plant Interactions, 2011, 5(3): 175-184.
doi: 10.1007/s11829-011-9126-7
[11] SINGH B B, SINGH S R, ADJADI O. Bruchid resistance in cowpea. Crop Science, 1985, 25(5): 736-739.
doi: 10.2135/cropsci1985.0011183X002500050004x
[12] AMUSA O D, OGUNKANMI L A, ADETUNBI J A, AKINYOSOYE S T, OGUNDIPE O T. Assessment of bruchid (Callosobruchus maculatus) tolerance of some elite cowpea (Vigna unguiculata) varieties. Journal of Agriculture & Sustainability, 2014, 6(2): 164-178.
[13] HUYNH B L, EHLERS J D, NDEVE A, WANAMAKER S, LUCAS M R, CLOSE T J, ROBERTS P A. Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Molecular Breeding, 2015, 35(1): 36.
doi: 10.1007/s11032-015-0254-0
[14] LO S, Muñoz-Amatriaín M, BOUKAR O, HERNITER I, CLOSE T J. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Scientific Reports, 2018, 8(1): 6261.
doi: 10.1038/s41598-018-24349-4
[15] REDDEN R. The inheritance of seed resistance to Callosobruchus maculatus F. in cowpea (Vigna unguiculata L. Walp.): II. Analyses of percentage emergence and emergence periods of bruchids in F4 seed generation of two reciprocal crosses. Australian Journal of Agricultural Research, 1983, 34(6): 697-705.
doi: 10.1071/AR9830697
[16] SINGH B B. Cowpea chrimosome engineering and crop improvement: Grain legumes. Genetic Resources, 2005: 117-161.
[17] MIESHO B, HAILAY M, MSISKA U, BRUNO A, KYAMANYWA S. Identification of candidate genes associated with resistance to bruchid (Callosobruchus maculatus) in cowpea. Plant Breeding, 2019, 138(5): 1-9.
doi: 10.1111/pbr.2019.138.issue-1
[18] AFANADOR L K, HALEY S D, KELLY J D. Adoption of a mini-prep DNA extraction method for RAPD marker analysis in common bean. Bean Improvement Cooperative, 1993, 36: 10-11.
[19] LIU C, FAN B, CAO Z, SU Q, WANG Y, ZHANG Z, WU J, TIAN J. A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata). Journal of Genetics, 2016, 95(3): 1-9.
[20] CHEN X, LAUDEMAN T W, RUSHTON P J, SPRAGGINS T A, TIMKO M P. CGKB: An annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinformatics, 2007, 8(1): 129.
doi: 10.1186/1471-2105-8-129
[21] MENG L, LI H, ZHANG L, WANG J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3(3): 269-283.
doi: 10.1016/j.cj.2015.01.001
[22] LI H, RIBAUT J M, LI Z, WANG J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theoretical & Applied Genetics, 2008, 116(2): 243-260.
[23] IWATA A, GREENLAND C M, JACKSON S A. Cytogenetics of legumes in the phaseoloid clade. Plant Genome, 2013, 6(3): 1-8.
[24] 王丽侠, 程须珍, 王素华, 刘长友, 梁辉. 小豆SSR引物在绿豆基因组中的通用性分析. 作物学报, 2009, 35(5): 816-820.
WANG L X, CHENG X Z, WANG S H, LIU C Y, LIANG H. Transferability of SSR from adzuki bean to mung bean. Acta Agronomica Sinica, 2009, 35(5): 816-820. (in Chinese)
[25] 钟敏, 程须珍, 王丽侠, 王素华, 王小宝. 绿豆基因组SSR引物在豇豆属作物中的通用性. 作物学报, 2012, 38(2): 223-230.
doi: 10.3724/SP.J.1006.2012.00223
ZHONG M, CHENG X Z, WANG L X, WANG S H, WANG X B. Transferability of mungbean genomic-SSR markers in other Vigna species. Acta Agronomica Sinica, 2012, 38(2): 223-230. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00223
[26] FATOKUN C A, MENANCIO-HAUTEA D I, DANESH D, YOUNG N D. Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics, 1992, 132(3): 841-846.
doi: 10.1093/genetics/132.3.841
[27] MUÑOZ-AMATRIAÍN M, MIREBRAHIM H, XU P, WANAMAKER S I, LUO M C, ALHAKAMI H, ALPERT M, ATOKPLE I, BATIENO B J, BOUKAR O. Genome resources for climate-resilient cowpea, an essential crop for food security. The Plant Journal, 2017, 89(5): 1042-1054.
doi: 10.1111/tpj.2017.89.issue-5
[28] OHLSON E W, THIO G I, MAHAMADOU S, PACO S, TIMKO M P. Quantitative trait loci analysis of brown blotch resistance in cowpea variety KN1. Molecular Breeding, 2018, 38(9): 110.
doi: 10.1007/s11032-018-0867-1
[29] NDEVE A D, SANTOS J, MATTHEWS W C, HUYNH B L, GUO Y N, LO S, MU OZ-AMATRIA N M, ROBERTS P A. A novel root-knot nematode resistance QTL on chromosome Vu01 in cowpea. Genes Genomes Genetics, 2018, 9: 1199-1209.
[30] 赵向前, 吴为人. 水稻ILP标记遗传图谱的构建. 遗传, 2008, 30(2): 225-225.
doi: 10.1111/j.1601-5223.1944.tb03313.x
ZHAO X Q, WU W R. Construction of a genetic map based on ILP markers in rice. Hereditas, 2008, 30(2): 225-230. (in Chinese)
doi: 10.1111/j.1601-5223.1944.tb03313.x
[31] KITAMURA K, ISHIMOTO M, SAWA M. Inheritance of resistance to infestation with adzuki bean weevil in Vigna sublobata and vuccessful incorporation to V. radiata. Japanese Journal of Breeding, 2008, 38(4): 459-464.
doi: 10.1270/jsbbs1951.38.459
[32] CHEN H M, KU H M, SCHAFLEITNER R, BAINS T S, KUO C G, LIU C A, NAIR R M. The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata (L.) Wilczek] and its wild relative Vigna radiata ss. Euphytica, 2013, 192(2): 205-216.
doi: 10.1007/s10681-012-0831-9
[33] 吴传书. 绿豆SSR标记的开发及高密度分子遗传连锁图谱的构建[D]. 兰州: 甘肃农业大学, 2014.
WU C S. Development of SSR markers and construction of a genetic linkage map in mungbean (Vigna radiate L.)[D]. Lanzhou: Gansu Agricultural University, 2014. (in Chinese)
[34] 孙蕾, 程须珍, 王素华, 王丽侠, 刘长友, 梅丽, 徐宁. 栽培绿豆V2709抗豆象特性遗传及基因初步定位. 中国农业科学, 2008, 41(5): 1291-1296.
SUN L, CHENG X Z, WANG S H, WANG L X, LIU C Y, MEI L, XU N. Heredity analysis and gene mapping of bruchid resistance of a mungbean cultivar V2709. Scientia Agricultura Sinica, 2008, 41(5): 1291-1296. (in Chinese)
[35] 刘长友, 苏秋竹, 范保杰, 曹志敏, 张志肖, 武晶, 程须珍, 田静. 栽培绿豆V1128抗豆象基因定位. 作物学报, 2018, 44(12): 137-143.
doi: 10.3724/SP.J.1006.2018.01875
LIU C Y, SU Q Z, FAN B J, CAO Z M, ZHANG Z X, WU J, CHENG X Z, TIAN J. Genetic mapping of bruchid resistance gene in mungbean V1128. Acta Agronomica Sinica, 2018, 44(12): 1875-1881. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01875
[1] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[2] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[3] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[4] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[7] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[8] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[9] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[10] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[11] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[12] CHEN XiaoHong,HE JieLi,SHI TianTian,SHAO HuanHuan,WANG HaiGang,CHEN Ling,GAO ZhiJun,WANG RuiYun,QIAO ZhiJun. Developing SSR Markers of Proso Millet Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(10): 1940-1949.
[13] KOU ShuJun, HUO AHong, FU GuoQing, JI JunJian, WANG Yao, ZUO ZhenXing, LIU MinXuan, LU Ping. Genetic Diversity and Population Structure of Broomcorn Millet in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2019, 52(9): 1475-1477.
[14] CHANG JiaYing,LIU ShuSen,MA HongXia,SHI Jie,GUO Ning,ZHANG HaiJian. Genetic Diversity Analysis of Curvularia lunata in Summer Maize in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2019, 52(5): 822-836.
[15] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!