Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1739-1750.doi: 10.3864/j.issn.0578-1752.2021.08.013

• HORTICULTURE • Previous Articles     Next Articles

Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR

NIE XingHua1(),ZHENG RuiJie2(),ZHAO YongLian3,CAO QingQin1,4,QIN Ling1,4,XING Yu1,4()   

  1. 1College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206
    2Liaoning Economic Forest Research Institute, Dalian 116000, Liaoning
    3Chestnut Technology Experiment and Extension Station of Huairou District, Beijing 102206
    4Advanced Innovation Center for Forest Molecular Design and Breeding, Beijing 102206
  • Received:2020-07-02 Accepted:2020-09-15 Online:2021-04-16 Published:2021-04-25
  • Contact: RuiJie ZHENG,Yu XING E-mail:niexinghuabua@163.com;zhengruijie2006@163.com;xingyubua@163.com

Abstract:

【Objective】The characteristics of genetic diversity, relationships and population structure of Castanea plants in China were analyzed with SSR molecular markers, so as to provide a theoretical basis for variety improvement, germplasm innovation and utilization of Castanea plants. 【Method】Firstly, 330 SSR molecular markers were screened among 12 chestnut cultivars from different production areas, and 12 pairs of high-quality SSR primers were obtained from them. Secondly, 96 accessions of Castanea from 4 species were detected by high resolution capillary electrophoresis. Finally, Power Marker 3.25, GenAlEx 6.51, FigTree v1.4.3 and Structure 2.3.3 were used to analyze the population genetic diversity of all accessions. 【Result】A total of 129 alleles were acquired from 96 accessions, and the average variation of each marker was 10.750. The gene diversity (GD) ranged from 0.656 (CmSI0396) to 0.877 (CmSI0930) with an average of 0.800; the observed heterozygosity (Ho) ranged from 0.329 (CmSI0742) to 0.769 (CmSI0702) with an average of 0.615; the expected of heterozygosity (He) ranged from 0.489 (CmSI0742) to 0.789 (CmSI0922), with an average of 0.672; the polymorphic information content (PIC) ranged from 0.586 (CmSI0396) to 0.868 (CmSI0930), with an average of 0.774. Among different Castanea species, in terms of number of alleles (Na), number of effective alleles (Ne) and Shannon diversity index, Castanea seguinii had the highest genetic diversity, followed by Castanea mollissima, and Castanea crenata was the lowest. According to pairwise population Fst values, the genetic differentiation value of Castanea species was 0.077-0.180, showing moderate to high differentiation among the species. Compared with Castanea crenata, both Castanea mollissima and Castanea henryi exhibit relatively high genetic differentiation with Fst values of 0.165 and 0.180, respectively. At the same time, the gene flow (Nm) of the Castanea plants was 1.580>1, suggesting frequent gene exchange among Castanea plants, and which therefore reduced the degree of genetic differentiation among the species caused by genetic drift. The results of analysis of molecular variance (AMOVA) showed that the variation mainly occurred within populations, accounting for 73% of the total variation, and the variation among populations made up 27%. The results of UPGMA cluster analysis, principal coordinate analysis and population genetic structure were consistent, and the genetic background of each accessions had obvious inter-species boundaries. Some accessions inherited the genetic information of different ancestor species in generational inheritance. For example, accession 65, 71 and 82 are mixed types, which contain the genetic background of Castanea seguinii and Castanea crenata, but there is geographic isolation between the two species. Castanea plants in the same ecological region existed extensive gene exchange, and there were no complete reproductive isolation. Accession 48 (‘Guangdongaisheng’) had the genetic background of both Castanea mollissima and Castanea seguinii. In terms of geographical distribution, the native place of this accession was in the overlapping ecological area of Castanea mollissima and Castanea seguinii. 【Conclusion】The 12 pairs of SSR primers screened could accurately assess the genetic diversity of Castanea plants in China. Comprehensive cluster analysis could confirm that the classification of Castanea plants was highly consistent with the inter-species information and there was a certain amount of gene exchange between species.

Key words: SSR, Castanea, cluster analysis, population genetic structure, population genetic differentiation

Table 1

Geographical distribution of the selected materials"

资源分类Germplasm type 总数量Accession amount 来源Origin 数量Number
板栗种群POP 1 50 中国陕西 Shaanxi, China 6
中国北京 Beijing, China 11
中国河北 Hebei, China 3
中国山东 Shandong, China 10
中国湖北 Hubei, China 10
中国云南 Yunnan, China 3
中国浙江 Zhejiang, China 4
中国江苏 Jiangsu, China 2
中国广东Guangdong, China 1
锥栗种群POP 2 13 中国福建 Fujian, China 13
茅栗种群POP 3 19 中国湖南Hunan, China 7
中国江西 Jiangxi, China 1
中国湖北 Hubei, China 2
中国安徽 Anhui, China 9
日本栗种群POP 4 14 中国辽宁/日本 Liaoning, China/Japan 14
合计 Total 96

Table 2

The information of 12 SSR markers"

序号
Number
标记名
Marker ID
DNA序列号
GenBank ID
上游引物
Forward primer (5′-3′)
下游引物
Reverse primer (3′-5′)
观察基序
Repeat motif
1 CmSI0396 290474606 AACTCCCACCACTCACATCC TTTCGGACCATCCAGAACTC CACACC
2 CmSI0561 290474702 CGTATAGGGTGGAAACGGAA GGACAAGCAAATCACGGAAT TCG
3 CmSI0614 290476556 TTGTGGTGAAGCTGACATCG GGGTACTACCACAACATGCAG GTT
4 CmSI0658 290474781 AAAACGGTTTGTGGTGAAGC GCCAACCAGTCAAGGGTACT GTT
5 CmSI0702 290474818 GAAACACACCAGAGAGATGCAG TTTTATACAGAGACATACTATCCTACACAG TC
6 CmSI0742 290474850 GACGCTCCTCAGCTTTTGAC TGCCGGTCAATTCTTCTTCT AG
7 CmSI0800 290474899 TTATGGCAACCCTCCTGTTT CTGAAATGATCGATGCTGCT TC
8 CmSI0853 290474950 GGAGGAGGAGGAGCTCATTG CCTTGGAGAGCTGCCAGTAG TCT
9 CmSI0871 290474967 AGGGGGTGGAAGAACCTATG AGATTGCAAGTGGGGAATTG TCT
10 CmSI0883 290476060 CAGCATCAGCACTCGTTCA GGGATTGAGAGGATGAAGCA AGC
11 CmSI0922 290475011 AATCTGAACCCCTCCGATCT ACCAACAACATGTGCCAAAA TTG
12 CmSI0930 290475019 CCATTTAGCATGCATAGTCATACC GCAAGGATGTAGGTCGAATCA ATAC

Fig. 1

Alleles of high polymorphism primers at CmSI0561 and CmSI0614 in 12 Chinese chestnut cultivars"

Table 3

The key genetic statistics of 12 SSR markers"

标记名
Marker
主要位点频率
MAF
位点数
Na
位点多样性
GD
观察杂合度
Ho
期望杂合度
He
多态信息含量
PIC
遗传分化指数
Fst
基因流
Nm
CmSI0396 0.390 4 0.656 0.552 0.544 0.586 0.190 1.063
CmSI0561 0.427 9 0.739 0.533 0.527 0.708 0.257 0.724
CmSI0614 0.183 14 0.839 0.563 0.740 0.818 0.130 1.667
CmSI0658 0.224 8 0.829 0.721 0.722 0.805 0.103 2.176
CmSI0702 0.302 11 0.806 0.769 0.772 0.782 0.096 2.351
CmSI0742 0.422 7 0.717 0.329 0.489 0.673 0.304 0.571
CmSI0800 0.391 12 0.791 0.591 0.706 0.771 0.146 1.457
CmSI0853 0.287 11 0.834 0.696 0.764 0.814 0.066 3.534
CmSI0871 0.339 12 0.788 0.714 0.636 0.760 0.255 0.730
CmSI0883 0.240 13 0.867 0.652 0.682 0.853 0.221 0.880
CmSI0922 0.237 11 0.860 0.701 0.798 0.845 0.079 2.920
CmSI0930 0.260 17 0.877 0.561 0.686 0.868 0.220 0.885
平均值 Mean 0.308 10.750 0.800 0.615 0.672 0.774 0.172 1.580

Fig. 2

Comparison of silver staining results for polyacrylamide gel electrophoresis and detection results for capillary electrophoresis"

Table 4

The key genetic statistics of genetic diversity of different Castanea plant populations"

群体
Pop
样品数
Sample
变异位点数
Na
有效等位变异
Ne
Shannon多样性指数
I
观察杂合度
Ho
期望杂合度
He
无偏预期杂合度
UHe
板栗种群 Pop1 50 6.667±0.732 3.708±0.317 1.453±0.086 0.648±0.024 0.707±0.026 0.714±0.026
锥栗种群 Pop2 13 5.417±0.288 3.141±0.213 1.343±0.056 0.633±0.065 0.665±0.022 0.693±0.023
茅栗种群 Pop3 19 7.083±0.883 4.748±0.712 1.587±0.158 0.623±0.047 0.719±0.047 0.739±0.048
日本栗种群 Pop4 14 5.333±0.620 3.080±0.416 1.219±0.145 0.556±0.072 0.598±0.058 0.621±0.061

Table 5

Pairwise population Fst values"

板栗种群
Pop1
锥栗种群
Pop2
茅栗种群
Pop3
日本栗种群
Pop4
0.000 板栗种群 Pop1
0.077 0.000 锥栗种群 Pop2
0.089 0.115 0.000 茅栗种群 Pop3
0.165 0.180 0.108 0.000 日本栗种群 Pop4

Fig. 3

Distribution of Delta K values for structure analysis in the tested Castanea plants"

Fig. 4

Population structure diagram of the tested Castanea plants"

Table 6

AMOVA analysis of different Castanea populations"

变异来源
Source of variance
自由度
df
方差总和
SS
平均方差
MS
变异组分
Variance component
变异百分率
Variation (%)
P*
种群间 Among Pops 3 252.554 84.185 3.589 27% <0.01
种群内 Within Pops 92 878.457 9.548 9.548 73% <0.01
总量 Total 95 1131.010 13.137 100%

Fig. 5

Principal coordinate analysis (PCoA) of the tested Castanea plants"

Fig. 6

UPGMA dendrogram of the tested Castanea plants"

[1] 张宇和, 柳鎏, 梁维坚, 张育明. 中国果树志, 板栗, 榛子卷. 中国林业出版社, 2005: 22-27.
ZHANG Y H, LIU L, LIANG W J, ZHANG Y M. China Fruits’ Monograph, Chinese Chestnut: Hazelnut Volume. Beijing: China Forestry Publishing House, 2005: 22-27. (in Chinese)
[2] HUANG H W, DANE F, NORTON J D. Allozyme diversity in Chinese, Seguin and American chestnut (Castanea spp.). Theoretical and Applied Genetics, 1994,88(8):981-985.
doi: 10.1007/BF00220805 pmid: 24186251
[3] PEREIRALORENZO S, RAMOSCABRER A M. Chestnut, an Ancient Crop with Future. Production Practices and Quality Assessment of Food Crops Volume 1. Springer Netherlands, 2004,2:105-161.
[4] LANG P, DANE F, KUBISIAK T L. Phylogeny of Castanea (Fagaceae) based on chloroplasttrnT-L-F sequence data. Tree Genetics & Genomes, 2006,2(3):132-139.
doi: 10.1007/s11295-006-0036-2
[5] 魏潇, 章秋平, 刘宁, 张玉萍, 徐铭, 刘硕, 张玉君, 马小雪, 刘威生. 不同来源中国李(Prunus salicina L.)的多样性与近缘种关系. 中国农业科学, 2019,52(3):568-578.
doi: 10.3864/j.issn.0578-1752.2019.03.017
WEI X, ZHANG Q P, LIU N, ZHANG Y P, XU M, LIU S, ZHANG Y J, MA X X, LIU W S. Genetic diversity of the Prunus salicina L. from different sources and their related species. Scientia Agricultura Sinica, 2019,52(3):568-578. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.03.017
[6] 李剑锋, 张博, 全建章, 王永芳, 张小梅, 赵渊, 袁玺垒, 贾小平, 董志平. 基于SSR标记的谷子主要农艺性状关联位点检测及等位变异分析. 中国农业科学, 2019,52(24):4453-4469.
doi: 10.3864/j.issn.0578-1752.2019.24.002
LI J F, ZHANG B, QUAN J Z, WANG Y F, ZHANG X M, ZHAO Y, YUAN X L, JIA X P, DONG Z P. Associated loci detection and elite allelic variations analysis of main agronomic traits in foxtail millet (Setaria italica L.) based on SSR markers. Scientia Agricultura Sinica, 2019,52(24):4453-4469. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.24.002
[7] 石甜甜, 何杰丽, 高志军, 陈凌, 王海岗, 乔治军, 王瑞云. 利用EST-SSR评估糜子资源遗传差异. 中国农业科学, 2019,52(22):4100-4109.
doi: 10.3864/j.issn.0578-1752.2019.22.014
SHI T T, HE J L, GAO Z J, CHEN L, WANG H G, QIAO Z J, WANG R Y. Genetic diversity of common millet resources assessed with EST-SSR markers. Scientia Agricultura Sinica, 2019,52(22):4100-4109. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.22.014
[8] GUR-ARIE R, COHEN C J, EITAN Y, SHELEF L, HALLERMAN E M, KASHI Y. Simple sequence repeats in escherichia coli: Abundance, distribution, composition, and polymorphism. Genome Research, 2000,10(1):62-71.
pmid: 10645951
[9] INOUE E, NIN L, HARA H, RUAN S A, ANZAI H. Development of simple sequence repeat markers in Chinese chestnut and their characterization in diverse chestnut cultivars. Journal of the American Society for Horticultural Science, 2009,134(6):610-617.
doi: 10.21273/JASHS.134.6.610
[10] JIANG X B, TANG D, GONG B C. Genetic diversity and association analysis of Chinese chestnut (Castanea mollissima Blume) cultivars based on SSR markers. Brazilian Journal of Botany, 2017,40:235-246.
doi: 10.1007/s40415-016-0321-8
[11] MULLER M, NELSON C.D, GAILING O. Analysis of environment- marker associations in American chestnut. Forests, 2018,9(11):695.
doi: 10.3390/f9110695
[12] KUBISIAK T L, NELSON C D, STATON M E, ZHEBENTYAYAYEVA T, SMITH C, OLUKOLU B A, FANG C, HEBARD F V, ANAGNOSTAKIS S, WHEELER N, SISCO P H, ABBOTT A G, SEDEROFF R R. A transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Genetics & Genomes, 2013,9(2):557-571.
doi: 10.1007/s11295-012-0579-3
[13] 刘国彬, 曹均, 兰彦平, 王金宝. 明清板栗古树指纹图谱的构建. 江西农业大学学报, 2017,39(1):134-139.
LIU G B, CAO J, LAN Y P, WANG J B. Construction of SSR fingerprint on 33 ancient chestnut trees. Acta Agriculturae Universitatis Jiangxiensis, 2017,39(1):134-139. (in Chinese)
[14] 曹庆芹, 徐月, 冯永庆. 板栗基因组DNA不同提取方法的比较. 中国农学通报, 2007,23(6):160-163.
CAO Q Q, XU Y, FENG Y Q. Comparison studies on extracting genomic DNA of chestnut (Castanea mollissima BL) by different methods. Chinese Agricultural Science Bulletin, 2007,23(6):160-163. (in Chinese)
[15] 聂兴华, 张卿, 刘阳, 代月星, 曹庆芹, 秦岭. 板栗SSR标记研究中聚丙烯酰胺凝胶银染显影体系的优化. 北方园艺, 2019(12):27-33.
NIE X H, ZHANG Q, LIU Y, DAI Y X, CAO Q Q, QIN L. Optimization of PAGE silver-stained system based on SSR markers in the chestnut. Northern Horticulture, 2019(12):27-33. (in Chinese)
[16] LIU K J, MUSE S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005,21(9):2128-2129.
doi: 10.1093/bioinformatics/bti282 pmid: 15705655
[17] PEAKALL R, SMOUSE P E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 2012,28(19):2537-2539.
doi: 10.1093/bioinformatics/bts460
[18] PEAKALL R, SMOUSE P E. GenALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 2006,6:288-295.
doi: 10.1111/men.2006.6.issue-1
[19] FALUSH D, STEPHENS M, PRITCHARD J K. Inference of population structure using multi-locus genotype data: Linked loci and correlated allele frequencies. Genetics, 2003,164:1567-1587.
pmid: 12930761
[20] TAUTZ D, RENZ M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 1984,12:4127-4138.
doi: 10.1093/nar/12.10.4127 pmid: 6328411
[21] SARDAR S S, PRADHAN K, SHUKLA R P, SARASWAT R, SRIVASTAVA A, JENA S N, DAS A B. In silico mining of EST-SSRs in Arachis hypogaea L. and their utilization for genetic structure and diversity analysis in cultivars/breeding lines in Odisha, India. Molecular Breeding, 2016,36:49.
doi: 10.1007/s11032-016-0466-y
[22] LIU S R, LIU H W, WU A L, HOU Y, AN Y L, WEI C L. Construction of fingerprinting for tea plant (Camellia sinensis) accessions using new genomic SSR markers. Molecular Breeding, 2017,37:93.
doi: 10.1007/s11032-017-0692-y
[23] SELKOE K A, TOONEN R J. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters, 2006,9:615-629.
doi: 10.1111/j.1461-0248.2006.00889.x pmid: 16643306
[24] 张馨方, 张树航, 李颖, 郭燕, 王广鹏. 基于SSR标记的燕山板栗种质资源遗传多样性分析. 中国农业大学学报, 2020,25(4):61-71.
ZHANG X F, ZHANG S H, LI Y, GUO Y, WANG G P. Genetic diversity analysis of chestnut germplasm in Yanshan region based on SSR markers. Journal of China Agricultural University, 2020,25(4):61-71. (in Chinese)
[25] 黄武刚, 程丽莉, 周志军, 刘建立. 板栗野生居群遗传多样性研究. 果树学报, 2010,27(2):227-232.
HUANG W G, CHENG L L, ZHOU Z J, LIU J L. SSR analysis on genetic diversity of wild Chinese chestnut populations. Journal of Fruit Science, 2010,27(2):227-232. (in Chinese)
[26] XING Y, LIU Y, ZHANG Q, NIE X H, SUN Y M, ZHANG Z Y, LI H C, FANG K F, WANG G P, HUANG H W, BISSELING T, CAO Q Q, QIN L. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima). GigaScience, 2019,8:1-7.
[27] 郎萍, 黄宏文. 栗属中国特有种居群的遗传多样性及地域差异. 植物学报, 1999,41(6):651-657.
LANG P, HUANG H W. Genetic diversity and geographic variation in natural populations of the endemic Castanea species in China. Acta Botanica Sinica, 1999,41(6):651-657. (in Chinese)
[28] MOKAY J. Self-sterility in the Chinese chestnut. Proceedings of the American Society for Floret Science, 1942,41:156-160.
[29] PAYNE J A, JAYNES R A, KAYS S J. Chinese chestnut production in the United States: practice, problems, and possible solutions. Economic Botany, 1983,37:187-200.
doi: 10.1007/BF02858784
[30] 程丽莉, 胡广隆, 苏淑钗, 黄武刚. 板栗及其近缘种叶绿体SSR遗传多样性分析. 华北农学报, 2015,30(2):145-149.
doi: 10.7668/hbnxb.2015.02.026
CHENG L L, HU G L, SU S C, HUANG W G. Diversity of cultivated chestnuts and it’s close relative species using chloroplast SSRs. Acta Agriculturae Boreali-Sinica, 2015,30(2):145-149. (in Chinese)
doi: 10.7668/hbnxb.2015.02.026
[31] WRIGHT S. Evolution in Mendelian populations. Genetics, 1931,16:97.
pmid: 17246615
[32] 田华, 康明, 李丽, 姚小洪, 黄宏文. 中国板栗自然居群微卫星(SSR)遗传多样性. 生物多样性, 2009,17(3):296-302.
doi: 10.3724/SP.J.1003.2009.09043
TIAN H, KANG M, LI L, YAO X H, HUANG H W. Genetic diversity in natural populations of Castanea mollissima inferred from nuclear SSR markers. Biodiversity Science, 2009,17(3):296-302. (in Chinese)
doi: 10.3724/SP.J.1003.2009.09043
[33] 李颖林. 锥栗野生和栽培群体遗传多样性的SSR分析[D]. 福州: 福建农林大学, 2019.
LI Y L. Genetic diversity of wild and cultivated populations revealed by SSR markers in Castanea henryi[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. (in Chinese)
[34] TANAKA T, YAMAMOTO T, SUZUKI M. Genetic diversity of Castanea crenata in Northern Japan assessed by SSR markers. Breeding Science, 2005,55(3):271-277.
doi: 10.1270/jsbbs.55.271
[35] 韩继成, 刘庆香, 王广鹏, 孔德军, 张新忠. 栗属植物遗传多样性研究进展. 华北农学报, 2006,21(z2):129-132.
HAN J C, LIU Q X, WANG G P, KONG D J, ZHANG X Z. The progress of the genetic diversity studies on Castanea (Tourn.) L. Acta Agriculturae Boreali-Sinica, 2006,21(z2):129-132. (in Chinese)
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[3] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[6] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[7] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[8] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[9] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[10] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[11] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[12] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[13] Ge SONG,DongMei SHI,XiaoYing ZENG,GuangYi JIANG,Na JIANG,Qing YE. Quality Barrier Characteristics of Cultivated Layer for Sloping Farmland in Purple Hilly Region [J]. Scientia Agricultura Sinica, 2020, 53(7): 1397-1410.
[14] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[15] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!