Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 5083-5096.doi: 10.3864/j.issn.0578-1752.2021.23.013

• HORTICULTURE • Previous Articles     Next Articles

Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology

HU DongMei1(),JIANG Dong2(),LI YongPing3,PENG Lei4(),LI DongYun5,ZHU YanSong2,YANG YunGuang1   

  1. 1Agricultural Technology Extension Station of Yuxi County, Yuxi 653100, Yunnan
    2Citrus Research Institute of Southwest University, Chongqing 400712
    3Yunnan Green Food Development Center, Kunming 650032
    4College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201
    5Citrus Industry Development Office of Huaning County, Huaning 652800, Yunnan
  • Received:2021-02-22 Accepted:2021-05-20 Online:2021-12-01 Published:2021-12-06
  • Contact: Dong JIANG,Lei PENG E-mail:909625192@qq.com;jiangdong@cric.cn;1527873167@qq.com

Abstract:

【Objective】 Most citrus cultivars especially some seedless varieties were originated from bud sports mutation. The plant morphological traits of these bud sports were susceptible to environment and cultivation conditions, so discriminating the mutant lines from its parents have been still hard tasks although many molecular marker approaches were developed. As the use of deep sequencing technology could simultaneously genotype multiple loci of the mutation lines, it was already widely used to discriminate citrus bud sports in high efficiency. In addition, the technical approach could also benefit to accurate the identification of citrus genetic accessions, the genetic diversity research and the variety rights protection. 【Method】 In this study, the Target-SSR sequencing approach was adopted to discriminate citrus bud sport. The SSR loci were firstly discovered by scanning of the clementine mandarin (Citrus reticulata Blanco) reference genome and satsuma mandarin (Citrus unshiu Macf.) genome sequences, and those high polymorphic SSR loci were used to design primers to distinguish 22 citrus accessions which including some bud sports materials. Finally, multiplexed PCR production obtained through 18 runs PCR amplification with 77 pair primers on two bud sports materials were used to construct target SSR sequencing library, and sequenced with MiSeq apparatus to genotype SSR and SNP variation. In addition, the genetic diversity of 22 citrus accessions were also analyzed by using the developed SSR markers in this study. 【Result】 69 101 SSRs and 80 193 SSR were obtained respectively from clementine reference genome and satsuma genome by using GMATA software, among which AT/TA motif SSR were the most, and 3 motifs AAT rank the second. The high polymorphic SSR loci and its flanking sequences were extracted to design primers for bud sports discrimination and library construction. Four pairs of SSR primers could accurately distinguish 22 citrus germplasms. Target SSR-sequencing with MiSeq apparatus not only simultaneously genotype multiple SSR loci at one time but also accurately identified the variant loci of SSRs. Combining with the identified SSR and SNP genotypes, it could be effectively distinguished two satsuma bud sports. 【Conclusion】In this research, an efficient SSR loci discovering method was developed, combining with target SSR multiplex amplification and deep sequencing on MiSeq platform, which could effectively discriminate citrus bud sports. This study not only provided an important means to identify citrus buds sports, but also facilitated the protection of citrus varieties and the management of citrus germplasms genetic diversity in the future.

Key words: citrus, bud sports, Target SSR-seq, deep sequencing

Table 1

22 citrus accessions used in this study"

序号
Code
种质号
Germplasm
number
采集地
Collection site
对应母本
Corresponding maternal parent
序号
Code
种质号
Germplasm
number
采集地
Collection site
对应母本
Corresponding maternal parent
1 芽变1号
Bud sports No1.
华宁县
Huaning county
4 12 芽变5号
Bud sports No5.
华宁县
Huaning county
11
2 芽变2号
Bud sport No2.
华宁县
Huaning county
4 13 大分1号
Oita No1.
华宁县
Huaning county
3 芽变3号
Bud sport No3.
华宁县
Huaning county
9 14 HX10 华宁县
Huaning county
4 冰糖橙
Bingtang Orange
华宁县
Huaning county
15 MK11 华宁县
Huaning county
5 BJ2 华宁县
Huaning county
16 芽变6号
Bud sport No6.
新平县
Xinping county
4
6 SC3 华宁县
Huaning county
17 芽变7号
Bud sport No7.
新平县
Xinping county
4
7 芽变4号
Bud sport No4.
华宁县
Huaning county
不详(温州蜜柑)
Unknown (Satsuma)
18 芽变8号
Bud sport No8.
新平县
Xinping county
4
8 宫本
Miyanoto Wase
华宁县
Huaning county
19 芽变9号
Bud sport No9.
新平县
Xinping county
4
9 大浦
Ooura Wase
华宁县
Huaning county
20 芽变10号
Bud Sport No10.
新平县
Xinping county
4
10 兴津
Okitsu Wase
华宁县
Huaning county
21 芽变11号
Bud sport No11.
新平县
Xinping county
4
11 日南1号
Nichihan No1.
华宁县
Huaning county
22 HG12 新平县
Xinping county

Table 2

The four pairs of polymorphic SSR primers used to discriminate 22 citrus accessions"

引物编号 Primer number 上游Forward (5′-3′) 下游Reward(5′-3′)
MK7 CTGGGGCTCACATAAATCGT GATTTGTCCGCCAATCAAGT
MK9 GCATTGCAGCACTTTTGTCAT GCATTGCAGCACTTTTGTCAT
MK19 GGGTTGGGAATGTGAATGAA CCTAGGGGTGGGCATATTTT
MK17 CCCACCTCGTTGAATCTCTC ACCAGTACCACTGCTTACTCTTTT

Fig. 1

The SSR motifs and its proportion in citrus reference genome"

Fig. 2

The SSR motifs and its proportion of SSR in satsuma genome"

Fig. 3

SSR variation presented in some homologous sequences"

Fig. 4

The amplification band profiles by No.9 primer on 22 citrus accessions"

Fig. 5

The principal coordinates analysis graph of 22 citrus accessions based on SSR genotype 3, 9, 7, 8, 10, 11, and 12 on behalf early ripening accessions, and the others are medium and late ripening accessions; Diagram 13 said 14 samples, and so on"

Fig. 6

The amplification bands by No.9 (9#1) primer checked with agarose gel electrophoresis"

Table 3

The differentiation SSR and SNP variation on two citrus bud sports variants"

3.CHROM 3.POS 3.REF 3.ALT 7.ALT 3.DP 7.DP 3.AF 7.AF 3.SGACOV 7.SGACOV
SCAFFOLD_2 9464551 A C 7955 .212 1688
SCAFFOLD_2 9464547 GAGAAGAAGAAGAAGA GAGAAGAAGAAGA GAGAAGAAGAAGA 7954 6366 .342 .397 2718 2528
SCAFFOLD_2 9464536 GAAA GA GA 7919 6328 .347 .409 2750 2590
SCAFFOLD_2 9464527 G C C 7914 6328 .366 .427 2894 2703
SCAFFOLD_2 9464521 A G 7912 .213 1689
SCAFFOLD_6 23400577 GTATTATTATTATTATT GTATTATTATTATTATTATTATT GTATTATTATTATTATTATTATT 5603 5709 .606 .373 3396 2131
SCAFFOLD_6 23400577 GTATTATTATTATTATT GTATTATTATTATTATTATTATT T 5603 5709 .606 .227 3396 1298

Fig. 7

SSR alleles variation of two satsuma bud sports aligned on scaffold_6"

Fig. 8

SSR allel variation of two satsuma bud sports aligned on scaffold_2"

[1] 董美超, 李进学, 周东果, 岳建强, 高俊燕. 柑橘品种选育研究进展. 中国果树, 2013(6):73-78.
DONG M C, LI J X, ZHOU D G, YUE J Q, GAO J Y. Advances in citrus breeding. China fruit, 2013(6):73-78. (in Chinese)
[2] 邓秀新, 王力荣, 李绍华, 张绍铃, 张志宏, 丛佩华, 易干军, 陈学森, 陈厚彬, 钟彩虹. 果树育种40年回顾与展望. 果树学报, 2019, 36(4):514-520.
DENG X X, WANG L R, LI S H, ZHANG S L, ZHANG Z H, CONG P H, YI G J, CHEN X S, CHEN H B, ZHONG C H. Retrospection and prospect of fruit breeding for last four decades in China. Journal of Fruit Science, 2019, 36(4):514-520. (in Chinese)
[3] 张敏, 邓秀新. 柑橘芽变选种以及芽变性状形成机理研究进展. 果树学报, 2006, 23(6):871-876.
ZHANG M, DENG X X. Advances in research of Citrus cultivars selected by bud mutation and the mechanism of formation of mutated characteristics. Journal of Fruit Science, 2006, 23(6):871-876. (in Chinese)
[4] 王三红, 陈力耕, 章镇, 房经贵. RAPD在柑橘品系鉴别上的应用. 果树科学, 2000, 17(1):70-72.
WANG S H, CHEN L G, ZHANG Z, FANG J G. Application of RAPD in identification of Citrus strains. Journal of Fruit Science, 2000, 17(1):70-72. (in Chinese)
[5] 范眸天, 高俊, 吴兴恩, 李文祥, 龙雯虹, 许明辉. 十五种柑桔种质资源的RAPD分析. 中国南方果树, 2002, 31(6):3-6.
FAN M T, GAO J, WU X E, LI W X, LONG W H, XU M H. The RAPD analysis of fifteen germplasm resources of Citrus. South China Fruits, 2002, 31(6):3-6. (in Chinese)
[6] 罗静, 周心智, 张云贵. RAPD标记对25份柑桔资源及其芽变系的鉴定和多样性分析. 中国农学通报, 2008, 24(8):99-104.
LUO J, ZHOU X Z, ZHANG Y G. Identification and genetic diversity analysis of 25 Citrus resources and its sports strains by RAPD technique. Chinese Agricultural Science Bulletin, 2008, 24(8):99-104. (in Chinese)
[7] 吴兴恩, 范眸天, 龚洵, 杨杨. 22份柑桔资源的ISSR分析. 云南农业大学学报, 2006, 21(1):36-41, 51.
WU X E, FAN M T, GONG X, YANG Y. The ISSR analysis of 22 Citrus resources. Journal of Yunnan Agricultural University, 2006, 21(1):36-41, 51. (in Chinese)
[8] 刘通, 邓崇岭, 程玉芳, 李秋景, 陈传武, 刘冰浩, 伊华林. 利用SSR 和 SRAP 技术分析广西柑橘种质, 遗传多样性. 2016, 35(2):23-29.
LIU T, DENG C L, CHENG Y F, LI Q J, CHEN C W, LIU B H, YI H L. Genetic diversity analysis of Citrus germplasm in Guangxi using SSR and SRAP techniques. Journal of Huazhong Agricultural University, 2016, 35(2):23-29. (in Chinese)
[9] BI Q X, ZHAO Y, CUI Y F, WANG L B. Genome survey sequencing and genetic background characterization of yellow horn based on next-generation sequencing. Molecular Biology Reports, 2019, 46(4):4303-4312.
doi: 10.1007/s11033-019-04884-7
[10] 韩国辉. 基于EST-SSR、Genomic-SSR 和SCoT 标记的柑橘连锁图谱构建及杂种和多倍体遗传分析[D]. 重庆: 西南大学, 2012.
HAN G H. Construction of linkage map and genetic analysis of hybrid and polyploid in citrus based on EST-SSR, Genomic-SSR and Scot markers[D]. Chongqing: Southwest University, 2012. (in Chinese)
[11] 李益, 马先锋, 唐浩, 李娜, 江东, 龙桂友, 李大志, 牛英, 韩瑞玺, 邓子牛. 柑橘品种鉴定的SSR标记开发和指纹图谱库构建. 中国农业科学, 2018, 51(15):2969-2979.
LI Y, MA X F, TANG H, LI N, JIANG D, LONG G Y, LI D Z, NIU Y, HAN R X, DENG Z N. SSR markers screening for identification of Citrus cultivar and construction of DNA fingerprinting library. Scientia Agricultura Sinica, 2018, 51(15):2969-2979. (in Chinese)
[12] 曹庆芹, 孟海军, 文晓鹏, 伊华林, 邓秀新. 利用SSR标记分析柑橘雄性不育及低育资源的遗传多样性. 农业生物技术学报, 2006, 14(6):937-941.
CAO Q Q, MENG H J, WEN X P, YI H L, DENG X X. Genetic diversity of male sterile and low fertile germplasm of Citrus reealed using SSR markers. Journal of Agricultural Biotechnology, 2006, 14(6):937-941. (in Chinese)
[13] YAMAMOTO T, MOCHIDA K, IMAI T, HAJI T, YAEGAKI H, YAMAGUCHI M, MATSUTA N, OGIWARA I, HAYASHI T. Parentage analysis in Japanese peaches using SSR markers. Breeding Science, 2003, 53(1):35-40.
doi: 10.1270/jsbbs.53.35
[14] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53(15):2983-3004.
XU Y B, YANG Q N, ZHENG H J, XU Y F, SANG Z Q, GUO Z F, PENG H, ZHANG C, LAN H F, WANG Y B, WU K S, TAO J J, ZHANG J N. Genotyping by target sequencing (GBTS) and its applications. Scientia Agricultura Sinica, 2020, 53(15):2983-3004. (in Chinese)
[15] 黄卫, 罗玉萍. DNA分子标记在柑桔中的应用. 生物技术, 2002, 12(1):34-36.
HUANG W, LUO Y P. Application of DNA molecular marker in Citrus. Biotechnology, 2002, 12(1):34-36. (in Chinese)
[16] MICHAELSON J J, SHI Y J, GUJRAL M, ZHENG H C, MALHOTRA D, JIN X, JIAN M H, LIU G M, GREER D, BHANDARI A, WU W T, COROMINAS R, PEOPLES A, KOREN A, GORE A, KANG S L, LIN G N, ESTABILLO J, LAKOUCHEVA L M, LI Y R, WANG J, SEBAT J. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell, 2012, 151(7):1431-1442.
doi: 10.1016/j.cell.2012.11.019
[17] SOHN H B, KIN S J, HWANG T Y, PARK H M, LEE Y Y, MARKKANDAN K, LEE D, LEE S, HONG S Y, SONG Y H, KOO B C, KIM Y H. Barcode system for genetic identification of soybean (Glycine max(L.) Merrill) cultivars using Indel markers specific to dense variation blocks. Frontiers in Plant Science, 2017, 8:520.
[18] LI L, FANG Z W, ZHOU J F, CHEN H, HU Z F, GAO L F, CHEN L H, REN S, MA H Y, LU L, ZHANG W X, PENG H. An accurate and efficient method for large-scale SSR genotyping and applications. Nucleic Acids Research, 2017, 45(10):e88.
doi: 10.1093/nar/gkx093
[19] 刘欢, 黄丽娜, 张奋强, 姜梦嫣, 周义杰, 陈思源, 王有年, 杨明峰, 马兰青. RNA-Seq高通量测序技术在果树功能基因组学研究的应用进展. 生物技术进展, 2017, 7(2):144-148.
LIU H, HUANG L N, ZHANG F Q, JIANG M Y, ZHOU Y J, CHEN S Y, WANG Y N, YANG M F, MA L Q. Progress on application of RNA-seq high throughput sequencing technology in functional genomics of fruit trees. Current Biotechnology, 2017, 7(2):144-148. (in Chinese)
[20] 张先文, 贺治洲, 江南, 邓华凤, 李继明. 高通量基因型分型技术及其在水稻中的应用. 生物技术通报, 2017, 33(12):67-73.
ZHANG X W, HE Z Z, JIANG N, DENG H F, LI J M. High-throughput genotyping techniques and their applications in rice. Biotechnology Bulletin, 2017, 33(12):67-73. (in Chinese)
[21] YANG J J, ZHANG J, HAN R X, ZHANG F, MAO A J, LUO J, DONG B B, LIU H, TANG H, ZHANG J N, WEN C L. Target SSR-seq: A novel SSR genotyping technology associate with perfect SSRs in genetic analysis of cucumber varieties. Frontiers in Plant Science, 2019, 10:531.
doi: 10.3389/fpls.2019.00531
[22] LI H, MA Y S, PENG F Y, ZHANG H Y, LIU J C, JIANG M. Large-scale advances in SSR markers with high-throughput sequencing in Euphorbia fischeriana Steud. Electronic Journal of Biotechnology, 2021, 49(1):50-55.
doi: 10.1016/j.ejbt.2020.11.004
[23] FORDYCE S L, ávila-Arcos M C, ROCKENBAUER E, BORSTING C, FRANK-HANSEN R, PETERSEN F T, WILLERSLEV E, HANSEN A J, MORLING N, GILBERT M T P. High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche Genome Sequencer FLX platform. BioTechniques, 2011, 51:127-133.
doi: 10.2144/000113721
[24] 谢让金, 邓烈. 一种适合AFLP分析的柑橘DNA提取方法. 生物技术, 2007, 17(6):27-28.
XIE R J, DENG L. A Citrus DNA extraction method for AFLP analysis. Biotechnology, 2007, 17(6):27-28. (in Chinese)
[25] XANG X W, WANG L. GMATA: An integrated software package for genome-scale SSR mining, marker development and viewing. Frontiers in Plant Science, 2016, 7:1350.
[26] UNTERGASSER A, CUTCUTACHE I, KORESSAAR T, YE J A, FAIRCLOTH B C, REMM M, ROZEN S G. Primer3-new capabilities and interfaces. Nucleic Acids Research, 2012, 40(15):e115.
doi: 10.1093/nar/gks596
[27] KALINOWSKI S T, TAPER M L, MARSHALL T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 2007, 16(5):1099-1106.
doi: 10.1111/j.1365-294X.2007.03089.x
[28] PEAKALL R, SMOUSE P E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 2006, 6(1):288-295.
doi: 10.1111/men.2006.6.issue-1
[29] THORVALDSDÓTTIR H, ROBINSON J T, MESIROV J P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Briefings in Bioinformatics, 2012, 14(2):178-192.
doi: 10.1093/bib/bbs017
[30] 孙淑霞, 陈栋, 李靖, 涂美艳, 谢红江, 江国良. 北京28号桃芽变株系的ISSR和SSR鉴定. 果树学报, 2012, 29(1):24-28.
SUN S X, CHEN D, LI J, TU M Y, XIE H J, JIANC G L. Molecular identification of peach bud sports from Beijing 28 with ISSR and SSR. Journal of Fruit Science, 2012, 29(1):24-28. (in Chinese)
[31] 齐丹. 梨种质变异的SRAP和EST-SSR分析[D]. 北京: 中国农业科学院, 2013.
QI D. Analysis of variation of pear germplasm accessions by SRAP and EST-SSR markers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[32] LI L, FANG Z W, ZHOU J F, CHEN H, HU Z F, GAO L F, CHEN L H, REN S, MA H Y, LU L, ZHANG W X, HAI P. An accurate and efficient method for large-scale SSR genotyping and applications. Nucleic Acids Research, 2017, 45(10)V: e88.
[33] MA J J, ZHAO Y H, CHEN H, FU C, ZHU L, ZHOU X M, XIA H, HOU L, LI G G, ZHUANG W J, WANG X J, ZHAO C Z. Genome-wide development of polymorphic microsatellite markers and their application in peanut breeding program. Electronic Journal of Biotechnology, 2020, 44(3):25-32.
doi: 10.1016/j.ejbt.2020.01.004
[34] WANG Y, YANG C, JIN Q J, ZHOU D J, WANG S S, YU Y J, YANG L. Genome-wide distribution comparative and composition analysis of the SSRs in Poaceae. BMC Genet, 2015, 16(2):18.
doi: 10.1186/s12863-015-0178-z
[35] QI W H, LU T, ZHENG C L, JIANG X M, JIE H, ZHANG X Y, YUE B S, ZHAO G J. Distribution patterns of microsatellites and development of its marker in different genomic regions of forest musk deer genome based on high throughput sequencing. Aging, 2020, 12(5):4445-4462.
doi: 10.18632/aging.v12i5
[36] PAVAN KUMAR P, JANAKIRAM T, BHAT K V. Microsatellite based DNA fingerprinting and assessment of genetic diversity in Bougainvillea cultivars. Gene, 2020, 753:144794.
doi: 10.1016/j.gene.2020.144794
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[3] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[4] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[5] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[6] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[7] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
[8] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[9] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[10] LU Qi,JIA XuChao,DENG Mei,ZHANG RuiFen,DONG LiHong,HUANG Fei,CHI JianWei,LIU Lei,ZHANG MingWei. Effects of Different Drying Methods on Bioactive Components of Shatianyou (Citrus grandis L. Osbeck) Pomace Powder [J]. Scientia Agricultura Sinica, 2022, 55(14): 2825-2836.
[11] ZOU YunQian,LIN ZiZhen,XU RangWei,CHENG YunJiang. Development and Evaluation of a Coating Substitute for Individual Polyethylene Film Packaging of Citrus Fruit [J]. Scientia Agricultura Sinica, 2022, 55(12): 2398-2412.
[12] LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84.
[13] DUAN Yu,XU JianJian,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Detection of Citrus Leaf Blotch Virus by Reverse Transcription- Recombinase Polymerase Amplification (RT-RPA) [J]. Scientia Agricultura Sinica, 2021, 54(9): 1904-1912.
[14] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[15] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!