Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (22): 4458-4472.doi: 10.3864/j.issn.0578-1752.2022.22.011

• HORTICULTURE • Previous Articles     Next Articles

Identification of 60 Citrus Accessions Using Target SSR-seq Technology

ZHU YanSong1(),ZHANG YaFei1,CHENG Li1,YANG ShengNan1,ZHAO WanTong1,2,JIANG Dong1,2()   

  1. 1Citrus Research Institute of Southwest University, Chongqing 400712
    2Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing 400712
  • Received:2022-02-24 Accepted:2022-05-23 Online:2022-11-16 Published:2022-12-14
  • Contact: Dong JIANG E-mail:2508308456@qq.com;jiangdong@cric.cn

Abstract:

【Background】 Bud sports mutation is a DNA mutation occurred in somatic meristem, and it often displays visible morphological and other characteristic changes different from its mother plants in branches, leaves, flowers and fruits. However, the discriminating bud sports mutation from the epigenetic variation caused by environmental conditions and cultivation measures etc. external factors was still mostly depended on the molecular fingerprint detection. 【Objective】 This study objective was to identify citrus bud sports mutant through Target-SSR sequencing technology.【Method】Firstly, the genome of clementine mandarin (Citrus reticulata Blanco) and satsuma (Citrus unshiu Macf.), as well as GSS and EST sequences of satsuma were used to scan SSRs loci with GMATA, and the highly polymorphic SSRs loci were screened out to design primers. The multiplex PCR with optimized primers were ampllified on 60 citrus bud sports mutants to construct high-thoughout sequencing library, and the amplification products were then sequenced on illumina Minseq platform. The clean sequencing short reads were mapped to reference target sequences to find differentiated SSRs loci presented in citrus bud sports mutants.【Result】 A total of 77 pairs of SSR primers were designed from highly polymorphic SSRs loci. The primer pair combinations were optimized and 18 multiplex PCR amplification products were sequenced. The target SSR-seq analysis showed that the genotyping data of SSRs could divided 60 citrus accessions into two groups corresponding to sweet orange and mandarin, and the mandarin group could be further subdivided into different citrus cultivars, such as Orah, ponkan etc. 11 SSR loci containing mostly ATT motif were found in 7 Tarroco blood orange mutants, 8 SSR loci containing mostly TAA motif were found in 2 ‘Wu Yue Hong’ mutants and 5 navel orange, 16 SSR loci containing mostly GA motif were found in 9 Bing Tang Cheng mutants, 9 SSR loci containing mostly AAT motif were found in 2 Sha Tang Ju mutants, and 15 SSR loci with mostly AAT motif were found in 4 satsuma mutants. This study showed that Target-SSR sequencing technology provided an excellent resolving approach to discriminate citrus bud mutations.【Conclusion】 In this study, an effective method for citrus bud mutant identification by using Target SSR-seq technology were established, and 60 citrus germplasm accessions could be discriminated. The precision and reliability of SSR genotyping information could be utilized in citrus germplasm resources management and variety intellectual property protection.

Key words: citrus, bud sports, Target SSR-seq

Table 1

Information of 60 sequencing samples"

类群
Group
编号
Code
名称
Name
类群
Group
编号
Code
名称
Name
甜橙类
C. sinensis Osbeck
1 锦秀冰糖橙 Jin Xiu Bing Tang Cheng 杂柑类
C. reticulata Blanco
31 清见 Kiyomi
2 锦红大果冰糖橙
Jin Hong Da Guo Bing Tang Cheng
32 黄皮清见
Yellow Peel Kiyomi
3 锦红最红冰糖橙
Jin Hong Zui Hong Bing Tang Cheng
33 不知火
Shiranui
4 锦玉冰糖橙 Jin Yu Bing Tang Cheng 34 黄皮不知火 Yellow Peel Shiranui
5 椭圆冰糖橙 Tuo Yuan Bing Tang Cheng 35 红美人 Beni Madonna
6 冰糖橙仁4 Bing Tang Cheng Ren 4 36 黄皮红美人 Yellow Peel Beni Madonna
7 冰糖橙仁5 Bing Tang Cheng Ren 5 温州蜜柑
C. unshiu Mac.
37 宫川温州蜜柑 Miyagawa unshiu
8 品质特异5号冰糖橙 No. 5 Bing Tang Cheng 38 大分4号温州蜜柑 Oita No.4 Wase
9 新冰30号冰糖橙
Xin Bing 30 Hao Bing Tang Cheng
39 大浦5号温州蜜柑
Ooura No.5 Wase
10 橘湘元 Ju Xiang Yuan 40 大分1号温州蜜柑 Oita No.1 Wase
11 塔罗科血橙1 Tarroco blood orange No. 1 41 青皮蜜橘 Qing Pi Mi Ju
12 塔罗科血橙2 Tarroco blood orange No. 2 42 金葵早熟蜜橘 Jin Kui Early Mi Ju
13 塔罗科血橙3 Tarroco blood orange No. 3 椪柑
C. reticulata Blanco
43 蜂洞橘椪柑 Feng Dong Ju Ponkan
14 塔罗科血橙4 Tarroco blood orange No. 4 44 衢州椪柑 Qu Zhou Ponkan
15 塔罗科99 Tarroco No. 99 45 兴春椪柑 Kousyun Ponkan
16 塔罗科新系 Tarroco New Line 46 早蜜椪柑 Zao Mi Ponkan
17 塔罗科血橙(Thermal)
Tarroco blood orange Thermal
47 黔阳无核椪柑
Qian Yang Seedless Ponkan
18 卡拉卡拉 Cara Cara 48 立山64 Li Shan 64 Ponkan
19 晚红血橙 Wan Hong blood orange 49 椪柑 Ponkan
20 五月红 Wu Yue Hong 沃柑芽变
C. reticulata Blanco
50 无核沃柑9号 Seedless Orah No.9
21 五月红51-13 Wu Yue Hong 51-13 51 无核沃柑10号 Seedless Orah No.10
22 班菲 Barfield navel orange 52 无核沃柑8号 Seedless Orah No.8
23 赣脐4号 Gan Qi No.4 53 皱皮沃柑 Wrinkle Orah
24 贺脐1号 He Qi No.1 54 武鸣沃柑 Wu Ming Orah
25 纽荷尔 Newhell navel orange 55 有核沃柑 Orah
26 奉节晚脐 Feng Jie late navel orange 56 少核沃柑 Seedless Orah
27 桂橙1号 Gui Cheng No. 1 57 无核沃柑 Orri
28 石棉纽荷尔 Shi Mian Newhell navel orange 沃柑杂交
C. reticulata Blanco
58 沃柑×青皮蜜橘 Orah × Qing Pi Mi Ju
砂糖橘
C. reticulata Blanco
29 砂糖橘
Sha Tang Ju
59 少核沃柑×塔罗科血橙
Seedless Orah × Tarroco blood orange
30 无核砂糖橘 Seedless Sha Tang Ju 60 沃柑×甘平 Orah × Kanpei

Fig. 1

Flow chart of SSR primer design"

Table 2

Primers for site validation"

类群
Group
位点
Site
引物编号
Primer code
引物序列
Sequence
目标产物大小
Production length (bp)
冰糖橙
Bing Tang Cheng
Scaffold_7 20854883 Neast_1-F TGCTTGCTTTTGTACTCCTTCT 848
Neast_1-R TCGACACTTACGTACGTTGC
Test_1-F GCTTGGCTGGATCCTACAAA 187
Test_1-R ATCTGAGCGGTGCCATATCA
沃柑
Orah
Scaffold_7 346954 Neast_2-F TGGCAGTTGTTAACCCAAGC 646
Neast_2-R GCCTTTCGCGCCAACAATTT
Test_2-F CAACTGTGATGCGTATTTCCG 309
Test_2-R GCACAGTCAACTAACGGTCA

Table 3

SSR primer sequences used in this study"

编号 Code 正向序列 Forward 反向序列 Reverse
>MK1 AATGACGACGACAACGATGA TGGAATCGGAATGGATTGTT
>MK2 TGAAATTGACGATGGAGAGAAG ATGGCAACTTCTCCAGCAAA
>MK3 CGATGGAGAGAAGTAACGAAGAA GGTCCAAAATCAACAAATGG
>MK4 CGAAGAAATTGCACAAGAGAGA GGTCCAAAATCAACAAATGG
>MK5 GAAACCTTGCTGCGCTTTT CACCTTGATGTAGAAAGCATGA
>MK6 TTTACAGCCCTAAGCGGAAA CGAAAATGCCCTTTGTTGAT
>MK7 CTGGGGCTCACATAAATCGT GATTTGTCCGCCAATCAAGT
>MK8 GCATTGCAGCACTTTTGTCAT GATTTGTCCGCCAATCAAGT
>MK9 GCATTGCAGCACTTTTGTCAT CAAACTCAACTAACGGATGGTAAG
>MK10 ACAACAATGGGGTCAAGCAC CCACTGTCAAACTCCAAAATGA
>MK11 AATGGGGTCAAGCACATTTT CAAAGGAAACACGAATTCAACC
>MK12 GGTGCAACACATCTCAAAGC TTTGTCGAAGATGGTCGATT
>MK13 CAGCTGTTCTGAGAGACTTTTCTT TCCGTACTGTTTGGGATTACG
>MK14 CCTTCTCGAATGAAAACATCCT TCCGTACTGTTTGGGATTACG
>MK15 GATGAAGTGGGCAGTTACGTT TTGGGCTTGACATAAAAGCA
>MK16 AGCTACCCACCTCGTTGAAT ACCAGTACCACTGCTTACTCTTTT
>MK17 CCCACCTCGTTGAATCTCTC ACCAGTACCACTGCTTACTCTTTT
>MK18 CAATGATACACCCCAGAGCA ACCAGTACCACTGCTTACTCTTTT
>MK19 GGGTTGGGAATGTGAATGAA CCTAGGGGTGGGCATATTTT
>MK20 GTGCATCACACCACAGCTTC TGGCATGAGGGTAGTCAATTTT
>MK21 TCGATGTCATGTGTTATGCTTG AAGTAACACGGGATGGTTGC
>MK22 TGTGTTATGCTTGTTAGACACCTG AAGTAACACGGGATGGTTGC
>MK23 AGGCATGAGAGAGAGTTGACTT CGAGGTTATCATCCGAATCC
>MK24 AAATGCAATGTGGGCTATGC TTCTGGAAGTGAGCCACAAG
>MK25 GCAATGTGGGCTATGCATTT CCTTCCCTGAATTCGAGCAT
>MK26 GGTGATGATGAATGCGTGAA TCTCGTCTGCTAATCGCATC
>MK27 GATGAATGCGTGAAATCGAC CGTCTGCTAATCGCATCTTTC
>MK28 CGTAAGGCTCGCTATGTCCT AATCGATCGGCTGGACTAAA
>MK29 CCACCGTCGAGGTCATTTAT AAATCGATCGGCTGGACTAA
>MK30 GGGCAGTGGCAATAAGAATG ATGGGCTTCAACACACATGA
>MK31 TCAGCACCACAAGTCAATCC ACATGGGTGGAGAGCAAACT
>MK32 TCAGCACCACAAGTCAATCC GAAATCTGGGGTTCAAATCG
>MK33 CATTCTTTCCCTCCACTCCA AACCCAATGCTTGCTTTTGT
>MK34 ATGAGGCTTGCGAGGTTTA CAAGGCCAGGTGGACAAATA
>MK35 TGAGGCTTGCGAGGTTTAT CAAATACCAGAGCCAAATCTCC
>MK36 GGCTGTTGCCGCATTAGTTA ACAAGGCTCCAGCGACAG
>MK37 GCCAAAGCCCAAACTCAATA ACGAGAGCCAACCTGACATC
编号 Code 正向序列 Forward 反向序列 Reverse
>MK38 TTGCTTTTGTACTCCTTTAGGC ACGAGAGCCAACCTGACATC
>MK39 TTGCTTTTGTACTCCTTTAGGC CCCAATGCTTTTCCATTTTC
>MK40 AATTAAATGCACGGCAAGGA CAAATCTCCACTTGCAGACG
>MK41 ATTAAATGCACGGCAAGGAG CAAATCTCCACTTGCAGACG
>MK42 ATTAAATGCACGGCAAGGAG AGGCATAGATGATCCACCTCA
>MK43 GTGCCACTACTGTTACGTTCTTTT TTAGTTCATGGGTGAATGGTG
>MK44 GCCTTCATTTCTTGGTTGATG ATGGAAAATTGGGGAAAAGC
>MK45 TCATTGGCACCATCATCATT ATGGAAAATTGGGGAAAAGC
>MK46 TATCATTGGCACCATCATCA GGCCACGTCATTCAAGAAAT
>MK47 TCATTGGCACCATCATCATT AGTAGGCCACGTCATTCAAG
>MK48 TCATTGGCACCATCATCATT TTGAAATAGTAGGCCACGTCA
>MK49 TCATTGGCACCATCATCATT GGAAAATTCCCTAATCCTGAGA
>MK50 AAAAGGTCATGTGCATCCAA ATTGGCAGCATGCAAGATA
>MK51 AAAAGGTCATGTGCATCCAA TGGTGGCAGTAGTGTTGTAGTAA
>MK52 TCTTGCATGCTGCCAATAA TGGTGGCAGTAGTGTTGTAGTAA
>MK53 GTTTTCTATTCGGCCATCCA CGAAGGCAATTTGGGATGTA
>MK54 CCAGCATGCATATGGCTAGA GGGCCAAATATTATAACGAAGG
>MK55 CCAGCATGCATATGGCTAGA CGAAGGCAATTTGGGATGTA
>MK56 CCAGGTGAATCCAAACAGTACA TATGCATTCGTCGTGATGGT
>MK57 CACCCATTAATATTGACTTCCTTGC TTTACACCGTGGGAGGTTCT
>MK58 TACATCAAGCAAGCCACGAG AGTGAGCAGGGAGCTCAAAA
>MK59 TACATCAAGCAAGCCACGAG TGCATACGTCAGTAGAAAAGATGAG
>MK60 TGATTCCAAGACGCCTCCTA ACGTGTACCGTTGAAGTGGA
>MK61 TTCAATACCCCAAACGTAACC AGGATGGCTACGATGTCTGAA
>MK62 ACCCGAACCGAATTTTAACC TTTTCTCAGACCTGATTCACCA
>MK63 GCGCTCACCCCTAATGTAAA TTTTCTCAGACCTGATTCACCA
>MK64 ACAGCAAGGAAGGGGAAGAT TGGGTTCAGGGATTTTATCAG
>MK65 CAACTATGCTACGCGTTTATTTGAC CAGCTTATTGATGAACCTGCAA
>MK66 CAACCCCATTGTTAGGTAATTG GCTCAGCAACAGCAACTGG
>MK67 CCGCAACAAAATCAAGTCAA GGGTCTCTAGAAAACTTTCAACCA
>MK68 AAAATGGCCACAATGAGCTT GGTCAATTTGGAGGTTCTTCTT
>MK69 TCTCAATCCCACAAATTAGGC TTTTGACACCCCGTAACAACT
>MK70 TCTCAATCCCACAAATTAGGC GAGAAGTCTACAAAATGGAACCTCA
>MK71 CGTGGCCCAACCTCAATTA TCCATGTTTGCTGATGTAGGA
>MK72 ACGAAATCCTGGGAGGAAAG TCCATGTTTGCTGATGTAGGA
>MK73 TGATCACACAACATGAGACCAG TGAGCCTGATAATCCCTCCA
>MK74 GCGGCGGAATTTATACCTCT ATTGGTAATTGCTGGGCATC
>MK75 GCGGCGGAATTTATACCTCT AGCACCCTTACTTGCTGTGA
>MK76 GAGAAGTTGCCTGGTGATCG GCGAATGGTCAGTTTTGCAC
>MK77 GAGAAGTTGCCTGGTGATCG GAAATTTTGCCGCGAATG

Fig. 2

Fingerprint profiles of different Orah mandarin varieties amplified by mk 32"

Fig. 4

MPCR of Citrus Orah germplasm accessions The primers used in this Multiplex PCR are mk16, mk23, mk53"

Fig. 3

Amplification profiles of different primers groups based on two sensitivities threshold on three Orah mandarin"

Fig. 5

PCoA analysis of different groups of citrus accessions"

Fig. 6

Statistics of indels in Satsuma Mandarin Venn diagram is drawn according to whether there is variation in a certain locus compared to the reference genome, and the numbers in the figure represent the number of mutation sites shared among certain resources"

Table 4

Primers with SSR site differences can be amplified in different strain resources"

品系
Strain
编号
Code
资源名称
Name
可扩增具有SSR位点差异的引物
Primers with SSR site differences can be amplified
塔罗科血橙
Tarroco Blood Orange
11 塔罗科血橙1 Tarroco blood orange No.1 mk16、mk16F/mk23F、mk23F/mk53R、mk34、mk35、mk42、mk44、mk53、mk56、mk57、mk67
12 塔罗科血橙2 Tarroco blood orange No. 2
13 塔罗科血橙3 Tarroco blood orange No. 3
14 塔罗科血橙4 Tarroco blood orange No. 4
15 塔罗科99 Tarroco 99
16 塔罗科新系 Tarroco New Line
17 塔罗科血橙(Thermal) Thermal blood orange Tarroco
五月红
Wu Yue Hong
20 五月红 Wu Yue Hong mk23F/mk53R、mk53、mk16F/mk23F、mk44、mk56、mk66、mk34、mk23F/mk53R
21 五月红51-13 Wu Yue Hong 51-13
脐橙
Navel orange
23 赣脐4号 Gan Qi No.4 mk16F/mk23F、mk23F/mk53R、mk23F/mk53R、mk34、mk44、mk53、mk56、mk66
24 贺脐1号 He Qi No.1
25 纽荷尔 Newhell navel orange
26 奉节晚脐 Feng Jie late navel orange
27 桂橙1号 Gui Cheng No. 1
冰糖橙
Bing Tang Cheng
1 锦秀冰糖橙 Jin Xiu Bing Tang Cheng mk2、mk5、mk16、mk16F/mk23F、mk23、mk23F/mk53R、mk32、mk33、mk35、mk42、mk44、mk54F/mk71R、mk59、mk60、mk62、mk66
2 锦红大果冰糖橙 Jin Hong Da Guo Bing Tang Cheng
3 锦红最红冰糖橙 Jin Hong Zui Hong Bing Tang Cheng
4 锦玉冰糖橙 Jin Yu Bing Tang Cheng
5 椭圆冰糖橙 Tuo Yuan Bing Tang Cheng
6 冰糖橙仁4 Bing Tang Cheng Ren 4
7 冰糖橙仁5 Bing Tang Cheng Ren 5
8 品质特异5号冰糖橙 No. 5 Bing Tang Cheng
9 新冰30号冰糖橙 Xin Bing No.30 Bing Tang Cheng
砂糖橘
Sha Tang Ju
29 砂糖橘 Sha Tang Ju mk5、mk6F/mk26F、mk23F/mk53R、mk34、mk35、mk42、mk44、mk56、mk66
30 无核砂糖橘 Seedless Sha Tang Ju
温州蜜柑
Satsuma
37 宫川温州蜜柑 Miyagawa unshiu mk2、mk5、mk6F/mk26F、mk16F/mk23F、mk23F/mk53R、mk23F/mk53R、mk32、mk34、mk35、mk42、mk56、mk59、mk62、mk66、mk76
38 大分4号温州蜜柑 Oita No.4 Wase
39 大浦5号温州蜜柑 Ooura N0.5 Wase
40 大分1号温州蜜柑 Oita No.4Wase
沃柑芽变品种
Budding variety of Orah
50 无核沃柑9号 Seedless Orah No.9 mk2、MK5、mk11R/mk62R、mk16、mk16F/mk23F、mk23F/mk53R、mk32、mk33F/mk38F、MK35、mk42、mk44、mk46F/mk47R、mk53F/mk54R、mk56、mk59、mk62、mk64、mk66、mk6F/mk26F、MK71、mk73F/mk75R
51 无核沃柑10号 Seedless Orah No.10
52 无核沃柑8号 Seedless Orah No.8
53 皱皮沃柑 Wrinkle Orah
54 武鸣沃柑 Wu Ming Orah
55 有核沃柑 Orah
56 少核沃柑 Seedless Orah
57 无核沃柑 Orri
品系
Strain
编号
Code
资源名称
Name
可扩增具有SSR位点差异的引物
Primers with SSR site differences can be amplified
沃柑杂交品种
Hybrid variety of Orah
58 沃柑×青皮蜜橘 Orah × Qing Pi Mi Ju mk2、mk5、mk16、mk18、mk23F/mk53R、mk32、mk34、mk62、mk65、mk66、73F/75R
59 少核沃柑×塔罗科血橙 Seedless Orah × Tarroco blood orange
60 沃柑×甘平 Orah × Kanpei
椪柑
Ponkan
43 蜂洞橘椪柑 Feng Dong Ju Ponkan mk2、mk5、mk23、mk23F/mk53R、mk32、mk34、mk35、mk44、mk46F/mk48R、mk53、mk56、mk59、mk62、mk68
44 衢州椪柑 Qu Zhou Ponkan
45 兴春椪柑 Kousyun Ponkan
46 早蜜椪柑 Zao Mi Ponkan
47 黔阳无核椪柑 Qian Yang Seedless Ponkan
48 立山64 Li Shan 64 Ponkan
49 椪柑 Ponkan

Table 5

SSR verification site information"

变异信息INFO表示序列变异在各个样品中的存在情况,每一位数字代表一个样品,在‘冰糖橙’中第1—5位分别为‘锦秀冰糖橙’‘锦红大果冰糖橙’‘锦红最红冰糖橙’‘锦玉冰糖橙’‘椭圆冰糖橙’;在‘沃柑’中,第1—5位分别为‘皱皮沃柑’‘武鸣沃柑’‘有核沃柑’‘少核沃柑’‘无核沃柑’;“0”表示变异在该样品中不存在,“1”表示变异在该样品中存在

The variation information "INFO" represents the existence of sequence mutations in each sample. Each number represents a sample. The first to fifth in Bing Tang Cheng is Jin Xiu Bing Tang Cheng, Jin Hong Da Guo Bing Tang Cheng, Jin Hong Zui Hong Bing Tang Cheng, Jin Yu Bing Tang Cheng, Tuo Yuan Bing Tang Cheng. The first to fifth in Orah is Wrinkle Orah, Wu Ming Orah, Orah, Seedless Orah, Orri. “0” means that the mutation does not exist in the sample, and “1” means that the mutation exists in the sample

类群
Group
染色体
CHROM
位置
POS
参考基因
REF
比对基因
ALT
变异信息
INFO
冰糖橙Bing Tang Cheng Scaffold_7 20854883 A AAATAATACTAACAAT 11011
沃柑Orah Scaffold_7 346954 T TAATAATAATA,TAATAATAATAATA 11001

Fig. 7

SSR site verification of Table 5"

[1] EL ZAYAT M A S, HASSAN A H, NISHAWY E, ALI M, AMAR M H. Patterns of genetic structure and evidence of Egyptian Citrus rootstock based on informative SSR, LTR-IRAP and LTR-REMAP molecular markers. Journal of Genetic Engineering Biotechnology, 2021, 19(1): 1-14.
doi: 10.1186/s43141-020-00094-y
[2] KUMAR J P T, THIRUGNANAVEL A, UPADHYAY D Y, KAMDE S A, JALAMKAR P R, MURKUTE A A. Genetic diversity and population structure of sweet orange [Citrus sinensis (L.) Osbeck] germplasm of India revealed by SSR and InDel markers. bioRxiv, 2022. doi: 10.1101/2022.01.11.475964. doi: 10.1101/2022.01.11.475964.
doi: 10.1101/2022.01.11.475964. doi: 10.1101/2022.01.11.475964.
[3] WOO J K, YUN S H, YI K U, PARK Y C, LEE H Y, KIM M, LEE Y, SONG K J, KIM H B. Identification of citrus varieties bred in Korea using microsatellite markers. Horticultural Science and Technology, 2020, 38(3): 374-384.
[4] JIN S B, KIM H B, PARK S, KIM M J, CHOI C W, YUN S H. Identification of the ‘haryejosaeng’ mandarin cultivar by multiplex PCR-based SNP genotyping. Molecular Biology Reports, 2020, 47(11): 8385-8395. doi: 10.1007/s11033-020-05850-4.
doi: 10.1007/s11033-020-05850-4.
[5] 张绍阳, 孙崇德, 徐昌杰, 陈昆松. 基于S-SAP标记技术的柑橘芽变新品系青瓯柑的鉴别. 贵州农业科学, 2015, 43(8): 21-25.
ZHANG S Y, SUN C D, XU C J, CHEN K S. Identification of green Citrus reticulate(a new bud mutation line of Citrus)based on S-SAP marker technique. Guizhou Agricultural Sciences, 201(8): 21-25. (in Chinese)
[6] 张文, 胡威, 张新宇, 周敏, 蒋巧巧, 邓子牛, 李大志. 利用胚抢救技术获得沙田柚×枸橼杂交后代及其SRAP检测. 果树学报, 2013, 30(3): 386-389.
ZHANG W, HU W, ZHANG X Y, ZHOU M, JIANG Q Q, DENG Z N, LI D Z. Acquisition of hybrids of Pummelo × Citron by using embryo rescue and their identification by SRAP molecular markers. Journal of Fruit science 2013, 30(3): 386-389. (in Chinese)
[7] TÓTH G, GÁSPÁRI Z, JURKA J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research, 2000, 10(7): 967-981. doi: 10.1101/gr.10.7.967.
doi: 10.1101/gr.10.7.967. pmid: 10899146
[8] YANG J J, ZHANG J, HAN R X, ZHANG F, MAO A J, LUO J, DONG B B, LIU H, TANG H, ZHANG J A, WEN C L. Target SSR-Seq: A novel SSR genotyping technology associate with perfect SSRs in genetic analysis of cucumber varieties. Frontiers in Plant Science, 2019, 10: 531.
doi: 10.3389/fpls.2019.00531 pmid: 31105728
[9] ŠARHANOVÁ P, PFANZELT S, BRANDT R, HIMMELBACH A, BLATTNER F R. SSR-seq: Genotyping of microsatellites using next-generation sequencing reveals higher level of polymorphism as compared to traditional fragment size scoring. Ecology and Evolution, 2018, 8(22): 10817-10833. doi:10.1002/ece3.4533.
doi: 10.1002/ece3.4533 pmid: 30519409
[10] LI L, FANG Z W, ZHOU J F, CHEN H, HU Z F, GAO L F, CHEN L H, REN S, MA H Y, LU L, ZHANG W X, PENG H. An accurate and efficient method for large-scale SSR genotyping and applications. Nucleic Acids Research, 2017, 45(10): e88. doi: 10.1093/nar/gkx093.
doi: 10.1093/nar/gkx093.
[11] LI H, MA Y S, PEI F Y, ZHANG H Y, LIU J C, JIANG M. Large- scale advances in SSR markers with high-throughput sequencing in Euphorbia fischeriana Steud. Electronic Journal of Biotechnology, 2021, 49: 50-55.
doi: 10.1016/j.ejbt.2020.11.004
[12] 胡冬梅, 江东, 李永平, 彭磊, 李冬云, 朱延松, 杨云光. 利用Target SSR-seq技术鉴定温州蜜柑芽变材料. 中国农业科学, 2021, 54(23): 5083-5096.
HU D M, JIANG D, LI Y P, PENG L, LI D Y, ZHU Y S, YANG Y G. Identification of bud sport mutation of Satsuma mandarin by target SSR-seq technology. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096. (in Chinese)
[13] 张亚飞. 柑橘种质资源5个性状的多样性研究[D]. 重庆: 西南大学, 2020.
ZHANG Y F. Genetic Diversity Assessment of 5 Traits in Citrus Germplasm Resources[D]. Chongqing: Southwest University, 2020. (in Chinese)
[14] WANG X W, WANG L. GMATA: An integrated software package for genome-scale SSR mining, marker development and viewing. Frontiers in Plant Science, 2016, 7: 1350.
doi: 10.3389/fpls.2016.01350 pmid: 27679641
[15] TARJAN R. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1972, 1(2): 146-160.
doi: 10.1137/0201010
[16] SHEN Z Y, QU W B, WANG W, LU Y M, WU Y H, LI Z F, HANG X Y, WANG X L, ZHAO D S, ZHANG C G. MPprimer: A program for reliable multiplex PCR primer design. BMC Bioinformatics, 2010, 11: 143. doi: 10.1186/1471-2105-11-143.
doi: 10.1186/1471-2105-11-143 pmid: 20298595
[17] CHEN S F, ZHOU Y Q, CHEN Y R, GU J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): i884-i890. doi: 10.1093/bioinformatics/bty560.
doi: 10.1093/bioinformatics/bty560.
[18] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760. doi:10.1093/bioinformatics/btp324.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[19] LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R, 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Microbiology Spectrum, 2009, 25(16): 2078-2079. doi: 10.1093/bioinformatics/btp352.
doi: 10.1093/bioinformatics/btp352.
[20] MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Cell Reports, 2010, 20(9): 1297-1303. doi: 10.1101/gr.107524.110.
doi: 10.1101/gr.107524.110.
[21] PARADIS E, CLAUDE J, STRIMMER K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 2004, 20(2): 289-290. doi: 10.1093/bioinformatics/btg412.
doi: 10.1093/bioinformatics/btg412 pmid: 14734327
[22] WICKHAM H. ggplot2. Springer New York, 2011, 3(2): 180-185.
[23] FOO P C, NURUL NAJIAN A B, MUHAMAD N A, AHAMAD M, MOHAMED M, YEAN YEAN C, LIM B H. Loop-mediated isothermal amplification (LAMP) reaction as viable PCR substitute for diagnostic applications: A comparative analysis study of LAMP, conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR) based on Entamoeba histolytica DNA derived from faecal sample. BMC Biotechnology, 2020, 20(1): 34. doi: 10.1186/s12896-020-00629-8.
doi: 10.1186/s12896-020-00629-8.
[24] TOPTAŞ B Ç, RAKOCEVIC G, KÓMÁR P, KURAL D. Comparing complex variants in family trios. Bioinformatics, 2018, 34(24): 4241-4247. doi: 10.1093/bioinformatics/bty443.
doi: 10.1093/bioinformatics/bty443 pmid: 29868720
[25] GARRISON E, KRONENBERG Z N, DAWSON E T, PEDERSEN B S, PRINS P. Vcflib and tools for processing the VCF variant call format. bioRxiv, 2021. doi: 10.1101/2021.05.21.445151.
doi: 10.1101/2021.05.21.445151.
[26] CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009.
doi: S1674-2052(20)30187-8 pmid: 32585190
[27] PALANDE V, SIEGAL T, DETROJA R, GOROHOVSKI A, GLASS R, FLUEH C, KANNER A A, LAVIV Y, HAR-NOF S, LEVY- BARDA A, VIVIANA KARPUJ M, KURTZ M, PEREZ S, RAVIV SHAY D, FRENKEL-MORGENSTERN M. Detection of gene mutations and gene-gene fusions in circulating cell-free DNA of glioblastoma patients: An avenue for clinically relevant diagnostic analysis. Molecular Oncology, 2022, 16(10): 2098-2114. doi: 10.1002/1878-0261.13157.
doi: 10.1002/1878-0261.13157.
[28] 邓秀新, 彭抒昂. 柑橘学. 北京: 中国农业出版社, 2013.
DENG X X, PENG S A. Citrology. Beijing: China Agriculture Press, 2013. (in Chinese)
[29] RACHLIN J, DING C M, CANTOR C, KASIF S. MuPlex: Multi-objective multiplex PCR assay design. Nucleic Acids Research, 2005, 33: W544-W547. doi: 10.1093/nar/gki377.
doi: 10.1093/nar/gki377 pmid: 15980531
[30] YAMADA T, SOMA H, MORISHITA S. PrimerStation: a highly specific multiplex genomic PCR primer design server for the human genome. Nucleic Acids Research, 2006, 34(Suppl. 2): W665-W669. doi: 10.1093/nar/gkl297.
doi: 10.1093/nar/gkl297.
[31] YOU F M, HUO N, GU Y Q, LUO M C, MA Y, HANE D, LAZO G R, DVORAK J, ANDERSON O D. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics, 2008, 9: 253. doi: 10.1186/1471-2105-9-253.
doi: 10.1186/1471-2105-9-253 pmid: 18510760
[32] KAPLINSKI L, ANDRESON R, PUURAND T, REMM M. MultiPLX: automatic grouping and evaluation of PCR primers. Bioinformatics, 2004, 21(8): 1701-1702. doi: 10.1093/bioinformatics/bti219.
doi: 10.1093/bioinformatics/bti219.
[33] 王亚恒. 应用于靶向测序的多重PCR引物设计系统[D]. 上海: 东华大学, 2018.
WANG Y H. A multiplex PCR primers designing system for targeted sequencing[D]. Shanghai: Donghua University, 2018. (in Chinese)
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[3] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[4] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[5] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[6] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
[7] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[8] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[9] LU Qi,JIA XuChao,DENG Mei,ZHANG RuiFen,DONG LiHong,HUANG Fei,CHI JianWei,LIU Lei,ZHANG MingWei. Effects of Different Drying Methods on Bioactive Components of Shatianyou (Citrus grandis L. Osbeck) Pomace Powder [J]. Scientia Agricultura Sinica, 2022, 55(14): 2825-2836.
[10] ZOU YunQian,LIN ZiZhen,XU RangWei,CHENG YunJiang. Development and Evaluation of a Coating Substitute for Individual Polyethylene Film Packaging of Citrus Fruit [J]. Scientia Agricultura Sinica, 2022, 55(12): 2398-2412.
[11] LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84.
[12] DUAN Yu,XU JianJian,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Detection of Citrus Leaf Blotch Virus by Reverse Transcription- Recombinase Polymerase Amplification (RT-RPA) [J]. Scientia Agricultura Sinica, 2021, 54(9): 1904-1912.
[13] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[14] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[15] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!