Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (9): 2006-2016.doi: 10.3864/j.issn.0578-1752.2021.09.016

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations

SUN Yue1(),YANG HuiMin2,HE RongRong1,ZHANG JunXiang1()   

  1. 1School of Food and Wine, Ningxia University, Yinchuan 750021
    2College of Enology, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2020-08-24 Accepted:2020-11-30 Online:2021-05-01 Published:2021-05-10
  • Contact: JunXiang ZHANG E-mail:yuesun86@126.com;zhangjunxiang@126.com

Abstract:

【Objective】The purpose of this study was explore the implantation and persistence of commercial active dry yeast (ADY) during industrial wine fermentations, and their competitive relationship between Chinese indigenous Saccharomyces cerevisiae during fermentation process, so as to provide the theoretical basis for the breeding of indigenous S. cerevisiae strains and provide the reference for the use of ADY in wine production. 【Method】Industrial wine fermentations were carried out at wineries in Eastern Foot of Helan Mountain in Ningxia. Four vats of Cabernet Sauvignon gape must were inoculated with BDX, XR, FR and FX10, respectively. Samples were collected and analyzed at 1 d, 3 d and 5 d after the inoculation. Interdelta and SSR analysis were used to investigate the genotypes of different S. cerevisiae strains. Therefore, the number and proportion of S. cerevisiae strains in different fermentation stages were analyzed, and the colonization ability of commercial ADY was tracked. Genetic diversity parameters were calculated by PopGen32 software. The genetic correlation between commercial yeast and Ningxia indigenous yeast was revealed by NTsys2.10e software. 【Result】Interdelta fingerprint showed 6 kinds of fingerprints, namely 6 genotypes. And XR and FR showed more than one genotype; BDX and FX10 showed one genotype, respectively. SSR analysis showed that there was one genotype in each ADY for the 9 locus. 225 S. cerevisiae isolates were isolated from the 4 inoculated fermentations. Interdelta fingerprint showed 42 genotypes, of which 36 genotypes were indigenous strains. The degree of variability (16%, 42/225) was intermediate. SSR analysis showed 20 genotypes, of which 16 genotypes were indigenous strains. The analyzed 9 microsatellite prime pairs generated a total of 75 polymorphic bands, 8.3333 alleles for per locus. The heterozygosity observed was 0.2000-0.5000. The polymorphism information contents (PIC) of all strains at 9 loci were 0.6339-0.8620, suggesting that the 9 SSR loci were hypervariable. The indigenous genotypes were the most abundant in the fermentation inoculated with BDX (11 Interdelta types and 8 SSR types), followed by FR (11 Interdelta types and 6 SSR types). ADY did not dominate all three stages. Moreover, the genotypes of the dominant strains were also different for different stages in the same fermentation. Interdelta and SSR analysis showed FR was not dominant in the corresponding fermentation. Although BDX existed in the whole fermentation process, it was only dominant at d 3 after the inoculation. In the fermentation inoculated with XR and FX10, Interdelta analysis showed that they were not the dominant strains, while SSR analysis showed that they were the dominant strains in the corresponding fermentations, respectively. Indigenous strains of genotype β (SSR genotype BDX-7), genotype γ (SSR genotype BDX-6), genotype A (SSR genotype XR), genotype a (SSR genotype FX10), genotype b (SSR genotype FX10), genotype bb (SSR genotype FR-2) and genotype ee (SSR genotype FR-4) showed strong competitiveness in the corresponding fermentations. Cluster analysis showed that the genetic diversity among the S. cerevisiae strains isolated from the same fermentation was large. 【Conclusion】The genotypes of indigenous S. cerevisiae strains in the industrial wine fermentations were rich. The inoculated fermentations were completed by both indigenous strains and commercial ADY, and they competed with each other in the same fermentations and showed dynamic succession of different strains.

Key words: ADY, inoculated fermentation, strain typing, wine, SSR

Table 1

Information of SSR markers used in this study"

位点
Locus
染色体
Chromosome
重复序列
Repetitive sequences
引物序列
Primer sequence (5′-3′)
参考文献
Reference
SCAAT1 XIII TTA F: AAAGCGTAAGCAATGGTGTAGATACTT
R: CAAGCCTCTTCAAGCATGACCTTT
[15-18]
YPL009C XVI CTT F: AACCCATTGACCTCGTTACTATCGT
R: TTCGATGGCTCTGATAACTCCATTC
[15,17]
C4 XV TAA F: AGGAGAAAAATGCTGTTTATTCTGACC
R: TTTTCCTCCGGGACGTGAAATA
[15,17-18]
C5 GT F: TGACACAATAGCAATGGCCTTCA
R: GCAAGCGACTAGAACAACAATCACA
[15,17-18]
C8 VII TAA F: CAGGTCGTTCTAACGTTGGTAAAATG
R: GCTGTTGCTGTTGGTAGCATTACTGT
[15,18]
C11 X GT F: TGCGCAGCTTAGTATGACCA
R: GATGGGCTTTCACTCCACTT
[16-18]
C12 XII CAA F: GAGGAGCTTACTTAAGAGCATGCGTTC
R: GTGTCTTAAACCTATATTCGGATTGTGCCTGCT
[15]
SCAAT3 IV AAT F: TGGGAGGAGGGAAATGGACAG
R: TTCAGTTACCCGCACAATCTA
[15,18]
SCYOR267C XV TGT F: TACTAACGTCAACACTGCTGCCAA
R: GGATCTACTTGCAGTATACGGG
[15,17]

Fig. 1

Interdelta fingerprinting patterns of four ADY FR1, FR2 and XR1, XR2 represent different Interdelta patterns of the corresponding ADY"

Table 2

SSR results of four ADY"

ADY SCAAT1 YPL009C C4 C5 C8 C11 C12 SCAAT3 SCYOR267C
BDX 208 278 245 159 133 282 120 249 286
208 305 257 169 142 282 123 264 289
XR 205 290 254 139 136 282 120 249 321
215 302 263 155 146 286 123 249 321
FX10 208 299 254 113 133 290 120 267 321
208 299 254 113 133 290 120 267 321
FR 199 299 257 151 123 276 123 244 275
214 299 279 161 133 288 123 244 275

Fig. 2

Interdelta fingerprinting patterns of S. cerevisiae isolated from industrial wine fermentations of BDX, XR, FR and FX10"

Table 3

Genetic diversity of S. cerevisiae strains isolated from Cabernet Sauvignon industrial wine fermentation"

位点
Locus
等位基因数
Alleles
最长片段大小
Max. allele
(bp)
最短片段大小
Min. allele
(bp)
观测杂合度
Heterozygosity observed (Ho)
期望杂合度
Heterozygosity expected (He)
多态信息含量
Polymorphism information contents (PIC)
SCAAT1 9 252 174 0.3125 0.7601 0.7155
YPL009C 7 305 275 0.4375 0.7944 0.7337
C4 10 303 245 0.4667 0.8598 0.8124
C5 11 172 113 0.2500 0.8669 0.8224
C8 5 146 124 0.2500 0.7802 0.7132
C11 10 290 146 0.4375 0.9032 0.8620
C12 8 159 119 0.5000 0.6956 0.6339
SCAAT3 7 268 243 0.2000 0.8460 0.7934
SCYOR267C 8 321 275 0.3125 0.8206 0.7662

Fig. 3

Dynamics changes of different S. cerevisiae strains during inoculated fermentation of BDX, XR, FR and FX10 A: Inoculated with BDX; B: Inoculated with XR; C: Inoculated with FR; D: Inoculated with FX10"

Fig. 4

UPGMA dendrograms showing the genetic relationships between ADY and Ningxia indigenous S. cerevisiae strain"

[1] GIL-DÍAZ M, VALERO E, CABALLOS J M, GARCIA M, ARROYO T. The impact of active dry yeasts in commercial wineries from the denomination of origen “Vinos de Madrid”, Spain. 3 Biotech, 9(11):382. doi: 10.1007/s13205-019-1913-3.
doi: 10.1007/s13205-019-1913-3
[2] BARRAJÓN N, ARÉVALO-VILLENA M, RODRÍGUEZ-ARAGÓN L J, BRIONES A. Ecological study of wine yeast in inoculated vats from La Mancha region. Food Control, 2009,20(9):778-783.
[3] CORDEROBUESO G, RODRÍGUEZ M E, GARRIDO C, CANTORAL J M. Rapid and not culture-dependent assay based on multiplex PCR-SSR analysis for monitoring inoculated yeast strains in industrial wine fermentations. Archives of Microbiology, 2017,199(1):135-143.
[4] DE CELIS M, RUIZ J, MARTÍN-SANTAMARÍA M, MARÍA, ALONSN A, MARQUINA D, NAVASCUÉS E, GOMEZ-FLECHOSO M A, BELDA I, SANTOS A. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish vineyards. Letters in Applied Microbiology, 2019,68(6). doi: 10.1111/lam.13155.
doi: 10.1111/lam.13155
[5] VIGENTINI I, FABRIZIO V, FACCINCANI M, PICOZZI C, COMASIO A, FOSCHINO R. Dynamics of Saccharomyces cerevisiae populations in controlled and spontaneous fermentations for Franciacorta D.O.C.G. base wine production. Annals of Microbiology, 2014,64:639-651.
[6] LANGE J N, FAASSE E, TANTIKACHORNKIAT M, GUSTAFSSON F S, HALVORSEN L C, KLUFTINGER A, LEDDERHOF D, DURALL D M. Implantation and persistence of yeast inoculum in pinot noir fermentations at three Canadian wineries. International Journal of Food Microbiology, 2014,180:56-61.
[7] MATURANO Y P, LERENA M C, MESTRE M V, CASASSA L F, TORO M E, VAZQUEZ F, MERCADO L, COMBINA M. Inoculation strategies to improve persistence and implantation of commercial S. cerevisiae strains in red wines produced with prefermentative cold soak. LWT-Food Science and Technology, 2018,97:648-655.
[8] 孙悦, 叶冬青, 褚越, 张怡飞, 刘延琳. 不同接种方式及温度对活性干酵母发酵的影响. 酿酒科技, 2019(3):24-28, 37.
SUN Y, YE D Q, CHU Y, ZHANG Y F, LIU Y L. Effects of different inoculation methods & temperatures on fermentation of active dry yeast. Brewing Technology, 2019(3):24-28, 37. (in Chinese)
[9] 何娟, 曹培鑫, 黄英子, 刘延琳. 贵人香冰酒大生产过程中酵母菌群结构及动态变化. 中国酿造, 2014,33(5):30-33.
HE J, CAO P X, HUANG Y Z, LIU Y L. Dynamics of wine related yeasts during industrial icewine fermentations of Italian Riesling. Brewed in China, 2014,33(5):30-33. (in Chinese)
[10] 宋育阳, 裴颖芳, 王国平, 刘延琳. 黑比诺葡萄接种发酵过程酵母菌的变化监控. 中国食品学报, 2010,10(2):125-130.
SONG Y Y, PEI Y F, WANG G P, LIU Y L. Monitoring of yeast changes during inoculated fermentation process of Pinot Noir grape. Chinese Journal of Food Science, 2010,10(2):125-130. (in Chinese)
[11] 刘松涛, 李茜, 吕雯, 秦萍. 中国葡萄酒产业现状及发展趋势—以宁夏贺兰山东麓产区为例. 现代农业科技, 2019(9):241-243.
LIU S T, LI Q, LÜ W, QIN P. Present situation and development trend of Chinese wine industry: A case study of producing area at Eastern Foot of Helan Mountain in Ningxia. Modern Agricultural Science and Technology, 2019(9):241-243. (in Chinese)
[12] 孙悦. 不同氮素水平对酿酒酵母混合发酵特征的影响及其代谢物研究[D]. 杨凌: 西北农林科技大学, 2016.
SUN Y. Effects of different nitrogen levels on the characteristics and metabolites of Saccharomyces cerevisiae during mixed fermentation.[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[13] SUN Y, QIN Y, PEI Y F, WANG G P, JOSEPH C M, BISSON L, LINDA F, LIU Y L. Evaluation of Chinese Saccharomyces cerevisiae wine strains from different geographical origins. American Journal of Enology and Viticulture, 2017,68:73-80.
[14] 孙悦, 张方方, 褚遂兴, 李佳幸, 邵帅, 张军翔. 接种不同嗜杀特性的酿酒酵母对赤霞珠发酵中酵母多样性的影响. 食品科学, 2020,41(2):166-172
SUN Y, ZHANG F F, CHU S X, LI J X, SHAO S, ZHANG J X. Effects of Saccharomyces cerevisiae strains with different killer activity on the yeast diversity in inoculated fermentation of Cabernet Sauvignon. Food Science, 2020,41(2):166-172. (in Chinese)
[15] LEGRAS J L, RUH O, MERDINOGLU D, KARST F. Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains. International Journal of Food Microbiology, 2005,102(1):73-83.
[16] JUBANY S, TOMASCO I, DE LEO´N I P, MEDINA K, CARRAU F, ARRAMBIDE N, NAYA H, GAGGERO C. Toward a global database for the molecular typing of Saccharomyces cerevisiae strains. FEMS Yeast Research, 2008,8:472-484.
[17] HALL B, DURALL D M, STANLEY G. Population dynamics of Saccharomyces cerevisiae during spontaneous fermentation at a British Columbia Winery. American Journal of Enology and Viticulture, 2011,62(1):66-72.
[18] STEFANINI I, ALBANESE D, SORDO M, LEGRAS J L, DE FILIPPO C, CAVALIERI D, DONATI C. SaccharomycesIDentifier, SID: Strain-level analysis of Saccharomyces cerevisiae populations by using microsatellite meta-patterns. Scientific Reports, 2017,7:15343.
[19] 蒋文鸿, 严斌, 陶永胜. 昌黎赤霞珠葡萄相关酿酒酵母的分离与筛选. 食品工业科技, 2014,35(12):202-206, 209.
JIANG W H, YAN B, TAO Y S. Isolation and screening of Sacchamyces cerorevisiae from grape harvested in Changli. Food Industry Technology, 2014,35(12):202-206, 209. (in Chinese)
[20] RICHARDS K D, GODDARD MATTHEW R, GARDNER RICHARD C. A database of microsatellite genotypes for Saccharomyces cerevisiae. Antonie van Leeuwenhoek, 2009,96(3):355-359.
[21] TORIJA M J, ROZEÈS N, POBLET M, GUILLAMÓN J, MAS A. Yeast population dynamics in spontaneous fermentations: Comparison between two different wine-producing areas over a period of three years. Antonie van Leeuwenhoek, 2001,79:345-352.
[22] BOTSTEIN D, WHITE R L, SKOLNICK M, DAVIS R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980,32(3):314-331
[23] 杨宽, 毛如志, 赵悦, 何迟, 王慧玲, 曹建宏, 速伟, 何霞红. 云南香格里拉葡萄酒产区酿酒相关酵母菌的生物多样性. 微生物学通报, 2018,45(12):2708-2721.
YANG K, MAO R Z, ZHAO Y, HE C, WANG H L, CAO J H, SU W, HE X H. Biodiversity of wine-related yeasts isolated from Shangri-La wine-producing region of Yunnan. Bulletin of Microbiology, 2018,45(12):2708-2721. (in Chinese)
[24] 贾佳, 王冠群, 朱丽霞, 韩培杰, 郭东起, 陈明. 新疆葡萄和葡萄酒相关酿酒酵母种群的结构特征. 大连工业大学学报, 2018,37(2):94-99.
JIA J, WANG G Q, ZHU L X, HAN P J, GUO D Q, CHEN M. Structure characteristics of Saccharomyces cerevisiae population associated with grape and wine in Xinjiang. Journal of Dalian Polytechnic University, 2018,37(2):94-99. (in Chinese)
[25] 冯敏, 王春晓, 刘延琳. 利用微卫星多态性揭示酿酒酵母菌株遗传多样性. 中国农业科学, 2012,45(12):2537-2543.
FENG M, WANG C X, LIU Y L. Genetic diversity of Saccharomyces cerevisiae strains revealed by Microsatellite sequence polymorphism. Scientia Agricultura Sinica, 2012,45(12):2537-2543. (in Chinese)
[26] 张留燕, 黄英子, 刘延琳. 利用微卫星标记分析酿酒酵母的遗传多样性. 食品科学, 2014,35(1):130-133.
ZHANG L Y, HUANG Y Z, LIU Y L. Genetic diversity analysis of Saccharomyces cerevisiae strains by Microsatellite marker technique. Food Science, 2014,35(1):130-133. (in Chinese)
[27] 李梅花. 复合酵母在赤霞珠发酵过程中酵母菌相互作用研究. 酿酒科技, 2016(11):60-64.
LI M H. Interactions of yeast strains in the fermentation process of Cabernet Sauvignon. Brewing Technology, 2016(11):60-64. (in Chinese)
[28] 苑伟. 优选酿酒酵母菌株酿酒特性的比较研究[D]. 杨凌: 西北农林科技大学, 2010: 4-7.
YUAN W. Comparative study of the vinification characteristic of selected wine yeast[D]. Yangling: Northwest A&F University, 2010: 4-7. (in Chinese)
[29] 李双石, 李浡, 李文蕾, 吴志明, 苏宁. 天然酵母菌株在葡萄酒酿造中的应用研究. 食品科技, 2012,37(8):87-91.
LI S S, LI S, LI W L, WU Z M, SU N. Application of indigenous yeast strain in the wine making. Food Science and Technology, 2012,37(8):87-91. (in Chinese)
[30] ORTIZ M J, BARRAJÓN N, BAFFI M A, MARIA AV, BRIONES A. Spontaneous must fermentation: Identification and biotechnological properties of wine yeasts. LWT-Food Science and Technology, 2013,50(2):371-377.
[31] ŠURANSKÁ H, VRÁNOVÁ D, OMELKOVÁ J. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains. Brazilian Journal of Microbiology, 2016,47(1):181-190.
[32] GAROFALO C, BERBEGAL C, GRIECO F, MARIA T, GIUSEPPE S, VITTORIO C. Selection of indigenous yeast strains for the production of sparkling wines from native Apulian grape varieties. International Journal of Food Microbiology, 2018,285:7-17.
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[3] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[4] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[5] MA GaoXing,TAO TianYi,PEI Fei,FANG DongLu,ZHAO LiYan,HU QiuHui. Effects of Different Stir-Fry Conditions on the Flavor of Agaricus bisporus in Ready-to-Eat Dishes [J]. Scientia Agricultura Sinica, 2022, 55(3): 575-588.
[6] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[9] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[10] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[11] WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070.
[12] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[13] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[14] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[15] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!