Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2092-2108.doi: 10.3864/j.issn.0578-1752.2022.11.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China

XU Xiao(),REN GenZeng,ZHAO XinRui,CHANG JinHua(),CUI JiangHui()   

  1. College of Agriculture, Hebei Agricultural University, Baoding 071000, Hebei
  • Received:2022-01-27 Accepted:2022-03-14 Online:2022-06-01 Published:2022-06-16
  • Contact: JinHua CHANG,JiangHui CUI E-mail:xuxiao0613@163.com;jhchang2006@126.com;cjianghui521@126.com

Abstract:

【Objective】 Through the research on the phenotypic diversity and genetic variation of the sorghum germplasm resources in the panicle, we will screen for superior sorghum germplasm, enrich the genetic information of sorghum panicle-related traits, and provide a reference for the conservation and efficient use of existing germplasm resources and the selection and breeding of new varieties.【Method】 Using 320 sorghum accessions from different parts of China as test materials, we accurately identified 12 panicle traits (grain length, grain width, thousand-grain weight, grain hardness, grain density, corneous endosperm rate, kernel weight per panicle, main panicle length, panicle neck length, panicle neck diameter, primary branches length, primary branches number) in two different ecological environments. A comprehensive evaluation of sorghum germplasm resources using correlation analysis, principal component analysis, cluster analysis, and other methods. We screened elite sorghum germplasms with different outstanding characteristics according to the comprehensive evaluation value F and target traits. 【Result】 The frequency distribution of each quantitative trait showed a trend of high in the middle and low on both sides. The two-year frequency distribution and curve trend of grain hardness, kernel weight per panicle and grain density, and corneous endosperm rate were similar at the Baoding and Jinzhong test sites. Most of the traits only showed normal distribution in one year or a single location. Except for the main panicle length and number of primary branches, the other traits differed between the two test sites in the same year. The mean diversity index (H') distribution of the 12 panicle traits ranged from 1.72 to 2.11, among which the average diversity index of grain hardness was the highest, and the average diversity index of primary branches length was the lowest. The coefficients of variation of grain hardness, corneous endosperm rate, kernel weight per panicle, primary branches length, and the number of primary branches were all higher than 30.00%. The cumulative contribution rate of the extracted four principal components was 65.39%. Cluster analysis classified the 320 accessions into three groups, class I can be used as the germplasm for screening process (broom) sorghum; class II is suitable for selecting excellent germplasm for grain (brewing) sorghum; class III was the germplasm with poor panicle traits. We screen 29 superior germplasm with outstanding characteristics according to the comprehensive score value F and target traits. 【Conclusion】 The variability of sorghum germplasm resources in panicle traits was rich and diverse; the coefficient of variation of corneous endosperm rate and primary branches length was high; grain length, grain width, grain hardness, grain density, and kernel weight per panicle were significantly affected by environmental conditions. We screened 29 superior germplasm.

Key words: Sorghum bicolor (L.), germplasm resources, panicle, accurate identification, genetic diversity, comprehensive evaluation

Table 1

The skewness, kurtosis, and K-S tests of the materials were tested in 320 sorghum accessions"

性状
Trait
年份
Year
保定 Baoding 晋中 Jinzhong
偏度Skewness 峰度 Kurtosis 显著性值 Sig. 偏度Skewness 峰度 Kurtosis 显著性值 Sig.
粒长
GL (mm)
2020 0.18 1.00 0.07* -0.28 -0.21 0.01
2021 0.26 0.48 0.20* 0.99 2.92 0.22*
均值Average -0.06 0.58 0.20* 0.56 0.90 0.03
粒宽
GW (mm)
2020 0.77 0.53 0.00 0.80 1.32 0.00
2021 -0.28 -0.32 0.00 0.60 0.74 0.00
均值Average -0.04 -0.29 0.20* 0.43 0.44 0.05*
千粒重
TGW (g)
2020 -0.11 -0.11 0.20* -0.32 0.08 0.02
2021 0.46 0.12 0.00 -0.32 -0.60 0.20*
均值Average 0.34 0.20 0.00 0.01 -0.36 0.20*
籽粒硬度
GH (N)
2020 0.41 -0.01 0.03 0.62 0.09 0.00
2021 0.73 0.97 0.02 0.31 0.74 0.03
均值Average 0.48 0.07 0.05* 0.39 0.22 0.08*
籽粒容重
GD (kg·L-1)
2020 -0.34 0.02 0.01 -0.55 -0.06 0.00
2021 -0.28 1.78 0.00 -0.82 0.64 0.00
均值Average -0.35 0.57 0.01 -0.55 0.52 0.02
角质率
CR (%)
2020 -0.52 0.24 0.09* 0.08 -1.10 0.00
2021 0.05 -1.06 0.01 0.06 -1.09 0.00
均值Average -0.16 -0.50 0.05* 0.15 -1.08 0.00
穗粒重
KWP (g)
2020 0.31 -0.51 0.00 0.13 -0.52 0.20*
2021 0.33 0.32 0.20* 2.00 8.54 0.00
均值Average 0.26 -0.09 0.02 0.34 0.22 0.00
穗长
MPL (cm)
2020 1.18 2.12 0.00 1.00 2.25 0.00
2021 1.62 7.89 0.00 1.17 3.18 0.00
均值Average 1.28 5.04 0.00 1.30 3.89 0.00
穗柄长
PNL (cm)
2020 0.25 0.04 0.20* -0.09 0.17 0.20*
2021 0.36 -0.24 0.01 0.20 -0.24 0.20*
均值Average 0.30 -0.34 0.01 0.04 -0.54 0.00
穗柄直径
PND (mm)
2020 -0.15 -0.31 0.20* 0.12 -0.63 0.01
2021 0.11 0.95 0.20* -0.02 0.14 0.20*
均值Average -0.16 0.06 0.20* 0.00 -0.31 0.00
一级枝梗长
PBL (cm)
2020 3.05 15.93 0.00 3.01 14.88 0.00
2021 2.74 16.13 0.00 2.12 10.07 0.00
均值Average 3.27 19.38 0.00 2.99 16.46 0.00
一级枝梗数
PBN
2020 0.92 0.90 0.00 1.18 1.78 0.00
2021 1.21 2.68 0.00 0.89 1.03 0.00
均值Average 0.66 0.40 0.00 0.73 0.36 0.00

Fig. 1

The distribution laws of 12 quantitative traits between two experimental sites and years GL: Grain length; GW: Grain width; TGW: Thousand-grain weight; GH: Grain hardness; GD: Grain density; CR: Corneous endosperm rate; KWP: Kernel weight per panicle; MPL: Main panicle length; PNL: Panicle neck length; PND: Panicle neck diameter; PBL: Primary branches length; PBN: Primary branches number. The same as below"

Table 2

Basic parameters and diversity of 12 quantitative traits between two experimental sites in 2 years"

性状 Trait 试验点 Environment 平均值Mean 标准差SD 极差 Range 变异系数 CV (%) 多样性指数 H
粒长
GL (mm)
E1 4.35c 0.45 2.94 10.43 2.03
E2 5.49a 0.71 4.59 12.87 2.07
E3 4.19c 0.31 1.70 7.31 2.08
E4 4.89b 0.60 4.40 12.19 2.01
均值Average 4.73 0.37 2.56 10.70 2.06
粒宽
GW (mm)
E1 3.37bc 0.31 1.68 9.09 2.00
E2 3.85a 0.37 1.99 9.62 2.08
E3 3.26c 0.29 1.82 8.99 2.01
E4 3.50b 0.31 1.94 8.78 2.03
均值Average 3.49 0.18 1.03 9.12 2.07
千粒重
TGW (g)
E1 23.53b 4.14 23.15 17.59 2.05
E2 21.73d 3.86 20.87 17.74 2.03
E3 24.76a 4.88 24.62 19.72 2.08
E4 22.15c 4.45 21.54 20.09 2.07
均值Average 23.04 3.22 17.10 18.79 2.08
籽粒硬度
GH (N)
E1 5.46c 1.50 8.01 27.48 2.07
E2 4.51d 1.59 9.26 35.30 2.03
E3 6.56a 2.14 11.01 32.72 2.05
E4 5.87b 1.50 9.60 25.48 2.05
均值Average 5.60 1.18 6.51 30.25 2.11
籽粒容重
GD (kg·L-1)
E1 0.63b 0.05 0.26 7.20 2.07
E2 0.56d 0.07 0.53 12.13 2.01
E3 0.67a 0.06 0.31 9.61 2.03
E4 0.62c 0.06 0.39 10.04 2.00
均值Average 0.62 0.04 0.22 9.75 2.04
角质率
CR (%)
E1 57.30a 17.77 88.00 31.01 2.03
E2 51.60b 24.09 89.50 46.68 2.04
E3 47.09c 23.52 87.00 49.95 1.98
E4 45.12d 24.97 95.00 55.35 1.97
均值Average 50.28 18.60 86.13 45.75 2.08
穗粒重
KWP (g)
E1 45.30b 13.96 68.45 30.83 2.02
E2 32.18c 10.60 58.52 32.96 2.06
E3 49.98a 15.02 67.59 30.06 2.10
E4 26.92d 7.33 64.82 27.22 1.89
均值Average 38.59 8.73 52.05 30.27 2.07
穗长
MPL (cm)
E1 26.56a 6.48 39.58 24.39 1.96
E2 25.69ab 5.49 47.76 21.38 1.98
E3 24.90ab 5.58 37.67 22.39 1.97
E4 24.33b 5.74 40.67 23.61 1.96
均值Average 25.37 4.77 39.01 22.94 1.98
性状 Trait 试验点 Environment 平均值Mean 标准差SD 极差 Range 变异系数 CV (%) 多样性指数 H′
穗柄长
PNL (cm)
E1 50.77a 10.93 65.00 21.53 2.07
E2 40.66c 9.43 52.67 23.19 2.07
E3 50.23a 9.79 55.53 19.49 2.06
E4 44.11b 10.10 54.00 22.90 2.06
均值Average 46.46 8.10 37.68 21.78 2.07
穗柄直径
PND (mm)
一级枝梗长
PBL (cm)
E1 9.43c 1.73 8.70 18.39 2.09
E2 9.64b 1.36 9.71 14.11 2.05
E3 9.85a 1.73 8.80 18.56 2.07
E4 9.72bc 1.83 9.40 16.57 2.07
均值Average 9.66 1.15 6.16 16.91 2.08
一级枝梗长
PBL (cm)
一级枝梗数
PBN
E1 9.24b 3.42 30.11 37.06 1.75
E2 9.82a 2.90 29.17 29.57 1.84
E3 8.80c 3.60 31.60 40.98 1.76
E4 9.39b 2.91 27.17 30.95 1.86
均值Average 9.31 2.84 28.01 34.64 1.72
一级枝梗数
PBN
E1 68.83a 23.12 131.00 33.59 2.00
E2 61.55b 18.00 119.67 29.25 1.95
E3 67.37a 20.83 124.00 30.91 1.92
E4 58.19b 15.56 93.35 26.73 1.99
均值Average 63.99 16.02 86.10 30.12 2.03

Table 3

The eigenvalues and eigenvectors of the first four principal components of 12 quantitative traits were described"

特征向量 Eigenvectors
粒长GL 0.28 0.27 0.08 0.47
粒宽GW -0.04 0.36 0.38 0.09
千粒重TGW 0.02 0.47 0.26 0.35
籽粒硬度GH 0.24 0.40 -0.14 -0.38
籽粒容重GD 0.01 0.41 0.01 -0.29
角质率CR 0.24 0.17 -0.09 -0.53
穗粒重KWP -0.16 0.41 -0.45 0.09
穗长MPL 0.39 -0.04 -0.46 0.13
穗柄长PNL 0.44 0.02 0.15 0.06
穗柄直径PND -0.36 0.10 -0.28 0.18
一级枝梗长PBL 0.40 -0.09 -0.36 0.28
一级枝梗数PBN -0.38 0.18 -0.34 0.07
特征值Eigenvalues 3.21 2.12 1.28 1.24
贡献率Contribution rate (%) 26.67 17.67 10.70 10.35
累积贡献率 Cumulative contribution rate (%) 26.67 44.34 55.04 65.39

Fig. 2

The boxplot of 12 quantitative characters in different ecological environments from 2020 to 2021 Both ends of the boxplot indicate the extreme range of traits; The lines in the middle: The median line; ○: Individual extremum. *, **, ***, ****: Significant difference at 0.05, 0.01, 0.001, 0.0001 level, respectively. The same as below"

Fig. 3

Correlation coefficients of 12 quantitative characters in different ecological environments"

Fig. 4

Cluster analysis of 320 sorghum germplasm resources"

Table 4

Analysis of average morphological traits of sorghum germplasm resources in different clusters"

类群
Group
粒长
GL
(mm)
粒宽
GW
(mm)
千粒重
TGW
(g)
籽粒硬度
GH
(N)
籽粒容重
GD
(kg·L-1)
角质率
CR
(%)
穗粒重
KWP
(g)
穗长
MPL
(cm)
穗柄长
PNL
(cm)
穗柄直径
PND
(mm)
一级枝梗长
PBL
(cm)
一级枝梗数
PBN
5.02 3.45 23.29 6.16 0.62 56.32 34.93 29.67 55.34 8.74 12.17 51.44
4.67 3.62 24.79 6.50 0.65 61.02 46.18 25.97 43.54 10.04 8.59 68.80
4.51 3.44 21.62 4.88 0.61 42.75 36.69 23.71 42.16 9.95 8.26 67.97

Table 5

Basic parameters of 12 phenotypic traits of 29 sorghums with different outstanding characteristics"

序号a
No.
粒长
GL
(mm)
粒宽
GW
(mm)
千粒重
TGW
(g)
籽粒
硬度
GH
(N)
籽粒
容重
GD
(kg·L-1)
角质率
CR
(%)
穗粒重
KWP
(g)
穗长
MPL
(cm)
穗柄长
PNL
(cm)
穗柄
直径
PND
(mm)
一级枝梗长
PBL
(cm)
一级枝梗数PBN 突出特点/建议用途
Outstanding features
/Recommended uses
26 5.03 3.53 22.68 3.37 0.62 30.67 41.22 19.83 50.81 7.97 7.15 57.63 低硬度,高容重/酿造Ⅰ
Low grain hardness, high grain density/ Brewing sorghum Ⅰ
40 5.30 3.58 25.08 6.70 0.60 34.34 36.67 25.54 55.95 8.95 9.93 53.65 高硬度,高容重/酿造Ⅱ
High grain hardness, high grain density/Brewing sorghum Ⅱ
43 4.58 3.50 23.60 6.40 0.65 27.69 39.16 20.67 43.05 9.04 6.94 58.65 高硬度,高容重/酿造Ⅱ
High grain hardness, high grain density/Brewing sorghum Ⅱ
45 5.38 3.62 31.26 7.16 0.61 49.32 47.30 22.37 42.71 10.03 8.32 64.36 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
51 4.21 3.78 27.33 6.64 0.68 58.71 43.33 23.63 43.29 9.99 7.27 56.67 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
65 4.54 3.57 25.65 3.82 0.62 24.66 41.92 24.21 40.18 10.58 8.79 71.89 低硬度,高容重/酿造Ⅰ
Low grain hardness, high grain density/Brewing sorghum Ⅰ
77 4.98 3.85 28.39 6.80 0.65 75.77 49.60 21.02 38.79 10.04 8.03 84.78 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
132 5.26 3.66 26.68 6.79 0.67 27.50 47.34 25.01 32.99 11.26 8.36 65.54 高硬度,高容重/酿造Ⅱ
High grain hardness, high grain density/Brewing sorghum Ⅱ
150 4.86 3.85 22.57 6.07 0.65 15.38 39.05 19.98 45.14 7.98 7.64 51.65 高硬度,高容重/酿造Ⅱ
High grain hardness, high grain density/Brewing sorghum Ⅱ
167 5.17 3.59 26.30 6.50 0.65 78.52 48.03 22.43 46.28 9.52 8.60 66.41 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
176 5.05 3.99 26.04 5.21 0.61 50.88 48.95 33.33 56.96 9.67 9.99 50.80 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
186 4.21 3.78 27.33 6.64 0.68 58.71 63.33 23.63 43.29 9.99 7.27 56.67 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
187 4.96 3.64 31.17 5.14 0.65 53.28 51.88 28.44 50.38 9.85 8.21 63.81 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
193 5.09 3.63 29.69 7.04 0.68 51.52 46.83 25.00 54.35 8.18 12.52 58.58 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
197 5.18 3.66 27.83 7.04 0.67 34.60 52.31 23.03 42.23 11.75 6.79 73.34 高硬度,高容重/酿造Ⅱ
High grain hardness, high grain density/Brewing sorghum Ⅱ
序号a
No.
粒长
GL
(mm)
粒宽
GW
(mm)
千粒重
TGW
(g)
籽粒
硬度
GH
(N)
籽粒
容重
GD
(kg·L-1)
角质率
CR
(%)
穗粒重
KWP
(g)
穗长
MPL
(cm)
穗柄长
PNL
(cm)
穗柄
直径
PND
(mm)
一级枝梗长
PBL
(cm)
一级枝梗数PBN 突出特点/建议用途
Outstanding features
/Recommended uses
198 5.28 3.60 28.10 5.82 0.63 52.80 46.04 19.50 43.22 10.87 7.33 67.71 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
201 4.56 3.48 25.78 8.68 0.67 60.73 63.27 27.22 36.24 11.01 7.11 59.62 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
220 4.67 3.69 25.63 5.67 0.66 79.47 58.00 28.65 49.33 9.70 6.81 52.68 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
226 4.29 3.56 26.59 6.00 0.64 64.05 43.29 24.22 45.00 10.91 8.71 81.44 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
229 5.00 3.59 23.21 6.98 0.61 22.39 32.71 29.60 63.16 7.80 15.66 36.52 高硬度,高容重/酿造Ⅱ
High grain hardness, high grain density/Brewing sorghum Ⅱ
234 4.83 3.48 28.81 6.46 0.70 56.07 46.52 23.46 46.65 9.35 9.46 66.17 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
235 4.70 3.71 23.32 4.93 0.62 53.37 44.62 23.02 38.10 12.38 7.53 94.87 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
237 4.70 3.58 25.43 3.92 0.61 35.27 30.91 29.73 55.43 9.95 9.33 53.68 低硬度,高容重/酿造Ⅰ
Low grain hardness, high grain density/Brewing sorghum Ⅰ
239 4.98 3.60 24.50 6.67 0.58 34.38 24.78 30.23 57.86 8.70 8.49 55.81 高硬度,高容重/酿造Ⅱ
High grain hardness, high grain density/Brewing sorghum Ⅱ
250 4.98 3.85 28.39 6.80 0.65 75.77 49.6 21.02 38.79 10.04 8.03 84.78 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
263 5.53 3.62 30.58 3.87 0.60 35.27 42.14 28.68 52.55 10.38 6.51 60.86 低硬度,高容重/酿造Ⅰ
Low grain hardness, high grain density/Brewing sorghum Ⅰ
265 5.31 3.64 23.08 7.75 0.64 55.95 32.00 42.24 65.49 9.05 14.94 45.90 穗长、穗柄长、一级枝梗长较长/帚用
The main panicle length, panicle neck length, and primary branches length were longer/Broom sorghum
267 4.70 3.41 26.47 5.44 0.65 52.22 44.46 27.07 34.50 10.93 8.65 71.41 角质率和穗粒重较高/粒用(食用)
The corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
319 4.58 3.31 25.21 4.83 0.61 49.37 48.14 22.03 45.22 9.32 8.13 60.06 角质率和穗粒重较高/粒用(食用)
Corneous endosperm rate and kernel weight per panicle were higher/Grain (edible) sorghum
[1] PANDIAN B A, SEXTON-BOWSER S, PRASAD P V V, JUGULAM M. Current status and prospects of herbicide-resistant grain sorghum (Sorghum bicolor). Pest Management Science, 2021, 78(2): 409-415.
doi: 10.1002/ps.6644
[2] 卢庆善. 高粱学. 北京: 中国农业出版社, 1999: 25-26.
LU Q S. Sorghum. Beijing: China Agriculture Press, 1999: 25-26. (in Chinese)
[3] BILLOT C, RAMU P, BOUCHET S, CHANTEREAU J, DEU M, GARDES L, NOYER J L, RAMI J F, RIVALLAN R, LI Y, LU P, WANG T Y, FOLKERTSMA R T, ARNAUD E, UPADHYAYA H D, GLASZMANN J C, HASH C T. Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources. PLoS ONE, 2013, 8(4): e59714.
doi: 10.1371/journal.pone.0059714
[4] 唐三元, 谢旗. 高粱-小作物大用途. 生物技术通讯, 2019, 35(5): 1.
TANG S Y, XIE Q. Sorghum-big use of small crops. Biotechnology Communication, 2019, 35(5): 1. (in Chinese)
[5] 尹美强, 王栋, 王金荣, 兰敏, 赵娟, 董淑琦, 宋喜娥, ALAM Sher, 原向阳, 王玉国, 温银元. 外源一氧化氮对盐胁迫下高粱种子萌发及淀粉转化的影响. 中国农业科学, 2019, 52(22): 3209-4128.
YIN M Q, WANG D, WANG J R, LAN M, ZHAO J, DONG S Q, SONG X E, ALAM S, YUAN X Y, WANG Y G, WEN Y Y. Effects of exogenous nitric oxide on seed germination and starch transformation of sorghum seeds under salt stress. Scientia Agricultura Sinica, 2019, 52(22): 3209-4128. (in Chinese)
[6] 徐令旗, 郭晓红, 吕艳东, 兰宇辰, 王骞, 张佳柠, 王海泽, 郑桂萍. 旱直播对水稻穗部性状、产量和经济效益的影响. 干旱地区农业究, 2021, 39(5): 186-192.
XU L Q, GUO X H, LÜ Y D, LAN Y C, WANG Q, ZHANG J N, WANG H Z, ZHENG G P. Effects of dry direct seeding on panicle characters, yield and economic benefits of rice. Agricultural Research in the Arid Areas, 2021, 39(5): 186-192. (in Chinese)
[7] 曹雄, 梁晓红, 黄敏佳, 申登高, 李占林. 不同种植密度对高粱成穗数、产量及其构成因素的影响. 农学学报, 2015, 5(9): 12-16.
CAO X, LIANG X H, HUANG M J, SHEN D G, LI Z L. Effects of planting density on effective ears, yield and yield component factors of sorghum. Journal of Agriculture, 2015, 5(9): 12-16. (in Chinese)
[8] CUEVAS H E, ROSA-VALENTIN G, HAYES C M, ROONEY W L, HOFFMANN L. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement. BMC Genomics, 2017, 18(1): 108.
doi: 10.1186/s12864-016-3475-7
[9] 高杰, 封广才, 李晓荣, 李青风, 彭秋. 贵州不同地区高粱种质资源表型多样性与聚类分析. 作物杂志, 2020(6): 54-60.
GAO J, FENG G C, LI X R, LI Q F, PENG Q. Phenotypic diversity and clustering analysis of sorghum germplasm resources in different regions of Guizhou province. Crops, 2020(6): 54-60. (in Chinese)
[10] 周瑜, 李泽碧, 黄娟, 吴毓, 张亚勤, 张志良, 张晓春. 高粱种质资源表型性状的遗传多样性分析. 植物遗传资源学报, 2021, 22(3): 654-664.
ZHOU Y, LI Z B, HUANG J, WU Y, ZHANG Y Q, ZHANG Z L, ZHANG X C. Genetic diversity of sorghum germplasms based on phenotypic traits. Journal of Plant Genetic Resources, 2021, 22(3): 654-664. (in Chinese)
[11] ZHENG J C, LIU T, QIAN Y C, LI J Q, LIU Y L, CHENG S, XU Z S, ZHAN Q W. Assessment of genetic diversity of sweet sorghum collection using phenotypic variation and SSR markers. Pakistan Journal of Botany, 2021, 53(1): 145-153.
[12] 李春宏, 狄佳春, 颜伟, 郭文琦, 朱银, 殷剑美, 王立, 韩晓勇, 蒋璐, 张培通. 江苏省高粱种质资源的收集及多样性分析. 植物遗传资源学报, 2020, 21(5): 1175-1185.
LI C H, DI J C, YAN W, GUO W Q, ZHU Y, YIN J M, WANG L, HAN X Y, JIANG L, ZHANG P T. Collection and diversity analysis of sorghum germplasm resource in Jiangsu province. Journal of Plant Genetic Resources, 2020, 21(5): 1175-1185. (in Chinese)
[13] 李海明, 刘绍东, 张思平, 李阳, 陈静, 马慧娟, 沈倩, 赵新华, 李存东, 庞朝友. 陆地棉种质资源花铃期抗旱性鉴定及抗旱指标筛选. 植物遗传资源学报, 2019, 20(3): 102-116.
LI H M, LIU S D, ZHANG S P, LI Y, CHEN J, MA H J, SHEN Q, ZHAO X H, LI C D, PANG C Y. Identification and indices screening of drought tolerance at flowering and boll setting stage in upland cotton germplasm resources. Journal of Plant Genetic Resources, 2019, 20(3): 102-116. (in Chinese)
[14] 孟珊, 狄佳春, 苏彩霞, 朱银, 徐婷婷, 朱小品, 杨欣, 邹淑琼, 汪巧玲, 颜伟. 江苏省扁豆地方种质资源遗传多样性评价. 植物遗传资源学报, 2021, 22(5): 1258-1272.
MENG S, DI J C, SU C X, ZHU Y, XU T T, ZHU X P, YANG X, ZOU S Q, WANG Q L, YAN W. Genetic diversity analysis of hyacinth bean landraces collected from Jiangsu province. Journal of Plant Genetic Resources, 2021, 22(5): 1258-1272. (in Chinese)
[15] 朱红兵, 何丽娟. 关于用SPSS中单样本K-S检验法进行正态分布等的一致性检验时适用条件的研究. 首都体育学院学报, 2009, 21(4): 466-470.
ZHU H B, HE L J. A study on appropriate conditions in consistency test of normal distribution by single sample K-S check in SPSS. Journal of Capital University of Physical Education and Sports, 2009, 21(4): 466-470. (in Chinese)
[16] 王晓鸣, 邱丽娟, 景蕊莲, 任贵兴, 李英慧, 李春辉, 秦培友, 谷勇哲, 李龙. 作物种质资源表型性状鉴定评价:现状与趋势. 植物遗传资源学报, 2022, 23(1): 12-20.
WANG X M, QIU L J, JING R L, REN G X, LI Y H, LI C H, QIN P Y, GU Y Z, LI L. Evaluation on phenotypic traits of crop germplasm: Status and development. Journal of Plant Genetic Resources, 2022, 23(1): 12-20. (in Chinese)
[17] 张鸿燕, 方荣, 陈学军, 周坤华, 袁欣捷, 雷刚, 黄月琴. 茄子种质表型性状鉴定与黄萎病抗性评价. 核农学报, 2020, 34(8): 1645-1654.
ZHANG H Y, FANG R, CHEN X J, ZHOU K H, YUAN X J, LEI G, HUANG Y Q. Identification of phenotypic traits and verticillium wit resistance of eggplant germplasms. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1645-1654. (in Chinese)
[18] 戴志聪, 杜道林, 司春灿, 林英, 郝建良, 孙凤. 用扫描仪及Image J软件精确测量叶片形态数量特征的方法. 广西植物, 2009, 29(3): 342-347.
DAI Z C, DU D L, SI C C, LIN Y, HAO J L, SUN F. A method to exactly measure the morphological quantity of leaf using Scanner and Image J software. Guihaia, 2009, 29(3): 342-347. (in Chinese)
[19] 刘智, 王玲玲, 周卫东, 陈义芳, 王忠. 用Image J分析水稻胚乳淀粉粒表面几何特征的方法. 电子显微学报, 2011, 30(Z1): 466-471.
LIU Z, WANG L L, ZHOU W D, CHEN Y F, WANG Z. The surface of the geometric characteristics analysis for rice endosperm starch granules by using Image J. Journal of Chinese Electron Microscopy Society, 2011, 30(Z1): 466-471. (in Chinese)
[20] WANG Y L, WANG Y Y, XU W L, WANG C J, CUI C S, QU S P. Genetic diversity of pumpkin based on morphological and SSR marker. Pakistan Journal of Botany, 2020, 52(2): 477-487.
[21] 关峰, 石博, 万新建, 张景云, 黄长林, 张会国, 黄国东. 江西省地方冬瓜种质资源表型性状遗传多样性分析. 植物遗传资源学报, 2022, 23(2): 385-397.
GUAN F, SHI B, WAN X J, ZHANG J Y, HUANG C L, ZHANG H G, HUANG G D. Genetic diversity analysis of wax gourd resources collected from Jiangxi province using phenotypic traits. Journal of Plant Genetic Resources, 2022, 23(2): 385-397. (in Chinese)
[22] 兴旺, 崔平, 潘荣, 苏宝忠. 不同国家甜菜种质资源遗传多样性研究. 植物遗传资源学报, 2018, 19(1): 76-86.
XING W, CUI P, PAN R, SU B Z. Genetic diversity of sugar beet from different countries. Journal of Plant Genetic Resources, 2018, 19(1): 76-86. (in Chinese)
[23] HAUPT M, SCHMID K. Combining focused identification of germplasm and core collection strategies to identify GenBank accessions for central European soybean breeding. Plant Cell and Environment, 2020, 43(6): 1421-1436.
doi: 10.1111/pce.13761
[24] 高佳, 史建国, 董树亭, 刘鹏, 赵斌, 张吉旺. 花粒期光照强度对夏玉米根系生长和产量的影响. 中国农业科学, 2017, 50(11): 2104-2113.
GAO J, SHI J G, DONG S T, LIU P, ZHAO B, ZHANG J W. Effect of different light intensities on root characteristics and grain yield of summer maize (Zea Mays L.). Scientia Agricultura Sinica, 2017, 50(11): 2104-2113. (in Chinese)
[25] 史建国, 崔海岩, 赵斌, 董树亭, 刘鹏, 张吉旺. 花粒期光照对夏玉米产量和籽粒灌浆特性的影响. 中国农业科学, 2013, 46(21): 4427-4434.
SHI J G, CUI H Y, ZHAO B, DONG S T, LIU P, ZHANG J W. Effect of light on yield and characteristics of grain-filling of summer maize from flowering to maturity. Scientia Agricultura Sinica, 2013, 46(21): 4427-4434. (in Chinese)
[26] HU L L, YU J H, LIAO W B, ZHANG G B, XIE J M, LV J, XIAO X M, YANG B L, ZHOU R H, BU R F. Moderate ammonium: nitrate alleviates low light intensity stress in mini Chinese cabbage seedling by regulating root architecture and photosynthesis. Scientia Horticulturae, 2015, 186: 143-153.
doi: 10.1016/j.scienta.2015.02.020
[27] ALIZADEH K, FATHOLAHI S, DA SILVA J A. Variation in the fruit characteristics of local pear (Pyrus spp.) in the Northwest of Iran. Genetic Resources and Crop Evolution, 2015, 62(5): 635-641.
doi: 10.1007/s10722-015-0241-7
[28] 冯国郡, 李宏琪, 叶凯, 李桂英, 涂振东, 郭建富. 甜高粱种质资源在新疆的多样性表现及聚类分析. 植物遗传资源学报, 2012, 13(3): 398-405.
FENG G J, LI H Q, YE K, LI G Y, TU Z D, GUO J F. Genetic diversity and cluster analysis of sweet sorghum germplasm in Xinjiang. Journal of Plant Genetic Resources, 2012, 13(3): 398-405. (in Chinese)
[29] 杨慧卿, 王军, 王智兰, 杜晓芬, 郭二虎, 王玉文, 袁峰, 田岗, 刘鑫, 王秋兰, 李会霞, 张林义, 彭书忠. 分蘖型谷子资源的表型和遗传多样性分析. 植物遗传资源学报, 2017, 18(4): 685-695.
YANG H Q, WANG J, WANG Z L, DU X F, GUO E H, WANG Y W, YUAN F, TIAN G, LIU X, WANG Q L, LI H X, ZHANG L Y, PENG S Z. Analysis of phenotype and genetic diversity of foxtail millet germplasm with tillering. Journal of Plant Genetic Resources, 2017, 18(4): 685-695. (in Chinese)
[30] 王小娟, 陈健晓, 李雪峤, 伍壮生, 吴月燕, 高芳华. 13份矮生番茄种质资源表型性状遗传多样性分析. 分子植物育种, 2022, 20(6): 1955-1964.
WANG X J, CHEN J X, LI X Q, WU Z S, WU Y Y, GAO F H. Genetic diversity analysis of 13 dwarf tomato germplasm resources by phenotypic traits. Molecular Plant Breeding, 2022, 20(6): 1955-1964. (in Chinese)
[31] 张学超, 任海龙, 唐式敏, 朱玲, 张胜军, 冉昪. 伊犁天山160份野苹果种质资源表型性状的遗传多样性分析. 植物遗传资源学报, 2021, 22(6): 1521-1530.
ZHANG X C, REN H L, TANG S M, ZHU L, ZHANG S J, RAN S. Genetic diversity analysis of phenotypic traits in 160 germplasm resources of Malus sieversii(Ledeb.)M. Roem. from Tianshan in Ili. Journal of Plant Genetic Resources, 2021, 22(6): 1521-1530. (in Chinese)
[32] 李颖, 张树航, 郭燕, 张馨方, 王广鹏. 211份板栗种质资源花序表型多样性和聚类分析. 中国农业科学, 2020, 53(22): 4667-4682.
LI Y, ZHANG S H, GUO Y, ZHANG X F, WANG G P. Catkin phenotypic diversity and cluster analysis of 211 Chinese chestnut germplasms. Scientia Agricultura Sinica, 2020, 53(22): 4667-4682. (in Chinese)
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[4] SHI Xi, NING LiHua, GE Min, WU Qi, ZHAO Han. Screening and Application of Biomarkers Related to Maize Nitrogen Status [J]. Scientia Agricultura Sinica, 2022, 55(3): 438-450.
[5] HE Lei,LU Kai,ZHAO ChunFang,YAO Shu,ZHOU LiHui,ZHAO Ling,CHEN Tao,ZHU Zhen,ZHAO QingYong,LIANG WenHua,WANG CaiLin,ZHU Li,ZHANG YaDong. Phenotypic Analysis and Gene Cloning of Rice Panicle Apical Abortion Mutant paa21 [J]. Scientia Agricultura Sinica, 2022, 55(24): 4781-4792.
[6] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[7] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[8] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[9] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[10] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[11] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[12] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[13] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[14] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[15] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!