Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (6): 1188-1198.doi: 10.3864/j.issn.0578-1752.2021.06.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer

YanLing LIU1,2(),Yu LI1,2,Yan ZHANG1,2,YaRong ZHANG1,2,XingCheng HUANG1,2,Meng ZHANG1,2,WenAn ZHANG1,2,TaiMing JIANG2,3()   

  1. 1Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang 550006
    2Scientific Observing and Experimental Station of Arable Land Conservation and Agriculture Environment (Guizhou), Ministry of Agriculture and Rural Affairs, Guiyang 550006
    3Institute of Tea Research, Guizhou Academy of Agricultural Sciences, Guiyang 550006
  • Received:2020-06-24 Accepted:2020-09-10 Online:2021-03-16 Published:2021-03-25
  • Contact: TaiMing JIANG E-mail:lyl890615@163.com;jtm532@163.com

Abstract:

【Objective】 The seasonal dynamics of microbial biomass phosphorus (MBP) in yellow soils under different long-term fertilization treatments were studied to understand the influence of long-term application of P and organic fertilizer on P nutrients cycling and P nutrients available for plant uptake. 【Method】 Six treatments, including CK, NK, NPK, M, 0.5MNP and MNPK, were investigated in a 22-year (1995-2016) long-term fertilization experiment at Guiyang (Guizhou Province) of China. 0-20 cm soil layer was collected at before sowing, seedling stage, jointing stage, flowering stage and after harvest of maize, respectively, and to determine MBP, soil available P (AP), acid phosphatase (ACP) activity, and calculate the MBP turnover time and turnover amount. 【Result】 The results showed that, compared with NK treatment, the mean value of MBP content and microbial P content (MPC) in different maize growing periods under the treatments of P and organic fertilizer application were significantly increased by 123.9%-446.2% and 85.0%-268.2%, respectively, with MNPK treatment increasing the most. Under the same amount of P application, the MBP content under M and 0.5MNP treatments was 26.7% and 32.7% higher than that of NPK treatment. MBP and MPC of NK treatment were the lowest at flowering stage, while the MBP content of P and organic fertilizer application treatments were the highest in maize growth period. The MPC showed a "double peak" curve with the growth period, and the highest content was at seedling stage and flowering stage. Compared with CK, the MBP turnover time of NK treatment was shortened by 405 days, and the MBP turnover amount was increased by 50.9%. Compared with NK treatment, the MBP turnover amount increased by 19.2%-156.4%, and MBP turnover time was prolonged by 248-391 days under the treatments of P and organic fertilizer application, which indicated that application of P and organic fertilizer could increase MBP storage capacity and decrease its turnover rate. The amount of soil available P and P uptake of maize plant under the treatments of P and organic fertilizer application were 3.63-7.27 times and 1.77-1.97 times of NK treatment, respectively. The acid phosphatase activity in each treatment was ranked as NK>M, MNPK>CK, NPK, 0.5MNP, and the mean value of NK treatment increased by 10.2%-21.0% compared with other treatments. Correlation analysis showed that soil available P was the most important soil factor affecting the MBP content and MBP turnover amount, while acid phosphatase activity was the most important soil factor affecting the MBP turnover time. 【Conclusion】 To sum up, soil MBP could reflect the P supply level, and the storage and turnover of MBP were of great significance for improving the potential P supply capacity of yellow soil. Long-term application of P and organic fertilizer could increase soil available P sink, soil P cycling and P available for plant uptake, increase P uptake of maize plants.

Key words: long-term fertilization, soil microbial biomass P, maize, phosphorus fertilizer, organic fertilizer, yellow soil

Table 1

Soil nutrients of different fertilization treatments in 2016"

处理
Treatment
pH 有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
有效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
不施肥CK 6.74 47.3 1.99 9.87 86.3
氮钾肥NK 5.86 35.8 1.73 9.37 221.7
氮磷钾化肥NPK 6.45 37.1 2.01 31.63 155.3
有机肥M 7.18 57.7 2.71 31.30 452.3
1/2有机肥+1/2氮磷化肥 0.5MNP 6.88 49.5 2.50 33.83 335.3
全量有机肥+全量氮磷钾化肥MNPK 7.01 52.9 2.10 51.00 443.5

Table 2

Total N, P, K nutrient application rates under different fertilization treatments"

处理
Treatment
鲜牛厩肥
Cow manure (t·hm-2)
N
(kg·hm-2)
P2O5
(kg·hm-2)
K2O
(kg·hm-2)
CK 0.0 0.0 0.0 0.0
NK 0.0 165.0 0.0 82.5
NPK 0.0 165.0 82.5 82.5
M 61.1 165.0 79.4 366.6
0.5MNP 30.6 165.0 81.0 183.3
MNPK 61.1 330.0 161.9 449.1

Fig. 1

Dynamics of soil microbial biomass phosphorus (MBP) and microbial phosphorus content (MPC) in maize growing period under long-term different fertilization treatments Different small letters respectively show significantly different difference among treatments at 0. 05 levels. The same as below"

Fig. 2

Soil microbial biomass phosphorus content (MBP) and microbial phosphorus content (MPC) in different maize growing periods"

Table 3

Inter-subject effect test of soil available phosphorus (AP), acid phosphatase (ACP) and microbial biomass phosphorus in different fertilization treatments and growth period"

来源 Source 因变量 Dependent variable 自由度DF FF value PP value
施肥处理 Fertilization (F) 微生物量磷MBP 5 458.4 <0.01
微生物含磷量MPC 5 104.3 <0.01
有效磷AP 5 155.0 <0.01
酸性磷酸酶ACP 5 26.6 <0.01
生育时期 Growth period (G) 微生物量磷MBP 4 178.1 <0.01
微生物含磷量MPC 4 90.2 <0.01
有效磷AP 4 0.6 0.657
酸性磷酸酶ACP 4 353.9 <0.01
施肥处理×生育时期F×G 微生物量磷MBP 20 21.7 <0.01
微生物含磷量MPC 20 10.5 <0.01
有效磷AP 20 0.6 0.868
酸性磷酸酶ACP 20 4.1 <0.01

Table 4

The yearly turnover amount and time of soil microbial biomass P under different fertilization treatments"

处理
Treatment
年累加同化量
Accumulative assimilate P (mg·kg-1·a-1)
年累加矿化量
Accumulative mineral P (mg·kg-1·a-1)
年周转量
Turnover amount (TA) (mg·kg-1·a-1)
年周转强度
Turnover intensity
(%)
周转期
Turnover time
(TT) (a)
玉米吸磷量
P uptake by maize (kg·hm-2)
CK 0.62 10.8 11.4 53.0 1.89 13.8
NK 7.12 10.1 17.2 127.5 0.78 16.7
NPK 4.77 15.8 20.5 68.7 1.46 30.0
M 7.87 16.8 24.6 61.7 1.62 29.5
0.5MNP 3.63 16.9 20.5 54.0 1.85 30.2
MNPK 19.9 24.2 44.1 60.2 1.66 32.9

Fig. 3

Dynamics of soil available P (AP) and acid phosphatase activity (ACP) in maize growing period under long-term different fertilization treatments"

Fig. 4

Soil available P content (AP) and acid phosphatase activity (ACP) in different maize growing periods"

Table 5

Correlation between soil nutrients and MBP"

ACP MBP MPC TA TT
AP -0.120 0.969** 0.970** 0.936** 0.350
ACP 1.000 -0.120 -0.219 0.193 -0.899*
pH -0.474 0.685 0.498 0.474 0.770
OM -0.064 0.692 0.408 0.584 0.462
TN 0.032 0.714 0.458 0.652 0.335
AK 0.103 0.835* 0.628 0.816* 0.262
[1] GOYAL S, MISHRA M M, DHANKAR S S, KAPOOR K K, BATRA R. Microbial biomass turnover and enzyme activities following the application of farmyard manure to field soils with and without previous long-term applications. Biology and Fertility of Soils, 1993,15:60-64.
[2] 胡曰利, 吴晓芙. 土壤微生物生物量作为土壤质量生物指标的研究. 中南林学院学报, 2002,22(3):51-55.
HU Y L, WU X F. Discussion on soil microbial biomass as a bio-indicator of soil quality for latosol earth. Journal of Central South Forestry University, 2002,22(3):51-55. (in Chinese)
[3] 陈国潮. 红壤微生物生物量碳、磷及其周转, 以及与土壤肥力关系研究[D]. 杭州: 浙江大学, 2000.
CHEN G C. Microbial biomass C and P, their turnover rates with relation to soil fertility sustainability in red soils[D]. Hangzhou: Zhejiang University, 2000. (in Chinese)
[4] GYANESHWAR P, KUMAR G N, PAREKH L J, POOLE P S. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 2002,245(1):83-93.
[5] 曾江海. 长期定位试验研究及其生态学意义. 资源生态环境网络研究动态, 1995,6(1):24-30.
ZENG J H. Long-term research and its significance. Network Research Tendency of Resources, Ecology and Environment, 1995,6(1):24-30. (in Chinese)
[6] 高扬, 徐亚娟, 彭焱, 金晶, 朱波, 于贵瑞. 紫色土坡耕地C、P与微生物生物量C、P对不同施肥的响应. 应用生态学报, 2015,26(1):108-112.
GAO Y, XU Y J, PENG Y, JIN J, ZHU B, YU G R. Soil C, P and microbial biomass C, P response to different fertilizations in the hillslope cropland of purple soil. Chinese Journal of Applied Ecology, 2015,26(1):108-112. (in Chinese)
[7] 刘恩科, 梅旭荣, 赵秉强, 李秀英, 刘家基, 胡其华. 长期不同施肥制度对土壤微生物生物量碳、氮、磷的影响. 中国农业大学学报, 2009,14(3):63-68.
LIU E K, MEI X R, ZHAO B Q, LI X Y, LIU J J, HU Q H. Long-term effects of different fertilizer management on microbial biomass C, N and P in a Fluvo-aquic soil. Journal of China Agricultural University, 2009,14(3):63-68. (in Chinese)
[8] 王传杰, 王齐齐, 徐虎, 高洪军, 朱平, 徐明岗, 张文菊. 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征. 生态学报, 2018,38(11):3848-3858.
WANG C J, WANG Q Q, XU H, GAO H J, ZHU P, XU M G, ZHANG W J. Carbon, nitrogen, and phosphorus stoichiometry characteristics of bulk soil, organic matter, and soil microbial biomass under long-term fertilization in cropland. Acta Ecologica Sinica, 2018,38(11):3848-3858. (in Chinese)
[9] PURAKAYASTHA T J, BHADRARAY S, CHHONKAR P K, VERMA V. Microbial biomass phosphorus and alkaline phosphomonoesterase activity in the rhizosphere of different wheat cultivars as influenced by inorganic phosphorus and farmyard manure. Biology and Fertility of Soils, 2006,43(2):153-161.
doi: 10.1007/s00374-006-0073-x
[10] 王晔青, 韩晓日, 马玲玲, 王玲莉, 赵立勇, 李鑫. 长期不同施肥对棕壤微生物量磷及其周转的影响. 植物营养与肥料学报, 2008,14(2):322-327.
doi: 10.11674/zwyf.2008.0218
WANG Y Q, HAN X R, MA L L, WANG L L, ZHAO L Y, LI X. Effect of long-term fertilization on the content and turnover of soil microbial biomass P. Journal of Plant Nutrition and Fertilizers, 2008,14(2):322-327. (in Chinese)
doi: 10.11674/zwyf.2008.0218
[11] 董春华. 施肥及轮作对红壤稻田微生物特性的影响研究[D]. 长沙: 湖南农业大学, 2014.
DONG C H. Studies on reddish paddy field microbial properties of long-term fertilization and crop rotation system[D]. Changsha: Hunan Agricultural University, 2014. (in Chinese)
[12] 李春越, 郝亚辉, 薛英龙, 王益, 党廷辉. 长期施肥对黄土旱塬农田土壤微生物量碳、氮、磷的影响. 农业环境科学学报, 2020,39(8):1783-1791.
LI C Y, HAO Y H, XUE Y L, WANG Y, DANG T H. Effects of long-term fertilization on soil microbial biomass carbon, nitrogen, and phosphorus in the farmland of the Loess Plateau, China. Journal of Agro-Environment Science, 2020,39(8):1783-1791. (in Chinese)
[13] 刘凯, 刘佳, 陈晓芬, 李委涛, 江春玉, 吴萌, 樊剑波, 李忠佩, 刘明. 长期施用磷肥水稻土微生物量磷的季节变化特征与差异. 中国农业科学, 2020,53(7):1411-1418.
doi: 10.3864/j.issn.0578-1752.2020.07.010
LIU K, LIU J, CHEN X F, LI W T, JIANG C Y, WU M, FAN J B, LI Z P, LIU M. Seasonal variation and differences of microbial biomass phosphorus in paddy soils under long-term application of phosphorus fertilizer. Scientia Agricultura Sinica, 2020,53(7):1411-1418. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.07.010
[14] 吕美蓉, 李忠佩, 刘明, 江春玉, 车玉萍. 长期不同施肥处理对红壤水稻土微生物量氮周转的影响. 中国农业科学, 2012,45(2):275-282.
doi: 10.3864/j.issn.0578-1752.2012.02.009
LÜ M R, LI Z P, LIU M, JIANG C Y, CHE Y P. Soil microbial biomass n turnover after long-term fertilization in paddy field. Scientia Agricultura Sinica, 2012,45(2):275-282. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.02.009
[15] SPEIR T W, COWLING J C. Phosphatase activities of pasture plants and soils: Relationship with plant productivity and soil P fertility indices. Biology and Fertility of Soils, 1991,12(3):189-194.
[16] 张艾明, 刘云超, 李晓兰, 陈凤臻, 莎茹拉. 水肥耦合对紫花苜蓿土壤磷酸酶活性的影响. 生态学杂志, 2016,35(11):2896-2902.
ZHANG A M, LIU Y C, LI X L, CHEN F Z, SHA R L. Coupling effect of water and fertilizer on phosphatase activities of alfalfa soil. Chinese Journal of Ecology, 2016,35(11):2896-2902. (in Chinese)
[17] 柳开楼, 韩天富, 胡惠文, 黄庆海, 余喜初, 李大明, 叶会财, 胡志华. 红壤旱地玉米开花期土壤酶活性对长期施肥的响应. 植物营养与肥料学报, 2018,24(6):1610-1618.
LIU K L, HAN T F, HU H W, HUANG Q H, YU X C, LI D M, YE H C, HU Z H. Response of soil enzyme activity in flowering stages of maize to long-term fertilization in red soil. Journal of Plant Nutrition and Fertilizers, 2018,24(6):1610-1618. (in Chinese)
[18] 夏文建, 柳开楼, 张丽芳, 刘佳, 叶会财, 邓国强, 李大明, 李祖章, 王萍, 李瑶, 杨成春, 彭春瑞, 陈金. 长期施肥对红壤稻田土壤微生物生物量和酶活性的影响. 土壤学报, 2020. DOI: 10.11766/trxb201912050570. http://kns.cnki.net/kcms/detail/32.1119.P.20200416.2006.005.html
XIA W J, LIU K L, ZHANG L F, LIU J, YE H C, DENG G Q, LI D M, LI Z Z, WANG P, LI Y, YANG C C, PENG C R, CHEN J. Effect of long-term fertilization on soil microbial biomass and enzyme activities in reddish paddy soil. Acta Pedologica Sinica, 2020. DOI: 10.11766/trxb201912050570. http://kns.cnki.net/kcms/detail/32.1119.P.20200416.2006.005.html. (in Chinese)
[19] 高雪, 陈海燕, 童倩倩. 贵州耕地耕层土壤养分状况评价. 贵州农业科学, 2013,41(12):87-91.
GAO X, CHEN H Y, TONG Q Q. Nutrient status of surface soil of cultivated land in Guizhou. Guizhou Agricultural Sciences, 2013,41(12):87-91. (in Chinese)
[20] 张邦喜, 李渝, 张文安, 张雅蓉, 蒋太明. 长期施肥对黄壤养分及不同形态无机磷的影响. 灌溉排水学报, 2016,35(5):33-37, 49.
ZHANG B X, LI Y, ZHANG W A, ZHANG Y R, JIANG T M. Effects of long-term fertilization on nutrients and inorganic phosphorus forms in yellow soil. Journal of Irrigation and Drainage Engineering, 2016,35(5):33-37, 49. (in Chinese)
[21] 李渝, 刘彦伶, 白怡婧, 张雅蓉, 黄兴成, 张文安, 蒋太明. 黄壤稻田土壤微生物生物量碳磷对长期不同施肥的响应. 应用生态学报, 2019,30(4) : 1327-1334.
LI Y, LIU Y L, BAI Y J, ZHANG Y R, HUANG X C, ZHANG W A, JIANG T M. Responses of soil microbial biomass C and P to different long-term fertilization treatments in the yellow paddy soil. Chinese Journal of Applied Ecology, 2019,30(4):1327-1334. (in Chinese)
[22] 徐万里, 唐光木, 葛春辉, 王西和, 刘骅. 长期施肥对新疆灰漠土土壤微生物群落结构与功能多样性的影响. 生态学报, 2015,35(2) : 468-477.
XU W L, TANG G M, GE C H, WANG X H, LIU H. Effects of long-term fertilization on diversities of soil microbial community structure and function in grey desert soil of Xinjiang. Acta Ecologica Sinica, 2015,35(2):468-477. (in Chinese)
[23] 林祥磊, 肖显静. "生态学实验'伪重复'""真""假"之辩. 山西大学学报(哲学社会科学版), 2013,36(3):1-8.
LIN X L, XIAO X J. An analysis of “true problem” or “pseudoproblem” on “the ‘pseudoreplication’in ecological experiment”. Journal of Shanxi University (Philosophy & Social Science), 2013,36(3):1-8. (in Chinese)
[24] 鲁如坤. 土壤农化分析. 北京: 中国农业科技出版社, 1999.
LU R K. Soil and Agricultural Chemistry Analysis. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
[25] 赵小蓉, 周然, 李贵桐, 林启美. 低磷石灰性土壤施磷和小麦秸秆后土壤微生物量磷的变化. 应用生态学报, 2009,2(20):93-98.
ZHAO X R, ZHOU R, LI G T, LIN Q M. Effects of applying inorganic P and wheat straw on the microbial biomass P and microbial P concentration in a calcareous soil with low concentration available P. Chinese Journal of Applied Ecology, 2009,2(20):93-98. (in Chinese)
[26] 李东坡, 武志杰, 陈利军, 朱平, 任军, 梁成华, 彭畅, 高红军. 长期培肥黑土微生物量磷动态变化及影响因素. 应用生态学报, 2004,15(10):1334-1338.
LI D P, WU Z J, CHEN L J, ZHU P, LIANG C H, PENG C, GAO H J. Dynamics of microbial biomass P and its affecting factors in a long-term fertilized black soil. Chinese Journal of Applied Ecology, 2004,15(10):1334-1338. (in Chinese)
[27] 黄兴成, 李渝, 白怡婧, 张雅蓉, 刘彦伶, 张文安, 蒋太明. 长期不同施肥下黄壤综合肥力演变及作物产量响应. 植物营养与肥料学报, 2018,24(6):1484-1491.
HUANG X C, LI Y, BAI Y J, ZHANG Y R, LIU Y L, ZHANG W A, JIANG T M. Evolution of yellow soil fertility under long-term fertilization and response of crop yield. Journal of Plant Nutrition and Fertilizers, 2018,24(6):1484-1491. (in Chinese)
[28] 吕美蓉, 李忠佩, 刘明, 江春玉, 车玉萍. 长期不同施肥处理对红壤水稻土微生物量氮周转的影响. 中国农业科学, 2012,45(2):275-282.
LÜ M R, LI Z P, LIU M, JIANG C Y, CHE Y P. Soil microbial biomass n turnover after long-term fertilization in paddy field. Scientia Agricultura Sinica, 2012,45(2):275-282. (in Chinese)
[29] MARINARI S, MASCIANDARO G, CECCANTI B, GREGO S. Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresource Technology, 2000,72:9-17.
[30] NAYAK D R, BABU Y J, ADHYA T K. Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition. Soil Biology and Biochemistry, 2007,39:1897-1906.
[31] 陈留美, 吕家珑, 桂林国, 王世荣, 刘娜娜. 新垦淡灰钙土微生物生物量碳、氮、磷及玉米产量的研究. 干旱地区农业研究, 2006,2(24):48-51.
CHEN L M, LÜ J L, GUI L G, WANG S R, LIU N N. Studies on soil microbial biomass C, N, P and maize yield in newly cultivated light sierozem. Agricultural Research in the Arid Areas, 2006,2(24):48-51. (in Chinese)
[32] NANNIPIERI P, TRASAR-CEPEDA C, DICK R P. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biology and Fertility of Soils, 2018,54(1):11-19.
[33] KHAN K S, JOERGENSEN R G. Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresource Technology, 2009,100(1):303-309.
doi: 10.1016/j.biortech.2008.06.002 pmid: 18632264
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[9] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[10] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[11] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[12] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[13] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[14] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[15] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!