Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (24): 4982-4991.doi: 10.3864/j.issn.0578-1752.2020.24.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Acquisition and Characteristic Analysis of Transgenic Maize with phyA2, ZmTMT, and Bar

YAO XingLan(),YANG WenZhu,LUO YanZhong,CHEN RuMei,WANG Lei(),ZHANG Lan()   

  1. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2020-03-07 Accepted:2020-04-20 Online:2020-12-16 Published:2020-12-28
  • Contact: Lei WANG,Lan ZHANG E-mail:15751004149@163.com;wanglei01@caas.cn;zhanglan01@caas.cn

Abstract:

【Objective】Corn seeds are the main feed ingredient for poultry and monogastric animals, but the content of α-tocopherol with high-activity in corn seeds is low, and maize is rich in phosphorus mainly existed in the form of phytate, which cannot be effectively utilized by animals. Therefore, synthesized DL-α-tocopheryl acetate and phosphorus or microbial phytase are supplemented in the feed for optimal animal growth. These methods not only greatly increase the feed cost, but also cause the phosphorus pollution due to the undigested phytate. The aim of this study is to acquire maize seeds rich in α-tocopherol and high in phytase activity, and provide resources for forage maize breeding.【Method】Construct an expression vector with three expression cassette, and introduced into maize through agrobacterium infection method, glufosinate was used for screening; The positive transgenic plants were identified by spraying glufosinate and PCR analysis; RT-PCR analysis of target gene expression at the transcription level; Western blot analysis of target gene expression at the translation level; Phytase activity was measured by spectrophotometric method; vitamin E content was determined by HPLC. At the same time, the differences of other nutrients and agronomic traits between transgenic lines and wild types were compared.【Result】Constructed an expression vector with three expression cassette, phyA2 driven by endosperm-specific promoter 123387, ZmTMT driven by embryo-specific promoter 13387, Bar driven by constitutive promoter CaMV35S, and introduced into maize; Transgenic plants were identified by spraying glufosinate and PCR; Two transgenic homozygous maize lines TPB1 and TPB2 with good target traits were obtained after multiple generations of backcross transfer. RT-PCR and Western blot analysis showed that phyA2, ZmTMT and Bar were all highly expressed in transgenic lines. Phytase activity determination showed phytase activity reached to 10 000-13 000 U·kg -1, which is able to meet the needs of animal growth and development, vitamin E content measurement showed more than 90% of γ-tocopherol was transformed to α-tocopherol, and α-tocopherol content increased to 50-70 mg·kg -1. In addition, there were no significant differences on agronomic traits between transgenic lines and wild type, and there was no significant difference on nutrient component between TPB1 and wild type, slight difference but without adverse effect between TPB2 and wild type; and the transgenic plants were resistant to BASTA.【Conclusion】These transgenic maize, which are rich in α-tocopherol and phytase, and also with herbicide resistance, can be applied for maize breeding to reduce feed cost, improve the utilization rate of phosphorus and reduce environmental pollution.

Key words: maize, phytase, vitamin E, α-tocopherol, glufosinate resistance

Fig. 1

Schematic diagram of vector construction phyA2 cassette is driven by endosperm-specific promoter 123387; ZmTMT cassette is driven by embryo-specific promoter 13387; Bar cassette is driven by the constitutive promoter CaMV 35S"

Fig. 2

RT-PCR analysis of phyA2, ZmTMT and Bar genes in maize seeds 15 days after pollination WT: Wild type Zheng58; TPB1, TPB2: Transgenic homozygous lines"

Fig. 3

Western blot analysis of phyA2, ZmTMT and Bar in mature maize seeds A, B, and C show the protein accumulation of ZmTMT, Bar and phyA2, respectively; WT: Wild type Zheng58; TPB1, TPB2: Transgenic homozygous lines; ZmTMT CK: Positive control of ZmTMT; Bar CK: Positive control of Bar; phyA2 CK: Positive control of phyA2"

Fig. 4

Analysis of phytase activity in maize seeds WT: Wild type Zheng58; TPB1, TPB2: Transgenic homozygous lines"

Table 1

Analysis of the contents in phytic acid and phosphorus of maize seeds"

株系
Lines
植酸磷
Phytic acid (mg·g-1)

Phosphorus (mg·g-1)
WT 2.77±0.41 0.22±0.02
TPB1 2.60±0.22 0.22±0.06
TPB2 2.65±0.19 0.20±0.02

Fig. 5

Analysis of vitamin E content in maize seeds A: Chromatogram of vitamin E determination. α-, γ-, δ-T/T3: α-, γ-, δ-tocopherol/tocotrienol, IS Internal standard: Rac-5,7-dimethyltocol; B: Analysis of Vitamin E content in maize seeds. WT: Wild type Zheng58; TPB1, TPB2: Transgenic homozygous lines"

Table 2

Analysis of other nutrient components in maize seeds (%)"

营养成分Nutrient component WT TPB1 TPB2
天门冬氨酸 Aspartic acid 0.55±0.001 0.54±0.004 0.58±0.005
苏氨酸 Threonine 0.33±0.001 0.32±0.001 0.36±0.004
丝氨酸Serine 0.41±0.003 0.40±0.002 0.46±0.003*
谷氨酸 Glutamic acid 1.46±0.008 1.42±0.006 1.72±0.001**
脯氨酸 Proline 0.88±0.009 0.8±0.007* 0.97±0.015**
甘氨酸 Glycine 0.32±0.005 0.31±0.002 0.33±0.002
丙氨酸 Alanine 0.59±0.001 0.57±0.002 0.68±0.005**
胱氨酸 Cystine 0.18±0.001 0.19±0.003 0.21±0.007
缬氨酸 Valine 0.42±0.010 0.41±0.002 0.47±0.002*
蛋氨酸 Methionine 0.31±0001 0.44±0.005** 0.38±0.005*
异亮氨酸 Isoleucine 0.28±0.001 0.27±0.001 0.32±0.001*
亮氨酸 Leucine 1.02±0.075 0.99±0.004 1.22±0.007**
酪氨酸 Tyrosine 0.30±0.001 0.24±0.008* 0.25±0.005*
苯丙氨酸 Phenylalanine 0.43±0.003 0.40±0.010 0.47±0.010*
组氨酸 Histidine 0.23±0.001 0.23±0.007 0.26±0.008*
赖氨酸 Lysine 0.26±0.001 0.26±0.005 0.28±0.008
精氨酸 Arginine 0.37±0.002 0.36±0.010 0.38±0.002
色氨酸 Tryptophan 0.07±0.001 0.07±0.001 0.07±0.001
钙 Calcium 0.03±0.001 0.03±0.001 0.03±0.001
粗蛋白 Crude protein 8.47±0.063 8.35±0.008 9.89±0.050**
粗脂肪 Crude fat 3.10±0.015 2.50±0.001* 2.80±0.010
干物质 Dry matter 91.10±1.330 91.80±1.410 90.80±1.270

Fig. 6

Analysis of agronomic traits WT: Wild type Zheng58; TPB1, TPB2: Transgenic homozygous lines"

[1] ABBASSIAN A. Maize: International Market Profile. In Food and Agriculture Organization of the United Nations, 2006: 1-37.
[2] COSGROVE D J. The chemistry and biochemistry of inositol polyphosphates. Review of Pure and Applied Chemistry, 1966,16:209-215.
[3] AUSTIN S, BINGHAM E T, MATHEWS D E, SHAHAN M N, WILL J, BURGESS R R. An overview of a feasibility study for the production of industrial enzymes in transgenic Alfalfa. Annals of the New York Academy of Sciences, 1994,721(1):234-244.
doi: 10.1111/nyas.1994.721.issue-1
[4] RAVINDRAN V, BRYDEN W L. Phytates: Occurrence, bioavailability and implications in poultry nutrition. Avian and Poultry Biology Reviews, 1995,6:125-143.
[5] PEERS F G. The Phytase of Wheat. Biochemical Journal, 1953,53(2):102-110.
doi: 10.1042/bj0530102
[6] URBANO G, LOPEZ M, ARANDA P, VIDAL C, TENORIO E, PORRES J. The role of phytic acid in legumes: Antinutrient or beneficial function? Journal of Physiology and Biochemistry, 2000,56:283-294.
doi: 10.1007/BF03179796
[7] KOZI A, KUNISUKE T, KASAI Z. Formation of phytic acid in cereal grains. Annals of the New York Academy of Sciences, 1969,165:801-814.
pmid: 5259621
[8] LIENER I E. Implications of antinutritional components in soybean foods. Critical Reviews in Food Science and Nutrition, 1994,34(1):31-67.
doi: 10.1080/10408399409527649 pmid: 8142044
[9] TRABER M. Vitamin E: Beyond antioxidant function. The American Journal of Clinical Nutrition, 1995,62(6 Suppl.):1501S-1509S.
doi: 10.1093/ajcn/62.6.1501S pmid: 7495251
[10] AFAF K. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 1996,31(7):671-701.
doi: 10.1007/BF02522884 pmid: 8827691
[11] TRABER M. Vitamin E in humans: Demand and delivery. Annual Review of Nutrition, 1996(16):321-347.
[12] CHENG K, NIU Y, ZHENG X C, ZHANG H, CHEN Y P, ZHANG M, HUANG X X, ZHANG L L, ZHOU Y M, WANG T. A comparison of natural (d-alpha-tocopherol) and synthetic (dl-alpha-tocopherol acetate) vitamin e supplementation on the growth performance, meat quality and oxidative status of broilers. Asian-Australasian Journal of Animal Sciences, 2016,29(5):681-688.
doi: 10.5713/ajas.15.0819 pmid: 26954216
[13] MARUSICH W L, ACKERMAN G, BAUERNFEIND J C. Biological efficacy of D-and DL-α-tocopheryl acetate in chickens. Poultry Science, 1967,46(3):541-548.
doi: 10.3382/ps.0460541
[14] YAO B, ZHANG C Y, WANG J H, FAN Y. Recombinant Pichia pastoris overexpressing bioactive phytase. Life Sciences, 1998,41:330-336.
doi: 10.1007/BF02895110 pmid: 18425641
[15] THEO C V, PETER A P, ALBERT J J, JAN W M, ANDRÉ H, PEN J. Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiology, 1995,109:1199-1205.
doi: 10.1104/pp.109.4.1199 pmid: 8539288
[16] HENRIK B P, LISBETH D S, HOLM P B. Engineering crop plants: Getting a handle on phosphate. Trends in Plant Science, 2002,7(3):118-125.
doi: 10.1016/s1360-1385(01)02222-1 pmid: 11906835
[17] ALAN E R, PAUL A H, HAYES J E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. The Plant Journal, 2001,25(6):641-649.
doi: 10.1046/j.1365-313x.2001.00998.x pmid: 11319031
[18] 范云六. 植酸酶的分子生物学与基因工程. 生物工程学报, 2000,16(1):1-5.
pmid: 10883265
FAN Y L. Molecular biology and genetic engineering of phytase. Chinese Journal of Biotechnology, 2000,16(1):1-5. (in Chinese)
pmid: 10883265
[19] CHEN R, XUE G, CHEN P, YAO B, YANG W, MA Q, FAN Y, ZHAO Z, TARCZYNSKI M C, SHI J. Transgenic maize plants expressing a fungal phytase gene. Transgenic Research, 2008,17(4):633-643.
doi: 10.1007/s11248-007-9138-3
[20] CHEN R, ZHANG C, YAO B, XUE G, YANG W, ZHOU X, ZHANG J, SUN C, CHEN P, FAN Y. Corn seeds as bioreactors for the production of phytase in the feed industry. Journal of Biotechnology, 2013,165(2):120-126.
doi: 10.1016/j.jbiotec.2013.01.030
[21] 曹茸. 我国首度批准发放转基因粮食作物安全证书. 农业知识, 2010,6:49-50.
CAO R. China's first approval to issue safety certificate of genetically modified food crops. Agricultural Knowledge, 2010,6:49-50. (in Chinese)
[22] SHINTANI D, DELLAPENNA D. Elevating the vitamin E content of plants through metabolic engineering. Science, 1998,282:2098-2100.
doi: 10.1126/science.282.5396.2098 pmid: 9851934
[23] ZHANG L, LUO Y, ZHU Y, ZHANG L, ZHANG W, CHEN R, XU M, FAN Y, WANG L. GmTMT2a from soybean elevates the alpha- tocopherol content in corn and Arabidopsis. Transgenic Research, 2013,22(5):1021-1028.
doi: 10.1007/s11248-013-9713-8
[24] CHO E, LEE C, KIM Y S, BAEK S H, REYES B, YUN S. Expression of c-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Molecules and Cells, 2005,19:16-22.
pmid: 15750335
[25] TAVVA V S, KIM Y H, KAGAN I A, DINKINS R D, KIM K H, COLLINS G B. Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene. Plant Cell Reports, 2007,26(1):61-70.
doi: 10.1007/s00299-006-0218-2
[26] LEE B K, KIM S L, KIM K H, YU S H, LEE S C, ZHANG Z, KIM M S, PARK H M, LEE J Y. Seed specific expression of perilla γ-tocopherol methyltransferase gene increases α-tocopherol content in transgenic perilla (Perilla frutescens). Plant Cell, Tissue and Organ Culture, 2007,92(1):47-54.
[27] ZHANG L, LUO Y, LIU B, ZHANG L, ZHANG W, CHEN R, WANG L. Overexpression of the maize gamma-tocopherol methyltransferase gene (ZmTMT) increases alpha-tocopherol content in transgenic Arabidopsis and maize seeds. Transgenic Research, 2020,29(1):95-104.
doi: 10.1007/s11248-019-00180-z pmid: 31673914
[28] LIU X, TIAN J, ZHOU X, CHEN R, WANG L, ZHANG C, ZHAO J, FAN Y. Identification and characterization of promoters specifically and strongly expressed in maize embryos. Plant Biotechnology Journal, 2014,12(9):1286-1296.
doi: 10.1111/pbi.12227
[29] ARMSTRONG C L, GREEN C E, PHILLIPS R L. Development and availability of germplasm with High Type-II culture formation response. Maize Genetic Coop News Letter, 1991,65:92-93.
[30] HYUN A K, SETYO D U, SUK Y K, SUNG R M, JIN S K, HAN S Y, CHOI P S. The development of herbicide-resistant maize: Stable Agrobacterium-mediated transformation of maize using explants of type II embryogenic calli. Plant Biotechnology Reports, 2009,3:277-283.
doi: 10.1007/s11816-009-0099-2
[31] LI Y, LIU X, LI J, LI S, CHEN G, ZHOU X, YANG W, CHEN R. Isolation of a maize ZmCI-1B promoter and characterization of its activity in transgenic maize and tobacco. Plant Cell Reports, 2015,34(8):1443-1457.
doi: 10.1007/s00299-015-1799-4 pmid: 25941157
[32] MARKUS W, LUIS P, ARNO F, ROLAND R, MICHEL T, ALEXANDRA K, ANKE M, MARTIN L, LINE S, RÖTHLISBERGER U. Biochemical characterization of fungal phytases (myo-Inositol Hexakisphosphate Phosphohydrolases): catalytic properties. Applied and Environmental Microbiology, 1999,65(2):359-366.
doi: 10.1128/AEM.65.2.359-366.1999 pmid: 9925554
[33] KONDA A R, NAZARENUS T J, NGUYEN H, YANG J, GELLI M, SWENSON S, SHIPP J M, SCHMIDT M A, CAHOON R E, CIFTCI O N. Metabolic engineering of soybean seeds for enhanced vitamin E tocochromanol content and effects on oil antioxidant properties in polyunsaturated fatty acid-rich germplasm. Metabolic Engineering, 2019,57:63-73.
doi: 10.1016/j.ymben.2019.10.005 pmid: 31654815
[34] 王薇薇, 宋歌, 王丽, 周航, 董正林, 刘宽博, 王永伟, 宋丹, 李爱科. 黑龙江粮库库存玉米的营养成分、 脂肪酸值和霉菌毒素含量分析. 粮油食品科技, 2019,27(5):69-74.
WANG W W, SONG G, WANG L, ZHOU H, DONG Z L, LIU K B, WANG Y W, SONG D, LI A K. Analysis of nutritional content, fatty acid value and mycotoxins content of corn in Heilongjiang Grain Depot. Science and Technology of Cereals Oils and Foods, 2019,27(5):69-74. (in Chinese)
[35] HUMER E, SCHWARZ C, SCHEDLE K. Phytate in pig and poultry nutrition. Journal of Animal Physiology and Animal Nutrition(Berl), 2015,99(4):605-625.
[36] GUERRAND D. Chapter 26 - Economics of food and feed enzymes: Status and prospectives. In: Enzymes in Human and Animal Nutrition. Edited by Nunes C S, Kumar V: Academic Press; 2018: 487-514.
[37] 杨欢, 汤超华, 张凯. 富维生素E转基因玉米对0~3周龄肉仔鸡生产性能和抗氧化能力的影响. 甘肃农业大学学报, 2016,194(2):28-34.
YANG H, TANG C H, ZHANG K. Effects of vitamin E-rich transgenic corn on production performance and antioxidant capacity of broilers at 0-3 weeks of age. Journal of Gansu Agricultural University, 2016,194(2):28-34. (in Chinese)
[38] 李海娜, 高仁喜, 田胜军, 刘艳. 天然维生素,生产技术现状. 湿法冶金, 2003,22(3):113-117.
LI H N, GAO R N, TIAN S J, LIU Y. Natural vitamins, current production technology. Hydrometallurgy of China, 2003,22(3):113-117. (in Chinese)
[39] CHE P, ZHAO Z Y, GLASSMAN K, DOLDE D, HU T X, JONES T J, GRUIS D F, OBUKOSIA S, WAMBUGU F, ALBERTSEN M C. Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified sorghum. Proceedings of the National Academy of Sciences of the USA, 2016,113(39):11040-11045.
doi: 10.1073/pnas.1605689113 pmid: 27621466
[40] WANG L, NEWMAN R K, NEWMAN C W, JACKSON L L. Tocotrienol and fatty acid composition of barley oil and their effects on lipid metabolism. Plant Foods for Human Nutrition, 1993,43:9-17.
doi: 10.1007/BF01088091 pmid: 8464850
[41] PARKER R, PEARCE B, CLARK R W, GORDON D A, WRIGHT J. Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. The Journal of Biological Chemistry, 1993,268:11230-11238.
pmid: 8388388
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!