Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4664-4677.doi: 10.3864/j.issn.0578-1752.2022.23.008


Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility

LI JiaYan(),SUN LiangJie*(),MA Nan,WANG Feng,WANG JingKuan*()   

  1. College of Land and Environment, Shenyang Agricultural University/Key Laboratory of Cultivated Land Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, Shenyang 110866
  • Received:2021-11-10 Accepted:2022-12-24 Online:2022-12-01 Published:2022-12-06
  • Contact: LiangJie SUN,JingKuan WANG;;


【Objective】 Straw returning to the field is one of important measures to increase soil carbon (C) fixation and to improve soil nutrient status. Studying the C and nitrogen (N) fixation characteristics of different parts of maize residues in the soil is of great significance for clarifying the C and N sequestration mechanism under straw returning. 【Method】 This study was based on the long-term experiment station of Shenyang Agricultural University. The soils treated with no fertilization and organic fertilizer combined with chemical fertilizers were collected as low fertility (LF) and high fertility (HF) soils, respectively, and combined with 13C and 15N double-labeled maize residues. Maize stalk and leaf part (S) as well as root part (R) are mixed with collected soils, respectively, and incubated at 25℃. In the experiment, the samples were taken on the 1st, 30th, 60th, 180th and 360th days to determine the total organic C (SOC), total N (TN) content, and their isotopic abundances, and to analyze C and N fixing dynamics of different parts of maize residues in the soil with different fertility levels..【Result】 Adding maize residues significantly increased soil SOC, and could still increase by 14.0% after one year. After adding maize residues, a small part of N in the soil system might be lost by denitrification, and both added N deriving from maize residues and native N in soil were contributed in the lost. Compared with the addition of root residues, the addition of straw residues was more conducive to retaining the added residual C and N, which had a stronger effect on stimulating the local C decomposition and N loss. In contrast, the root residues tended to be decomposed, while the native soil C and N were relatively protected. Although the fixation of added residual C in low-fertility soil was higher than that in high-fertility soil, the fixed added residual C presented a greater contribution to the promotion of C pool in the low-fertility soil. Under the treatment of residues addition, C/N and 13C/15N (representing residue-deriving C/N in the soil) in low-fertility soil were significantly higher than those in high-fertility soil. However, the results showed that 13C/15N was not the main factor limiting the decomposition and fixation of residues in low-fertility soil, which might be related to the distinctive soil microbial community favoring of utilizing the specific substrate under the long-term substrate selection..【Conclusion】 Adding maize residues from different parts of the soil could significantly increase soil carbon and nitrogen levels, but the immobilization strategies of new carbon/nitrogen in the residues and soil old carbon/nitrogen were different. The low-fertility soil had higher capacity to fix exogenous carbon and less fertility, and their fixation of residues in different parts was not affected by the limitation of C/N from exogenous residues in this study.

Key words: maize residue, soil fertility level, soil organic carbon and total nitrogen fixation, stable isotope labeling

Table 1

Main characteristics of test soil (0-20 cm)"

Soil organic carbon (g·kg-1)
Soil total nitrogen (g·kg-1)
δ13C value (‰)
δ15N 值
δ15N value (‰)
High-fertility soil, HF
15.22±0.17A 1.71±0.03A 8.90±0.11 -19.67±0.09A 8.67±0.57A 5.91±0.05B
Low-fertility soil, LF
11.72±0.01B 1.27±0.01B 9.23±0.09 -18.16±0.14B 8.39±0.35B 6.34±0.02A

Table 2

Main characteristics of maize residues"

Soil organic carbon (g·kg-1)
Soil total nitrogen (g·kg-1)
C/N ratio
δ13C value (‰)
δ15N 值
δ15N value (‰)
根茬 Root, R 444.46 6.14 72.35 298.47 11003.51
茎叶 Stalk and leaf, S 407.54 8.49 48.00 386.06 11005.59

Table 3

Changes of soil organic carbon contents in different treatments with incubation days"

土壤总有机碳 Soil organic carbon (g·kg-1)
1 d 30 d 60 d 180 d 360 d
HF 15.22±0.17aC 15.10±0.17aB 14.78±0.17bB 14.73±0.09bB 14.37±0.07bB
LF 11.72±0.01aD 11.05±0.19bC 10.99±0.26bC 10.75±0.23bD 10.48±0.04bD
HF+R 23.53±0.13aA 18.55±0.12bA 17.58±0.16cA 16.34±0.33dA 15.85±0.41dA
LF+R 20.70±0.28aB 15.47±0.24bB 15.26±0.20bB 13.36±0.20cC 12.33±0.21dC
HF+S 22.55±0.37aA 17.96±0.25bA 17.45±0.10bcA 16.59±0.31cdA 16.05±0.41dA
LF+S 19.56±0.30aB 15.63±0.21bB 14.95±0.14bB 12.71±0.29cC 12.85±0.23cC

Fig. 1

Changes of new-added and native soil organic carbon contents under different treatments with incubation days"

Fig. 2

Changes of contribution percentages of new-added and native soil organic carbon to total organic carbon under different treatments with incubation days"

Table 4

Changes of soil total nitrogen contents under different treatments with incubation days"

土壤全氮 Soil total nitrogen (g·kg-1)
1 d 30 d 60 d 180 d 360 d
HF 1.71±0.03aB 1.63±0.03abC 1.62±0.03abB 1.59±0.01bB 1.62±0.03abB
LF 1.27±0.01bD 1.37±0.02aD 1.27±0.04bC 1.31±0.01abC 1.20±0.01cC
HF+R 1.83±0.02aA 1.82±0.01aB 1.80±0.03abA 1.69±0.01cA 1.75±0.02bcA
LF+R 1.36±0.02abC 1.41±0.02aD 1.29±0.05bC 1.31±0.03abC 1.25±0.02bC
HF+S 1.87±0.02aA 1.89±0.01aA 1.73±0.04bA 1.68±0.01bcA 1.60±0.03cB
LF+S 1.39±0.01aC 1.37±0.03aD 1.33±0.02abC 1.25±0.03bcC 1.26±0.01bcC

Fig. 3

Changes of new-added and native soil organic nitrogen contents under different treatments with incubation days"

Fig. 4

Changes of contribution percentages of new-added and native soil organic nitrogen to total nitrogen under different treatments with incubation days"

Table 5

Changes of soil C/N ratios under different treatments with incubation time"

土壤碳氮比 C/N
1 d 30 d 60 d 180 d 360 d
HF 9.23±0.11abC 9.45±0.12aC 9.15±0.21abD 9.29±0.08abC 8.87±0.14bC
LF 9.25±0.09aC 8.07±0.27bD 8.66±0.29abD 8.22±0.16bD 8.73±0.12abC
HF+R 12.89±0.13aB 10.20±0.12bB 9.75±0.17bcB 9.65±0.20cdB 9.07±0.14dB
LF+R 15.22±0.07aA 11.00±0.31bA 11.87±0.39bA 10.23±0.09cA 9.84±0.29cA
HF+S 12.08±0.09aB 9.48±0.13bC 10.09±0.30bC 9.85±0.14cB 10.01±0.09cB
LF+S 14.09±0.12aB 11.41±0.44bB 11.24±0.26cB 10.15±0.43dB 10.18±0.27dB

Fig. 5

Changes of soil 13C/15N under all treatments with incubation days"

[1] SPRINGOB G, KIRCHMANN H. Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biology and Biochemistry, 2003, 35(4): 629-632. doi:10.1016/S0038-0717(03)00052-X.
doi: 10.1016/S0038-0717(03)00052-X
[2] ZHOU Z C, ZHANG X Y, GAN Z T. Changes in soil organic carbon and nitrogen after 26 years of farmland management on the Loess Plateau of China. Journal of Arid Land, 2015, 7(6): 806-813. doi:10.1007/s40333-015-0051-y.
doi: 10.1007/s40333-015-0051-y
[3] 盖霞普, 刘宏斌, 翟丽梅, 杨波, 任天志, 王洪媛, 武淑霞, 雷秋良. 长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响. 中国农业科学, 2018, 51(12): 2336-2347. doi:10.3864/j.issn.0578-1752.2018.12.010.
doi: 10.3864/j.issn.0578-1752.2018.12.010
GAI X P, LIU H B, ZHAI L M, YANG B, REN T Z, WANG H Y, WU S X, LEI Q L. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk. Scientia Agricultura Sinica, 2018, 51(12): 2336-2347. doi:10.3864/j.issn.0578-1752.2018.12.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.12.010
[4] 胡延斌, 肖国举, 仇正跻, 戴君丽, 李永平. 西北半干旱区农田土壤有机碳和全氮分布特征及其对地膜玉米产量的影响. 水土保持研究, 2021, 28(1): 58-64, 403. doi:10.13869/j.cnki.rswc.2021.01.007.
doi: 10.13869/j.cnki.rswc.2021.01.007
HU Y B, XIAO G J, QIU Z J, DAI J L, LI Y P. Distribution characteristics of soil organic carbon and total nitrogen and its influence on film-mulched maize in farmland in northwest semiarid region. Research of Soil and Water Conservation, 2021, 28(1): 58-64, 403. doi:10.13869/j.cnki.rswc.2021.01.007. (in Chinese)
doi: 10.13869/j.cnki.rswc.2021.01.007
[5] WHITBREAD A, BLAIR G, KONBOON Y, LEFROY R, NAKLANG K. Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia. Agriculture, Ecosystems & Environment, 2003, 100(2/3):251-263. doi:10.1016/S0167-8809(03)00189-0.
doi: 10.1016/S0167-8809(03)00189-0
[6] ABIVEN S, RECOUS S, REYES V, OLIVER R. Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality. Biology and Fertility of Soils, 2005, 42(2): 119. doi:10.1007/s00374-005-0006-0.
doi: 10.1007/s00374-005-0006-0
[7] RASSE D P, RUMPEL C, DIGNAC M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil, 2005, 269(1): 341-356. doi:10.1007/s11104-004-0907-y.
doi: 10.1007/s11104-004-0907-y
[8] KLOTZBÜCHER T, KAISER K, GUGGENBERGER G, GATZEK C, KALBITZ K. A new conceptual model for the fate of lignin in decomposing plant litter. Ecology, 2011, 92(5): 1052-1062. doi:10.1890/10-1307.1.
doi: 10.1890/10-1307.1 pmid: 21661566
[9] COTRUFO M F, WALLENSTEIN M D, BOOT C M, DENEF K, PAUL E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 2013, 19(4): 988-995. doi:10.1111/gcb.12113.
doi: 10.1111/gcb.12113 pmid: 23504877
[10] 王楠, 陈殿元, 张晋京, 姜帅, 付加禹, 杨溥原, 刘占宇. 施氮水平对基础肥力不同的玉米田土壤有机碳组分数量的影响. 玉米科学, 2016, 24(6): 114-119. doi:10.13597/
doi: 10.13597/
WANG N, CHEN D Y, ZHANG J J, JIANG S, FU J Y, YANG P Y, LIU Z Y. Effect of nitrogen applied levels on the amounts of organic C components from corn field soils with different basic fertilities. Journal of Maize Sciences, 2016, 24(6): 114-119. doi:10.13597/ (in Chinese)
doi: 10.13597/
[11] 盖霞普, 刘宏斌, 杨波, 王洪媛, 翟丽梅, 雷秋良, 武淑霞, 任天志. 不同施肥年限下作物产量及土壤碳氮库容对增施有机物料的响应. 中国农业科学, 2019, 52(4): 676-689. doi:10.3864/j.issn.0578-1752.2019.04.009.
doi: 10.3864/j.issn.0578-1752.2019.04.009
GAI X P, LIU H B, YANG B, WANG H Y, ZHAI L M, LEI Q L, WU S X, REN T Z. Responses of crop yields, soil carbon and nitrogen stocks to additional application of organic materials in different fertilization years. Scientia Agricultura Sinica, 2019, 52(4): 676-689. doi:10.3864/j.issn.0578-1752.2019.04.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.04.009
[12] 郭策, 高雪莹, 王鸿斌, 隋标, 赵兰坡, 赵兴敏. 玉米秸秆添加对不同母质黑钙土有机碳含量及团聚体稳定性的影响. 吉林农业大学学报, 2021. .
GUO C, GAO X Y, WANG H B, SUI B, ZHAO L P, ZHAO X M. Effects of maize straw incorporation on the content of organic carbon and stability of aggregates in Chernozem derived from different parent materials. Journal of Jilin Agricultural University, 2021. . (in Chinese)
[13] GE T D, LI B Z, ZHU Z K, HU Y J, YUAN H Z, DORODNIKOV M, JONES D L, WU J S, KUZYAKOV Y. Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biology and Fertility of Soils, 2017, 53(1): 37-48. doi:10.1007/s00374-016-1155-z.
doi: 10.1007/s00374-016-1155-z
[14] WU L, XU H, XIAO Q, HUANG Y P, SULEMAN M M, ZHU P, KUZYAKOV Y, XU X L, XU M G, ZHANG W J. Soil carbon balance by priming differs with single versus repeated addition of glucose and soil fertility level. Soil Biology and Biochemistry, 2020, 148: 107913. doi:10.1016/j.soilbio.2020.107913.
doi: 10.1016/j.soilbio.2020.107913
[15] WEI L, GE T D, ZHU Z K, LUO Y, YANG Y H, XIAO M L, YAN Z F, LI Y H, WU J S, KUZYAKOV Y. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma, 2021, 398: 115121. doi:10.1016/j.geoderma.2021.115121.
doi: 10.1016/j.geoderma.2021.115121
[16] 张玉铭, 胡春胜, 陈素英, 王玉英, 李晓欣, 董文旭, 刘秀萍, 裴林, 张惠. 耕作与秸秆还田方式对碳氮在土壤团聚体中分布的影响. 中国生态农业学报(中英文), 2021, 29(9): 1558-1570. doi:10.13930/j.cnki.cjea.200791.
doi: 10.13930/j.cnki.cjea.200791
ZHANG Y M, HU C S, CHEN S Y, WANG Y Y, LI X X, DONG W X, LIU X P, PEI L, ZHANG H. Effects of tillage and straw returning method on the distribution of carbon and nitrogen in soil aggregates. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1558-1570. doi:10.13930/j.cnki.cjea.200791. (in Chinese)
doi: 10.13930/j.cnki.cjea.200791
[17] 陈春兰, 陈安磊, 魏文学, 张文钊, 傅心赣, 周华军, 秦红灵. 长期施肥对红壤稻田剖面土壤碳氮累积的影响. 水土保持研究, 2021, 28(2): 14-20. doi:10.13869/j.cnki.rswc.2021.02.003.
doi: 10.13869/j.cnki.rswc.2021.02.003
CHEN C L, CHEN A L, WEI W X, ZHANG W Z, FU X G, ZHOU H J, QIN H L. Effect of long-term fertilization on accumulation of soil carbon and nitrogen in reddish paddy soil profiles. Research of Soil and Water Conservation, 2021, 28(2): 14-20. doi:10.13869/j.cnki.rswc.2021.02.003. (in Chinese)
doi: 10.13869/j.cnki.rswc.2021.02.003
[18] AN T T, SCHAEFFER S, LI S Y, FU S F, PEI J B, LI H, ZHUANG J, RADOSEVICH M, WANG J K.Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling. Soil Biology and Biochemistry, 2015, 80: 53-61. doi:10.1016/j.soilbio.2014.09.024.
doi: 10.1016/j.soilbio.2014.09.024
[19] CONRAD R, KLOSE M, YUAN Q, LU Y H, CHIDTHAISONG A. Stable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter. Soil Biology and Biochemistry, 2012, 49: 193-199. doi:10.1016/j.soilbio.2012.02.030.
doi: 10.1016/j.soilbio.2012.02.030
[20] BLAUD A, LERCH T Z, CHEVALLIER T, NUNAN N, CHENU C, BRAUMAN A. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw. Applied Soil Ecology, 2012, 53: 1-9. doi:10.1016/j.apsoil.2011.11.005.
doi: 10.1016/j.apsoil.2011.11.005
[21] CASTELLANO M J, MUELLER K E, OLK D C, SAWYER J E, SIX J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 2015, 21(9): 3200-3209. doi:10.1111/gcb.12982.
doi: 10.1111/gcb.12982 pmid: 25990618
[22] 徐虎, 张敬业, 蔡岸冬, 王小利, 张文菊. 外源有机物料碳氮在红壤团聚体中的残留特征. 中国农业科学, 2015, 48(23): 4660-4668. doi:10.3864/j.issn.0578-1752.2015.23.007.
doi: 10.3864/j.issn.0578-1752.2015.23.007
XU H, ZHANG J Y, CAI A D, WANG X L, ZHANG W J. Retention characteristic of carbon and nitrogen from amendments in different size aggregates of red soil. Scientia Agricultura Sinica, 2015, 48(23): 4660-4668. doi:10.3864/j.issn.0578-1752.2015.23.007. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.23.007
[23] 谢柠桧, 安婷婷, 李双异, 孙良杰, 裴久渤, 丁凡, 徐英德, 付时丰, 高晓丹, 汪景宽. 外源新碳在不同肥力土壤中的分配与固定. 土壤学报, 2016, 53(4): 942-950. doi:10.11766/trxb201512240476.
doi: 10.11766/trxb201512240476
XIE N H, AN T T, LI S Y, SUN L J, PEI J B, DING F, XU Y D, FU S F, GAO X D, WANG J K. Distribution and sequestration of exogenous new carbon in soils different in fertility. Acta Pedologica Sinica, 2016, 53(4): 942-950. doi:10.11766/trxb201512240476. (in Chinese)
doi: 10.11766/trxb201512240476
[24] LEHMANN J, KLEBER M. The contentious nature of soil organic matter. Nature, 2015, 528(7580): 60-68. doi:10.1038/nature16069.
doi: 10.1038/nature16069
[25] KUZYAKOV Y. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 2010, 42(9): 1363-1371. doi:10.1016/j.soilbio.2010.04.003.
doi: 10.1016/j.soilbio.2010.04.003
[26] WILLIAMS M A, MYROLD D D, BOTTOMLEY P J. Carbon flow from 13C-labeled straw and root residues into the phospholipid fatty acids of a soil microbial community under field conditions. Soil Biology and Biochemistry, 2006, 38(4): 759-768. doi:10.1016/j.soilbio.2005.07.001.
doi: 10.1016/j.soilbio.2005.07.001
[27] KONG A Y Y, SCOW K M, CÓRDOVA-KREYLOS A L, HOLMES W E, SIX J. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biology and Biochemistry, 2011, 43(1): 20-30. doi:10.1016/j.soilbio.2010.09.005
doi: 10.1016/j.soilbio.2010.09.005 pmid: 22267876
[28] 杨艳华, 苏瑶, 何振超, 喻曼, 陈喜靖, 沈阿林. 还田秸秆碳在土壤中的转化分配及对土壤有机碳库影响的研究进展. 应用生态学报, 2019, 30(2): 668-676. doi:10.13287/j.1001-9332.201902.026.
doi: 10.13287/j.1001-9332.201902.026
YANG Y H, SU Y, HE Z C, YU M, CHEN X J, SHEN A L. Transformation and distribution of straw-derived carbon in soil and the effects on soil organic carbon pool: A review. Chinese Journal of Applied Ecology, 2019, 30(2): 668-676. doi:10.13287/j.1001-9332.201902.026. (in Chinese)
doi: 10.13287/j.1001-9332.201902.026
[29] 李忠徽. 有机肥在黄土高原土壤中的碳、氮周转特征[D]. 杨凌: 西北农林科技大学, 2018.
LI Z H. Characteristics of soil carbon and nitrogen turnover with organic fertilizer application on the Loess Plateau[D]. Yangling: Northwest A & F University, 2018. (in Chinese)
[30] 王敬, 程谊, 蔡祖聪, 张金波. 长期施肥对农田土壤氮素关键转化过程的影响. 土壤学报, 2016, 53(2): 292-304. doi:10.11766/trxb201507130273.
doi: 10.11766/trxb201507130273
WANG J, CHENG Y, CAI Z C, ZHANG J B. Effects of long-term fertilization on key processes of soil nitrogen cycling in agricultural soil: A review. Acta Pedologica Sinica, 2016, 53(2): 292-304. doi:10.11766/trxb201507130273. (in Chinese)
doi: 10.11766/trxb201507130273
[31] LI Y K, LI B, GUO W Z, WU X P. Effects of nitrogen application on soil nitrification and denitrification rates and N2O emissions in greenhouse. Journal of Agricultural Science and Technology, 2015, 17(2): 519-530.
[32] ZHOU L Y, ZHOU X H, ZHANG B C, LU M, LUO Y Q, LIU L L, LI B. Different responses of soil respiration and its components to nitrogen addition among biomes: A meta-analysis. Global Change Biology, 2014, 20(7): 2332-2343. doi:10.1111/gcb.12490.
doi: 10.1111/gcb.12490 pmid: 24323545
[33] 马力, 杨林章, 肖和艾, 殷士学, 夏立忠, 李运东, 刘国华. 长期施肥和秸秆还田对红壤水稻土氮素分布和矿化特性的影响. 植物营养与肥料学报, 2011, 17(4): 898-905.
MA L, YANG L Z, XIAO H A, YIN S X, XIA L Z, LI Y D, LIU G H. Effects of long-term fertilization and straw returning on distribution and mineralization of nitrogen in paddy soils in subtropical China. Plant Nutrition and Fertilizer Science, 2011, 17(4): 898-905. (in Chinese)
[34] 武星魁, 施卫明, 徐永辉, 闵炬. 长期不同化肥氮用量对设施菜地土壤氮素矿化和硝化作用的影响. 土壤, 2021. .
WU X K, SHI W M, XU Y H, MIN J. Effects of long-term different chemical nitrogen rates on soil nitrogen mineralization and nitrification in greenhouse vegetable field. Soils, 2021. . (in Chinese)
[35] 任书杰, 曹明奎, 陶波, 李克让. 陆地生态系统氮状态对碳循环的限制作用研究进展. 地理科学进展, 2006, 25(4): 58-67. doi:10.3969/j.issn.1007-6301.2006.04.007.
doi: 10.3969/j.issn.1007-6301.2006.04.007
REN S J, CAO M K, TAO B, LI K R. The effects of nitrogen limitation on terrestrial ecosystem carbon cycle: A review. Progress in Geography, 2006, 25(4): 58-67. doi:10.3969/j.issn.1007-6301.2006.04.007. (in Chinese)
doi: 10.3969/j.issn.1007-6301.2006.04.007
[36] 安嫄嫄, 马琨, 王明国, 马占旗. 玉米秸秆还田对土壤团聚体组成及其碳氮分布的影响. 西北农业学报, 2020, 29(5): 766-775. doi:10.7606/j.issn.1004-1389.2020.05.014.
doi: 10.7606/j.issn.1004-1389.2020.05.014
AN Y Y, MA K, WANG M G, MA Z Q. Effect of maize straw returning to field on soil aggregates and their carbon and nitrogen distributions. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(5): 766-775. doi:10.7606/j.issn.1004-1389.2020.05.014. (in Chinese)
doi: 10.7606/j.issn.1004-1389.2020.05.014
[37] 葛顺峰, 许海港, 季萌萌, 姜远茂. 土壤碳氮比对平邑甜茶幼苗生长和碳氮分配的影响. 植物生态学报, 2013, 37(10): 942-949. doi:10.3724/SP.J.1258.2013.00097.
doi: 10.3724/SP.J.1258.2013.00097
GE S F, XU H G, JI M M, JIANG Y M. Effects of soil C:N on growth and distribution of nitrogen and carbon of Malus hupehensis seedlings. Chinese Journal of Plant Ecology, 2013, 37(10): 942-949. doi:10.3724/SP.J.1258.2013.00097. (in Chinese)
doi: 10.3724/SP.J.1258.2013.00097
[38] 丘清燕, 梁国华, 黄德卫, 陈小梅. 森林土壤可溶性有机碳研究进展. 西南林业大学学报, 2013, 33(1): 86-96. doi:10.3969/j.issn.2095-1914.2013.01.016.
doi: 10.3969/j.issn.2095-1914.2013.01.016
QIU Q Y, LIANG G H, HUANG D W, CHEN X M. Advances in studies on soluble organic carbon in forest soils. Journal of Southwest Forestry College, 2013, 33(1): 86-96. doi:10.3969/j.issn.2095-1914.2013.01.016. (in Chinese)
doi: 10.3969/j.issn.2095-1914.2013.01.016
[39] COTRUFO M F, SOONG J L, HORTON A J, CAMPBELL E E, HADDIX M L, WALL D H, PARTON W J. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8(10): 776-779. doi:10.1038/ngeo2520.
doi: 10.1038/NGEO2520
[40] RUBINO M, DUNGAIT J A J, EVERSHED R P, BERTOLINI T, ANGELIS P D, D’ONOFRIO A, LAGOMARSINO A, LUBRITTO C, MEROLA A, TERRASI F, COTRUFO M F.Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidences from a 13C labelled-leaf litter experiment. Soil Biology and Biochemistry, 2010, 42(7): 1009-1016. doi:10.1016/j.soilbio.2010.02.018.
doi: 10.1016/j.soilbio.2010.02.018
No related articles found!
Full text



No Suggested Reading articles found!