Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (8): 1555-1563.doi: 10.3864/j.issn.0578-1752.2013.08.004

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Study on Genome Variations by Using SCoT Markers During Allopolyploidization of the Cultivated Peanut ×A. chacoensis

 HE  Liang-Qiong, XIONG  Fa-Qian, ZHONG  Rui-Chun, HAN  Zhu-Qiang, LI  Zhong, TANG  Xiu-Mei, JIANG  Jing, TANG  Rong-Hua, HE  Xin-Hua   

  1. 1.College of Agronomy, Guangxi University, Nanning 530004
    2. Institute of Cash Crops Research, Guangxi Academy of Agricultural Sciences, Nanning 530007
    3.Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology  Lab, Nanning 530007
  • Received:2012-11-02 Online:2013-04-15 Published:2013-02-26

Abstract: 【Objective】Genome changes during allopolyploidization were studied to reveal preiliminarily the molecular mechanisms of Arachis polyploidization. 【Method】 A newly interspecific hybridization between tetraploid cultivated peanut Zhongkaihua No.4 and diploid wild one A. chacoensis to study the genomic varied time, types and frequency of the hybrid F1, early allopolyploidy generation (S0-S3) by start codon targeted polymorphism (SCoT) molecular marker technique. 【Result】 A total of 126 loci were produced including 117 polymorphic loci with a polymorphism rate of 92.86% by 18 SCoT primers, which showed that SCoT loci could reveal the relatively high genetic diversity among the Arachis collections. Compared with 109 parental fragments, 28, 30, 10,11 and 10 ones were lost and 9, 3, 10, 14 and 8 new fragments were produced in F1-S3 independently. Furthermore, in the lost parental bands, 16, 12, 7, 9 and 9 bands were from male. These results indicated that SCoT products began to alter as early as in F1 and the changes mainly included the loss, simultaneous appearance of parental bands and appearance of novel fragments, and the loss of male fragments was the major. 【Conclusion】The ATG translation start codon and the flanking region varied extremely in early period during Arachis allopolyploidization which speculated that their biological function might be related with polyploidy evolution and stability. As a new molecular marker technique, SCoT could provide a scientific basis in research on genomic variation during polyploidization in Arachis and other species because of its simplicity, effectiveness and practicality.

Key words: start codon targeted polymorphism , peanut , gene-targeted markers , interspecific hybridization , allopolyploidization

[1]Soltis P S. Ancient and recent polyploidy in angiosperms. New Phytologist, 2005, 166: 5-8.

[2]Stebbins G L. Variation and Evolution in Plants. London: Columbia University Press, 1950.

[3]Stebbins G L. Chromosomal evolution in higher plants. Edward Aronld, 1971.

[4]Blance G, Wolfe K H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. The Plant Cell, 2004, 16(7): 1667-1678.

[5]Tian C G, Xiong Y Q, Liu T Y, Sun S H, Chen L B,  Chen M S. Evidence of an ancient whole-genome duplication event in rice and other cereals. Acta Genetical Sinica, 2005, 32(5): 519-527.

[6]庄勇, 陈龙正, 杨寅桂, 娄群峰, 陈劲枫. 植物异源多倍体进化中基因表达的变化. 植物学通报, 2006, 23(2): 207-214.

Zhuang Y, Chen L Z, Yang Y G, Lou Q F, Chen J F. Changes in gene expression in evolution of plant allopolyploids. Chinese Bulletin of Botany, 2006, 23(2): 207-214. (in Chinese)

[7]Comai L, Tyagi A P, Winter K, Holmes-Davis R, Reynolds S H, Stevens Y, Byers B. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. The Plant Cell, 2000, 12: 1551-1567.  

[8]Lee H S, Chen Z J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proceedings of the National Academy of Science of the USA, 2001, 98(12): 6753-6758.

[9]Ozkan H, Levy A A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. The Plant Cell, 2001, 13: 1735-1747. 

[10]Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in newly synthesized wheat allopolyploid. Genetics, 2002, 160: 1651-1659.  

[11]He P, Friebe B R, Gill B S, Zhou J M. Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Molecular Biology, 2003, 52(2): 401-414.

[12]Han F P, Fedak G, Ouellet T, Liu B. Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome, 2003(46): 716-723.

[13]聂利红, 韩宗福, 姚颖垠, 孙其信, 倪中福. 人工合成六倍体小麦(AABBDD)与亲本种之间基因组与基因区域的序列变异分析. 自然科学进展, 2008, 18 (1): 45-50.

Nie L H, Han Z F, Yao Y Y, Sun Q X, Ni Z F. The sequence variation analysis of genome and gene region between the synthetic hexaploid wheat with parents. Progress in Natural Science, 2008, 18(1): 45-50. (in Chinese)

[14]Hanson R E, Zhao X P, Islam-Faridi M N, Paterson A H, Zwick M S, Crane C F, Mcknight T D, Stelly D M, Price H J. Evolution of interspersed repetitive elements in Gossypium (Malvaceae) . American Journal of Botany, 1998, 85(10): 1364-1368.

[15]Zhao X P, Si Y, Hanson R E, Crane C F, Price H J, Stelly D M, Wendel J F, Paterson A H. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Research, 1998, 8: 479-492. 

[16]Song K, Lu P, Tang K, Osborn T C. Rapid genome changes in synthetic polyploids of Brassica and its implications for polyploid evolution. Proceedings of National Academy of Science of the USA, 1995, 92(17): 7719-7723.

[17]Zeng C L, Wang J B, Liu A H, Wu X M. Seed coat microsculpturing changes during seed development in diploid and amphidiploid Brassica species. Annals of Botnay, 2004, 93: 555-566.

[18]刘爱华, 王建波. 序列消除与异源多倍体植物基因组的进化. 武汉植物学研究, 2004, 22(2): 158-162.

Liu A H, Wang J B. Sequence elimination and the genomic evolution of allopolyploid plants. Journal of Wuhan Botanical Research, 2004, 22(2):158-162. (in Chinese)

[19]Chen J F, Luo X D, Qian C T, Jahn M M, Staub J E, Zhuang F Y. Cucumis monosomic alien addition lines: Morphological, cytological, and genotypic analyses. Theoretical and Applied Genetics, 2004, 108: 1343-1348.

[20]Chen L Z, Lou Q F, Zhuang Y, Chen J F, Zhang X Q. Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis × hytivus. Planta, 2007, 225: 603-614.

[21]Chen L Z, Chen J F. Changes of cytosine methylation induced by wide hybridization and allopolyploidy in Cucumis. Genome, 2008, 51(10): 789-799.

[22]Chen Z J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation and plant polyploids. Annual Review of Plant Biology, 2007, 58: 377-406.

[23]陈龙正, 娄群峰, Joseph W, 陈劲枫, 耿红, 罗向东. 甜瓜属人工异源四倍体早期基因组变化的初步研究. 园艺学报, 2005, 32(6): 1105-1107.

Chen L Z, Lou Q F, Joseph W, Chen J F, Geng H, Luo X D. Preliminary studies on early genomic changes of a synthetic allotetraploid in Cucumis. Acta Horticulturae Sinica, 2005, 32(6): 1105-1107. (in Chinese)

[24]Kochert G, Halward T, Branchi W D. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theoretical and Applied Genetics, 1991, 81(5): 565-570.

[25]Gimenes M A, Lopes C R, Valls F M. Genetic relationship among Arachis species based on AFLP. Genetic and Molecular Biology, 2002, 25(3): 349-353.

[26]Gimenes M A, Lopes C R, Galgaro M L. RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica, 2002, 123: 421-429.

[27]任小平, 廖伯寿, 黄家权, 张晓杰, 姜慧芳. 利用SRAP标记分析花生属花生区组种质亲缘关系. 中国油料作物学报, 2009, 31(4): 449-454.

Ren X P, Liao B S, Huang J Q, Zhang X J, Jiang H F. Genomic affinities of Arachis section Arachis revealed by SRAP markers. Chinese Journal of Oil Crop Sciences, 2009, 31(4): 449-454. (in Chinese)

[28]Garcia G M, Tallury S, Kochert G S. Molecular analysis of Arachis interspecific hybrids. Theoretical and Applied Genetics, 2006, 112: 1342-1384.

[29]Collard B C Y, Mackill D J. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 2009, 27: 86-93.

[30]Xiong F Q, Zhong R C, Han Z Q, Jiang J, He L Q, Zhuang W J, Tang R H. Start codon targeted polymorphism for evaluation of fuctional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Molecular Biology Reporter, 2011, 38: 3487-3494.

[31]熊发前, 唐荣华, 陈忠良, 潘玲华, 庄伟建. 目标起始密码子多态性(SCoT): 一种基于翻译起始位点的目的基因标记新技术. 分子植物育种, 2009, 7(3): 635-638.

Xiong F Q, Tang R H, Chen Z L, Pan L H, Zhuang W J. Start codon target polymorphism (SCoT): A novel gene targeted marker technique based on the translation start codon. Molecular Plant Breeding, 2009, 7(3): 635-638. (in Chinese)

[32]熊发前, 蒋菁, 钟瑞春, 韩柱强, 贺梁琼, 李忠, 庄伟建, 唐荣华. 目标起始密码子多态性(SCoT)分子标记技术在花生属中的应用. 作物学报, 2010, 36(12): 2055-2061.

Xiong F Q, Jiang J, Zhong R C, Han Z Q, He L Q, Li Z, Zhuang W J, Tang R H. Application of SCoT molecular marker in genus Arachis. Acta Agronomica Sinica, 2010, 36(12): 2055-2061. (in Chinese)

[33]陆才瑞, 喻树迅, 于霁雯, 范术丽, 宋美珍, 王武, 马淑娟. 功能型分子标记(ISAP)的开发及评价. 遗传, 2008, 30(9): 1207-1216.

Lu C R, Yu S X, Yu J W, Fan S L, Song M Z, Wang W, Ma S J. Development and appraisement of functional molecular marker: Intron sequence amplified polymorphism (ISAP). Acta Genetical Sinica, 2008, 30(9): 1207-1216. (in Chinese)

[34]Andersen J R, Lübberstedt T. Functional markers in plants. Trends in Plant Science, 2003, 8: 554-560.

[35]陈香玲, 苏伟强, 刘业强, 任惠, 陆玉英. 36份菠萝种质的遗传多样性SCoT分析. 西南农业学报, 2012, 25(2): 625-629.

Chen X L, Su W Q, Liu Y Q, Ren H, Lu Y Y. Analysis on genetic diversity of 36 pineapple collections by SCoT markers, Southwest China Journal of Agricultural Science, 2012, 25(2): 625-629. (in Chinese)

[36]陈虎, 何新华, 罗聪, 高美萍. 龙眼24个品种的SCoT遗传多样性分析. 园艺学报, 2010, 37(10): 1651-1654.

Chen H, He X H, Luo C, Gao M P. Analysis on the genetic diversity of 24 longan (Dimocarpus longan) accessions by SCoT markers. Acta Horticulturae Sinica, 2010, 37(10): 1651-1654. (in Chinese)

[37]唐荣华, 贺梁琼, 高国庆, 庄伟建, 韩柱强, 钟瑞春. 多粒型花生的SSR分子标记. 花生学报, 2004, 33(2): 11-16.

Tang R H, He L Q, Gao G Q, Zhuang W J, Han Z Q, Zhong R C. Simple sequence repeats molecular markers in peanut botanical variety ‘Fastigiata’ in A. hypogaea L.. Journal of Peanut Science, 2004, 33(2): 11-16. (in Chinese)

[38]Zhang L Q, Liu D C, Yan Z H , Lan X J, Zheng Y L, Zhou Y H. Rapid changes of microsatellite flanking sequence in the allopolydization of new synthesized hexaploid wheat. Science in China Series C-life Science, 2004, 47(6): 553-561.
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[3] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[4] JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang. Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(20): 3897-3909.
[5] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[6] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[7] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[8] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
[9] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[10] JING Dan, YUE XiaoFeng, BAI YiZhen, GUO Can, DING XiaoXia, LI PeiWu, ZHANG Qi. The Infectivity of Aspergillus flavus in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(23): 5008-5020.
[11] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[12] XUE HuaLong,LOU MengYu,LI Xue,WANG Fei,GUO BinBin,GUO DaYong,LI HaiGang,JIAO NianYuan. Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation [J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725.
[13] ZHANG MaoNing,HUANG BingYan,MIAO LiJuan,XU Jing,SHI Lei,ZHANG ZhongXin,SUN ZiQi,LIU Hua,QI FeiYan,DONG WenZhao,ZHENG Zheng,ZHANG XinYou. Genetic Analysis of Peanut Kernel Traits in a Nested-crossing Population by Major Gene Plus Polygenes Mixed Model [J]. Scientia Agricultura Sinica, 2021, 54(13): 2916-2930.
[14] TingHui HU,LiangQiang CHENG,Jun WANG,JianWei LÜ,QingLin RAO. Evaluation of Shade Tolerance of Peanut with Different Genotypes and Screening of Identification Indexes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1140-1153.
[15] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!