Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (20): 3897-3909.doi: 10.3864/j.issn.0578-1752.2022.20.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies

JU Ming(),MIAO HongMei,HUANG YingYing,MA Qin,WANG HuiLi,WANG CuiYing,DUAN YingHui,HAN XiuHua,ZHANG HaiYang()   

  1. Henan Sesame Research Center, Henan Academy of Agricultural Sciences/Henan Key Laboratory of Specific Oilseed Crops Genomics/Shennong Laboratory, Zhengzhou 450002
  • Received:2022-05-29 Accepted:2022-07-18 Online:2022-10-16 Published:2022-10-24
  • Contact: HaiYang ZHANG E-mail:jumingzz@163.com;zhanghaiyang@zzu.edu.cn

Abstract:

【Objective】 The research aims to explore the cross compatibility between different Sesamum species and analyze the biological characteristics of interspecies hybrid progeny so as to supply the foundation for efficient application of wild sesame species. 【Method】 A sesame cultivar Yuzhi 11 (S. indicum, 2n=26) and 4 wild Sesamum species including S. latifolium (2n=32), S. calycinum (2n=32), S. angustifolium (2n=32), and S. radiatum (2n=64) were applied to construct interspecies cross combinations using diallel hybridization method by artificial pollination in the field. Embryo rescue method was also used to obtain interspecific hybrid F1. Interspecific hybrid compatibility was compared based on hybrid capsule formation rate. Botanical characters of hybrids were observed during flowering and mature stages. Pollen fertility was assessed using Alexander staining method. Chromosome number and karyotype characteristics of root somatic cells of hybrids were observed using smear chromosome preparation technique. Specific and polymorphic SSR primers in Sesamum were used to analyze the molecular difference in interspecific hybrids.【Result】 Twenty positive and reciprocal cross combinations were constructed for the 5 Sesamum species. A total of 2091 flowers were pollinated and 370 hybrid capsules were harvested. As to the female parents with more chromosomes, hybrid capsules were more easily obtained. The cross compatibility among the 5 Sesamum species significantly varied from 1.18% (S. radiatum×S. calycinum) to 63.33% (S. calycinum×S. angustifolium). F1 plants of 9 combinations produced hybrid seeds, while the ratio of pollen sterility of F1 progeny ranged from 35.21%-100.00%. The cross S. calycinum×S. angustifolium presented the highest sterility ratio to 87.68%. Hybrid progeny exhibited the obvious heterosis over parents in plant height, plant type, and some key agronomic traits. As to the positive and reciprocal hybrid F1 derived from sesame cultivar and the wild species, leaf shape, flower shape, and flower color showed partial characters of both parents. The cross compatibility between sesame cultivar (n=13) and the 3 Sesamum species with chromosome group n=16 ranked as S. angustifolium>S. calycinum>S. latifolium. The cross compatibility between wild species S. radiatum (n=32) and the 3 species with n=16 ranked as S. calycinum>S. angustifolium>S. latifolium. Among the 5 Sesamum species, the genetic relationship between S. calycinum and S. angustifolium is relatively closest. The chromosome number of root tip cells of some hybrid plants is consistent with the theoretical value calculated from the parents. Screening results of the 3 pairs of polymorphic SSR primers indicated that 99.66% of obtained F1 plants are true hybrid. Chromosome karyotype and SSR marker screening results reflected the genetic difference and characters of Sesamum species. 【Conclusion】Among the 5 Sesamum species, the cross compatibility varies significantly and the heterosis of interspecific hybrid is obvious. Of which only S. calycinum and S. angustifolium have the relatively closest genetic relationship and could be directly applied for elite germplasm creation and interspecific hybrid breeding in Sesamum. Reproductive isolation barriers exist in other cross combinations. Some techniques including embryo rescue and molecular marker application should be used to achieve the utilization of wild Sesamum species for sesame breeding.

Key words: sesame, wild Sesamum species, interspecific hybridization, botanic character, molecular assessment

Table 1

Information of parents for interspecific hybridization"

材料名称
Material name
种属特性
Sesamum species
体细胞染色体数目
Chromosome number in somatic cell
株型
Plant type
豫芝11号Yuzhi 11 S. indicum 2n=26 直立、单秆 Erect, uniculm
Ken1 S. latifolium 2n=32 直立、分支 Erect, branching
Ken8 S. calycinum 2n=32 半匍匐、分支 Semi-erect, branching
G01 S. angustifolium 2n=32 直立、分支 Erect, branching
G02 S. radiatum 2n=64 直立、分支 Erect, branching

Table 2

Primer information"

引物Primer 引物序列Primer sequences (5′-3′)
HS94 F:CATGTGTTCTCTCCCACCAC
R:TCTTGACCATGTTTTCCACC
HS352 F:TTCCGCTGCTTGTATGATTC
R:TGGTGGAAAAAGAAGGGAAC
HS53 F:GAAGCTTGAAGAGAGGAGGG
R:ATGGAACTTCTCCGATCACC

Table 3

Interspecific hybrid combination and statistics of seedling ratio via hybrid embryo rescue"

编号
No.
种间杂交组合
Interspecific hybrid combination
母本
Female (♀)
父本
Male (♂)
杂交结实性 Hybrid capsule formation 胚拯救 Hybrid embryo rescue
授粉花朵数
Pollinated flower <BOLD>N</BOLD>o.
结蒴数量
Capsule <BOLD>N</BOLD>o.
杂交结蒴率
Capsule ratio (%)
种子数量
Hybrid seed <BOLD>N</BOLD>o.
杂种出苗数
Hybrid seedlings <BOLD>N</BOLD>o.
杂种出苗率
Hybrid plantlet ratio (%)
幼胚数量
Young embryo <BOLD>N</BOLD>o.
组培苗数量
Seedling <BOLD>N</BOLD>o.
成苗率
Seedling ratio (%)
H1a S. indicum×S. latifolium 豫芝11号
Yuzhi 11
Ken1 60 9 15.00 56 0 0 105 24 22.86
H1b S. latifolium×S. indicum Ken1 豫芝11号
Yuzhi 11
70 11 15.71 255 0 0 266 186 69.92
H2a S. indicum×S. calycinum 豫芝11号
Yuzhi 11
Ken8 110 20 18.18 150 0 0 156 2 1.28
H2b S. calycinum×S. indicum Ken8 豫芝11号
Yuzhi 11
90 3 3.33 47 1 2.13 375 87 23.00
H3a S. indicum×S. angustifolium 豫芝11号
Yuzhi 11
G01 40 9 22.50 156 0 0 75 1 1.30
H3b S. angustifolium×S. indicum G01 豫芝11号
Yuzhi 11
320 15 4.69 210 1 0.48 112 5 4.46
H4a S. indicum×S. radiatum 豫芝11号
Yuzhi 11
G02 249 82 32.93 57 0 0 225 16 7.11
H4b S. radiatum×S. indicum G02 豫芝11号
Yuzhi 11
253 104 41.11 78 2 2.56 350 51 14.57
H5a S. latifolium×S. calycinum Ken1 Ken8 30 3 10.00 78 0 0 130 0 0
H5b S. calycinum×S. latifolium Ken8 Ken1 102 8 7.84 137 0 0 85 3 3.52
H6a S. angustifolium×S. latifolium G01 Ken1 45 5 11.11 50 0 0 75 8 11.11
H6b S. latifolium×S. angustifolium Ken1 G01 51 15 29.41 236 3 1.27 50 1 2.00
H7a S. latifolium×S. radiatum Ken1 G02 57 6 10.53 55 0 0 440 5 1.14
H7b S. radiatum×S. latifolium G02 Ken1 64 10 15.63 200 0 0 300 2 0.60
H8a S.calycinum×S. angustifolium Ken8 G01 30 19 63.33 285 44 15.44 105 98 93.00
H8b S.angustifolium×S. calycinum G01 Ken8 25 12 48.00 105 26 24.75 150 66 44.00
H9a S. calycinum×S. radiatum Ken8 G02 56 2 3.57 12 0 0 125 0 0
H9b S. radiatum×S. calycinum G02 Ken8 255 3 1.18 20 0 0 120 33 27.50
H10a S. angustifolium×S. radiatum G01 G02 99 5 5.05 55 0 0 0 0 0
H10b S. radiatum×S. angustifolium G02 G01 85 29 34.12 909 0 0 280 22 7.86

Fig. 1

Morphological comparison of flowers of Sesamum species and partial interspecific hybrid F1 progeny a: Yuzhi 11; b: Ken1; c: Ken8; d: G01; e: G02; f: F1 of the cross Ken1×Yuzhi 11; g: F1 of the cross Ken8×Yuzhi 11; h: F1 of the cross G02×Yuzhi 11; i: F1 of the cross Ken1×G01; j: F1 of the cross Ken8×G01; k: F1 of the cross G02×Ken8; l: F1 of the cross G02×G01"

Fig. 2

Morphological comparison of capsules of Sesamum species and partial interspecific hybrid F1 progeny a: Yuzhi 11; b: Ken1; c: Ken8; d: G01; e: G02; f: F1 of the cross Ken1×Yuzhi 11; g: F1 of the cross Ken8×Yuzhi 11; h: F1 of the cross G02×Yuzhi 11; i: F1 of the cross Ken1×G01; j: F1 of the cross Ken8×G01; k: F1 of the cross G02×Ken8; l: F1 of the cross G02×G01"

Fig. 3

Fertility observation of pollens of partial interspecific hybrid F1 progeny a: F1 of the cross Ken1×Yuzhi 11; b: F1 of the cross Ken8×Yuzhi 11; c: F1 of the cross Ken1×G01; d: F1 of the cross Ken8×G01; e: F1 of the cross G02×Ken8; f: F1 of the cross G02×G01. Pollens in red and yellow indicate fertile and sterile, respectively. Fertility percentage of pollens in F1 progeny of different interspecific crosses varies"

Table 4

Statistics of biological characteristics of Sesamum species and interspecific hybrid F1 plants"

材料名称
Name
来源
Source
叶型
Leaf type
株高
Plant
height (cm)
株型
Plant type
蜜腺
Honey gland
腋叶花数
flower no. per axillar
花长
Corolla length (cm)
花宽
Corolla width (cm)
花冠颜色
Corolla color
花舌颜色
Corolla tip color
花粉败育率
Pollen grain fertility
(%)
自交结蒴性
Self- pollination capsule formation
有无成熟
种胚
Embryo in mature seed
种皮颜色
Seed color
豫芝11号
Yuzhi 11
S. indicum 椭圆形
Oval
169.2 直立、单秆
Erect, uniculm

Without
3 3.7 2.4 白色
White
白色
White
0
Yes

Have
白色
White
Ken1 S. latifolium 心形
Heart-shaped
230.5 直立、强分支
Erect, Many branches
黄色
Yellow
1 4.5 2.4 淡紫色
Lavender
紫条
Purple strip
2.22
Yes

Have
黑色
Black
Ken8 S. calycinum 条形
Strip type
151.6 半匍匐、强分支
Semi-erect, many branches
黄色
Yellow
1 3.9 2.0 紫色
Purple
淡紫色
Lavender
0
Yes

Have
黑色
Black
G01 S. angustifolium 条形
Strip type
122.6 直立、弱分支
Erect, few branches
黄色
Yellow
1 3.7 2.0 紫红色
Mauve
紫红色
Mauve
1.05
Yes

Have
黑色
Black
G02 S. radiatum 披针形
lanceolate
179.6 直立、弱分支
Erect, few branches
紫色
Purple
1 4.2 2.4 白色
White
白色
White
4.28
Yes

Have
黑色
Black
H1a S. indicum×
S. latifolium
条形
Strip type
240.2 直立、强分支
Erect, strong branch
黄色
Yellow
1 5.0 3.0 淡紫色
Lavender
粉色条纹
Pink stripes
100.00
Yes

No
黑色
Black
H1b S. latifolium×
S. indicum
条形
Strip type
251.7 直立、强分支
Erect, strong branch
黄色
Yellow
1 4.5 2.5 淡紫色
Lavender
紫色条纹
Purple stripes
100.00
Yes

No
黑色
Black
H2b S. calycinum×
S. indicum
条形
Strip type
171.5 半匍匐、强分支
Semi-erect, many branches
黄色
Yellow
1 4.0 2.6 紫色
Purple
紫色条纹
Purple stripes
97.78
No
/ /
H4b S. radiatum×
S. indicum
披针形
lanceolate
186.9 直立、强分支
Erect, strong branch
紫色
Purple
1 4.1 2.2 粉色
Pink
白色
White
100.00
Yes

No
黑色
Black
H5a S. latifolium×
S. angustifolium
卵圆形
Ovate
191.4 直立、弱分支
Erect, few branches
黄色
Yellow
1 4.2 2.1 粉色
Pink
粉色有紫色纹路
Pink with purple texture
100.00
No
/ /
H7a S. calycinum×
S. angustifolium
条形
Strip type
170.1 半匍匐、强分支
Semi-erect, many branches
紫色
Purple
1 4.0 2.5 紫色
Purple
紫色
Purple
68.89
No

Have
黑色
Black
H7b S. angustifolium×
S. calycinum
条形
Strip type
169.4 半匍匐、强分支
Semi-erect, many branches
紫色
Purple
1 4.0 2.5 紫色
Purple
紫色
Purple
35.21
No

Have
黑色
Black
H8b S. radiatum×
S. calycinum
披针形
Lanceolate
199.8 半匍匐、强分支
Semi-erect, many branches
紫色
Purple
1 4.5 2.5 紫色
Purple
紫色条纹
Purple stripes
100.00
No
/ /
H9b S. radiatum×
S. angustifolium
柳叶型
Willow leaf shape
200.3 直立、弱分支
Erect, few branches
深紫色
Modena
1 4.0 2.2 紫色
Purple
白色有紫色边缘
White with purple edges
100.00
No
/ /

Fig. 4

Chromosome observation of partial interspecific hybrid progeny a: H1b (Ken1×Yuzhi 11); b: H2b (Ken8×Yuzhi 11); c: H9b (G02×G01); d: H8b (G02×Ken8)"

Fig. 5

Amplification of SSR in Sesmum species and partial interspecific hybrid F1 a: Amplicons of primer pair HS352 in Ken1, Yuzhi 11 and hybrid F1 (H1b); b: Amplicons of primer pair HS352 in Ken8, Yuzhi 11 and hybrid F1 (H2b); c: Amplicons of primer pair HS53 in Ken1, G01 and hybrid F1 (H5a); d: Amplicons of primer pair HS94 in G01, Ken8 and hybrid F1 (H7a); e: Amplicons of primer pair HS94 in G02, Ken8 and hybrid F1 (H8b); f: Amplicons of primer pair HS94 in G02, G01 and hybrid F1 (H9b). M: Maker DL 2000; P1: Yuzhi 11; P2: Ken1; P3: Ken8; P4: G01; P5: G01"

Table 5

Statistics of interspecific hybrid identification of Sesamum species using SSR markers"

编号
No.
种间杂交
Interspecific hybridization combination (♀×♂)
母本
Female (♀)
父本
Male (♂)
标记
SSR maker
F1植株数
F1 plant number
真杂种比例
Hybrid ratio (%)
H1a S. indicum×S. latifolium 豫芝11号Yuzhi 11 Ken1 HS352 24 100.00
H1b S. latifolium×S. indicum Ken1 豫芝11号Yuzhi 11 HS352 186 98.92
H2b S. calycinum×S. indicum Ken8 豫芝11号Yuzhi 11 HS352 87 100.00
H5a S. latifolium×S. angustifolium Ken1 G01 HS53 1 100.00
H7a S. calycinum×S. angustifolium Ken8 G01 HS94 142 100.00
H7b S. angustifolium×S. calycinum G01 Ken8 HS94 92 100.00
H8b S. radiatum×S. calycinum G02 Ken8 HS94 33 100.00
H9b S. radiatum×S. angustifolium G02 G01 HS94 22 100.00
[1] ASHRI A. Sesame breeding. Plant Breeding Reviews, 1998, 16: 179-228.
[2] AMOO S O, OKOROGBONA A O M, DU PLOOY C P, VENTER S L. Sesamum indicum//VICTOR K. Medicinal Spices and Vegetables from Africa. Salt Lake City, USA: Academic Press, 2017: 549-579.
[3] ZHANG H, WANG L, MIAO H, SUN Y. Genome sequencing of the wild Sesamum species //MIAO H, ZHANG H, KOLE C. The Sesame Genome. Compendium of Plant Genomes. Cham, Switzerland: Springer, 2021: 275-281.
[4] MIAO H M, LANGHAM D R, ZHANG H Y. Botanical descriptions of sesame //MIAO H M, ZHANG H Y, KOLE C. The Sesame Genome. Cham, Switzerland: Springer, 2021: 19-57.
[5] PHAM T D. Analyses of genetic diversity and desirable traits in sesame (Sesamum indicum L. Pedaliaceae): Implication for breeding and conservation. Superlattices & Microstructures, 2011, 36(4/6): 563-571.
[6] 张海洋, 苗红梅, 李春, 魏利斌, 马琴. 芝麻染色体核型及似近系数分析. 植物学报, 2012, 47(6): 602-614.
doi: 10.3724/SP.J.1259.2012.00602
ZHANG H Y, MIAO H M, LI C, WEI L B, MA Q. Analysis of sesame karyotype and resemblance-near coefficient. Chinese Bulletin of Botany, 2012, 47(6): 602-614. (in Chinese)
doi: 10.3724/SP.J.1259.2012.00602
[7] ZHAO R H, MIAO H M, SONG W Q, CHEN C B, ZHANG H Y. Identification of sesame (Sesamum indicum L.) chromosomes using the BAC-FISH system. Plant Biology, 2018, 20: 85-92.
doi: 10.1111/plb.12647
[8] 苗红梅, 常淑娴, 张海洋, 黄进勇, 段迎辉. 芝麻营养生长期枯萎病抗性鉴定技术研究. 植物遗传资源学报, 2020, 21(2): 330-337.
MIAO H M, CHANG S X, ZHANG H Y, HUANG J Y, DUAN Y H. An evaluation technique of sesame resistance to Fusarium Wilt disease at vegetative stage. Journal of Plant Genetic Resources, 2020, 21(2): 330-337. (in Chinese)
[9] ZHANG H Y, MIAO H M, JU M. Potential for adaptation to climate change through genomic breeding in sesame //KOLE C. Genomic Designing of Climate-Smart Oilseed Crops. Cham, Switzerland: Springer, 2019: 374-376.
[10] PHAM T D, NGUYEN T T, CARLSSON A S, BUI T M. Morphological evaluation of sesame (Sesamum indicum L.) varieties from different origins. Australian Journal of Crop Science, 2010, 4(7): 498-504.
[11] ZHANG H Y, MIAO H M, WANG L, QU L B, LIU H, WANG Q. Genome sequencing of the important oilseed crop Sesamum indicum L.. Genome Biology, 2013, 14(1): 401-409.
doi: 10.1186/gb-2013-14-1-401
[12] HIREMATH S C, PATIL C G. Genome homology and the putative progenitor of sesame. Journal of Cytology and Genetics, 1999, 34: 69-74.
[13] NIMMAKAYALA P, PERUMAL R, MULPURI S, REDDY U K. Sesamum//KOLE C. Wild Crop Relatives: Genomic and Breeding Resources, Vol Oilseeds. Heidelberg, Berlin: Springer, 2011: 261-273.
[14] ASHRI A. Sesame (Sesamum indicum L.) //SINGH R J. Genetic Resources Chromosome Engineering, and Crop Improvement, Oilseed Crops. Boca Raton, US: CRC Press, 2007: 231-289.
[15] 张海洋, 苗红梅, 张体德, 魏利斌, 李春, 王慧丽, 段迎辉, 琚铭. 芝麻栽培种与野生种(Sesamum schinzianum Asch, Sesemum radiatum Schum & Thonn)种间杂交后代的生物学特性. 中国农业科学, 2013, 46(19): 3965-3977.
ZHANG H Y, MIAO H M, ZHANG T D, WEI L B, LI C, WANG H L, DUAN Y H, JU M. Biological characters of interspecific hybrid progenies between Sesamum indicum L. and wild relatives (Sesamum schinzianum Asch, Sesemum radiatum Schum & Thonn). Scientia Agricultura Sinica, 2013, 46(19): 3965-3977. (in Chinese)
[16] KOBAYASHI T. Cytogenetics of Sesame (Sesamum indicum)// TSUCHIYA T, GUPTA P K. Developments in Plant Genetics and Breeding. 1991, 2(B): 581-592.
[17] KUMAR A K. Studies on karyoptype, genome size and genome relations in some species of Sesamum L. (Pedaliaceae)[D]. Dharwar, India: Karnataka University, 2003.
[18] JOSHI A B. Sesamum//JOSHI A B. Sesamum, Hyderabad, India: Indian Central Oilseed Committee Hyderabad, 1961: 9-10.
[19] 杨敏敏, 刘红艳, 周婷, 瞿洪浩, 杨远霄, 魏鑫, 左阳, 赵应忠. 芝麻栽培种与野生种(Sesamum indicatum)杂种F1的获得及特性鉴定. 中国农业科学, 2017, 50(10): 1763-1771.
YANG M M, LIU H Y, ZHOU T, QU H H, YANG Y X, WEI X, ZUO Y, ZHAO Y Z. Production and identification of F1 interspecific hybrid between Sesamum indicum and wild relative S. indicatum. Scientia Agricultura Sinica, 2017, 50(10): 1763-1771. (in Chinese)
[20] MEHRA N. Sesame: Its uses, botany, cytogenetics, and origin. Economic Botany, 1970, 24(1): 20-31.
doi: 10.1007/BF02860629
[21] BEDIGIAN D. Cultivated sesame, and wild relatives in the genus Sesamum L.//BEDIGIAN D. Sesame:the genus Sesamum. Medicinal and Aromatic Plants - Industrial Profiles series, Boca Raton, US: CRC Press. 2010: 33-77.
[22] TARIHAL R, SRIDEVI O, SHENOY V V, SALIMATH P M. Study of fertilization barriers in crosses between Sesamum indicum and its wild relatives. Indian Journal of Genetics and Plant Breeding, 2003, 63(2): 132-136.
[23] KUMARI B M, GANESAMURTHY K. Study of reproductive compatibility and morphological characterization of interspecific hybrids in Sesamum sp. African Journal of Agricultural Research, 2015, 10(9): 911-918.
doi: 10.5897/AJAR2014.8592
[24] RAJESWARI S, THIRUVENGADAM V, RAMASWAMY N M. Production of interspecific hybrids between sesamum alatum thonn and sesamum indicum L. through ovule culture and screening for phyllody disease resistance. South African Journal of Botany, 2010, 76(2): 252-258.
doi: 10.1016/j.sajb.2009.11.003
[25] 赵瑞红, 苗红梅, 马琴, 陈成彬, 宋文芹, 张海洋. 芝麻野生种Sesamum alatum与栽培种Sesamum indicum核型比较分析. 南开大学学报(自然科学版), 2018, 51(5): 27-36.
ZHAO R H, MIAO H M, MA Q, CHEN C B, SONG W Q, ZHANG H Y. Karyotype comparison analysis of the wild species Sesamum alatum and the cultivated Sesame. Acta Scientiarum Naturalium Universitatis Nankaiensis (Natural Science Edition), 2018, 51(5): 27-36. (in Chinese)
[26] CARLSSON A S, CHANANA N P, GUDU S, SUH M C, WERE B A. Sesame//KOLE C, HALL T C. Compendium of Transgenic Crop Plant-Transgenic Oilseed Crops. Texas, USA: Wiley Blackwell, 2008: 227-246.
[27] ZHANG H Y, LANGHAM D R, ZAHO Y Z, KHALAFALLA A, MIAO H M. Traditional breeding in sesame. //MIAO H M, ZHANG H Y, KOLE C. The Sesame Genome. Cham, Switzerland: Springer, 2021: 145-158.
[28] 石淑稳. 芝麻野生种与栽培种的交配能力. 中国油料, 1993, 2: 18-21.
SHI S W. Cross compability between wild and cultivated sesame. China Oil, 1993, 2: 18-21. (in Chinese)
[29] 苗红梅, 琚铭, 魏利斌, 马琴, 张海洋. 芝麻愈伤组织诱导与植株再生体系的建立. 植物学报, 2012, 47(2): 162-170.
doi: 10.3724/SP.J.1259.2012.00162
MIAO H M, JU M, WEI L B, MA Q, ZHANG H Y. Establishment of sesame callus induction and shoot regeneration system. Bulletin of Botany, 2012, 47(2): 162-170. (in Chinese)
doi: 10.3724/SP.J.1259.2012.00162
[30] PETERSON R, SLOVIN J P, CHEN C. A simplified method for differential staining of aborted and non-aborted pollen grains. International Journal of Plant Biology, 2010, 1(2): 66-69.
[31] WEI L B, MIAO H M, XU F F, KONG J J, ZHANG H Y. Chinese sesame cultivars, DNA fingerprinting, and two-dimensional barcodes using SNP, InDel, and SSR markers. Crop Science, 2017, 57: 1-7.
doi: 10.2135/cropsci2015.07.0415
[32] SUDHAKER D, SREERANGASAMY S R, 梁根庆. 芝麻种胚培养. 中国油料作物学报, 1990(3): 102.
SUDHAKER D, SREERANGASAMY S R, LIANG G Q. Cultivation of sesame embry. Chinese Journal of Oil Crops, 1990(3): 102. (in Chinese)
[33] 瞿桢. 芝麻远缘杂种胚胎的营救和植株再生. 中国油料, 1994(1): 33-35.
QU Z. Embryo rescue and plant regeneration of distant hybrid in sesame. China Oil, 1994(1): 33-35. (in Chinese)
[34] 刘红艳, 赵应忠. 芝麻栽培种与野生种种间杂交亲和性研究. 中国农学通报, 2011, 27(9): 156-159.
LIU H Y, ZHAO Y Z. Studies on the hybridization compatibility between cultivated sesame and its wild species. Chinese Agricultural Science Bulletin, 2011, 27(9): 156-159. (in Chinese)
[35] MIAO H M, JU M, WANG H L, ZHANG H. Tissue culture and genetic transformation in sesame //MIAO H, ZHANG H, KOLE C. The Sesame Genome. Cham, Switzerland: Springer, 2021: 131-144.
[1] LIU AiLi,WEI MengYuan,LI DongHua,ZHOU Rong,ZHANG XiuRong,YOU Jun. Cloning and Function Analysis of Sesame Galactinol Synthase Gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432-3442.
[2] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
[3] SUN Jian,YAN XiaoWen,LE MeiWang,RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing. Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period [J]. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226.
[4] ZHOU Rong,LIU Pan,LI DongHua,ZHANG YanXin,WANG LinHai,ZHANG XiuRong,WEI Xin. Cloning and Functional Characterization of Sesame SiSAD Gene [J]. Scientia Agricultura Sinica, 2019, 52(10): 1678-1685.
[5] HAN YaFei, WANG XueDe, ZHENG YongZhan, MEI HongXian, WEI AnChi, LIU YanYang. Study on Changes of Sesame Protein Content and Its Components of Yuzhi 11 Sesame Seed During Growth Period [J]. Scientia Agricultura Sinica, 2018, 51(4): 652-661.
[6] ZHANG YuJuan, YOU Jun, LIU AiLi, LI DongHua, YU JingYin, WANG YanYan, ZHOU Rong, GONG HuiHui, ZHANG XiuRong. Screening Method for Salt Tolerance in Sesame (Sesamum indicum L.) and Identification of Candidate Salt-tolerant Genes [J]. Scientia Agricultura Sinica, 2018, 51(12): 2235-2247.
[7] LIU WenPing, Lü Wei, LI DongHua, REN GuoXiang, ZHANG YanXin, WEN Fei, HAN JunMei, ZHANG XiuRong. Drought Resistance of Sesame Germplasm Resources and Association Analysis at Adult Stage [J]. Scientia Agricultura Sinica, 2017, 50(4): 625-639.
[8] LIU YanYang, MEI HongXian, DU ZhenWei, WU Ke, ZHENG YongZhan, CUI XiangHua, ZHENG Lei. Construction of Core Collection of Sesame Based on Phenotype and Molecular Markers [J]. Scientia Agricultura Sinica, 2017, 50(13): 2433-2441.
[9] YANG MinMin, LIU HongYan, ZHOU Ting, QU HongHao, YANG YuanXiao, WEI Xin, ZUO Yang, ZHAO YingZhong. Production and Identification of F1 Interspecific Hybrid Between Sesamum indicum and Wild Relative S. Indicatum [J]. Scientia Agricultura Sinica, 2017, 50(10): 1763-1771.
[10] WU Xiang-yang, CHENG Chao-ze, Lü Gao-qiang, WANG Xin-yu. Identification and Characterization of the AQP Gene Family in Sesame [J]. Scientia Agricultura Sinica, 2016, 49(10): 1844-1858.
[11] LIU Chang-you, FAN Bao-jie, CAO Zhi-min, SU Qiu-zhu, WANG Yan, ZHANG Zhi-xiao, CHENG Xu-zhen, TIAN Jing. Interspecific Hybridization Among Vigna Species [J]. Scientia Agricultura Sinica, 2015, 48(3): 426-435.
[12] ZHANG Yan-Xin, WANG Lin-Hai, LI Dong-Hua, GAO Yuan, 吕Hai-Xia , ZHANG Xiu-Rong. Mapping of Sesame Waterlogging Tolerance QTL and Identification of Excellent Waterlogging Tolerant Germplasm [J]. Scientia Agricultura Sinica, 2014, 47(3): 422-430.
[13] YU Xiao-Yan-1, XING Shu-Tang-2, ZHAO Lan-Yong-1. Analysis on the Barriers of Interspecific Hybridization Between Rosa rugosa and Rosa hybrid [J]. Scientia Agricultura Sinica, 2014, 47(15): 3112-3120.
[14] HE Liang-Qiong, XIONG Fa-Qian, ZHONG Rui-Chun, HAN Zhu-Qiang, LI Zhong, TANG Xiu-Mei, JIANG Jing, TANG Rong-Hua, HE Xin-Hua. Study on Genome Variations by Using SCoT Markers During Allopolyploidization of the Cultivated Peanut ×A. chacoensis [J]. Scientia Agricultura Sinica, 2013, 46(8): 1555-1563.
[15] WANG Liang, WANG Chu-Chu, JIANG Jia-Fu, CHEN Su-Mei, FANG Wei-Min, TENG Nian-Jun, GUAN Zhi-Yong, LIAO Yuan, CHEN Fa-Di. Interspecific Hybridization Between Chrysanthemum morifolium ‘Nannongyinshan’ and C. zawadskii and Identification of Waterlogging Tolerance of Their Hybrid [J]. Scientia Agricultura Sinica, 2013, 46(20): 4328-4335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!