Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (22): 4570-4588.doi: 10.3864/j.issn.0578-1752.2025.22.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction and Application of DNA Fingerprint Database for Known Varieties in Upland Cotton DUS Testing

WANG LiYuan(), WANG Hui, WANG MuMu, WANG DongJian, LI RuYu, ZHENG YongSheng(), ZHANG Han()   

  1. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100
  • Received:2025-05-26 Accepted:2025-07-21 Online:2025-11-16 Published:2025-11-21
  • Contact: ZHENG YongSheng, ZHANG Han

Abstract:

【Objective】DUS (Distinctness, Uniformity, and Stability) testing provides important technical data for cotton variety approval and intellectual property protection, while the selection of similar varieties is a critical step in the process. Based on the revision of “NY/T 2469-2013, Protocol for the identification of cotton variety-SSR marker method”, this study aims further to construct a DNA fingerprint database for known upland cotton varieties for DUS testing in China and determine a genetic similarity threshold for rigorous and precise similar variety selection. 【Method】 Firstly, preliminary screening and subsequent re-screening were conducted on both the SSR primers from NY/T 2469-2013, and newly collected ones to identify a set of primers with stable PCR amplification, high polymorphism and clear peak patterns, replacing the original SSR primer set in the standard. Secondly, the selected SSR primers were employed to genotype the known cotton varieties to construct a DNA fingerprint database for those varieties. Finally, relationships between phenotypic and genetic differences of cotton varieties were investigated and a genetic similarity threshold for similar variety selection was determined. 【Result】 42 pairs of SSR primers covering all 26 chromosomes of upland cotton were selected, including 12 markers from the original standard. Among the selected 42 pairs of primers, 25 pairs amplified two loci, of which 23 revealed only one polymorphic locus, while the remaining two primer pairs (NAU1167 and HAU1413) had both loci showing polymorphism. A total of 164 alleles were detected from the 44 polymorphic loci, with the number of alleles at each locus ranging from 2 to 7. The polymorphism information content (PIC) of the loci varied from 0.15 to 0.66. 2 100 cotton varieties were genotyped using these primers. A DNA fingerprint database of known cotton varieties was constructed with a data integrity of 98.85%. Pairwise comparisons using the DNA data of 648 protected varieties, 843 approved varieties and 2 100 known upland cotton varieties revealed the distribution patterns of genetic differences between varieties among the three categories. More than 90.00% of comparisons in each category were concentrated in the range of 40.00%-70.00%. The proportion of variety pairs with genetic similarity exceeding 80.00% was 0.28%, 0.31% and 0.31% for the protected, approved and known varieties, respectively. Relationship analysis was conducted between phenotypic and genetic differences for 177 upland cotton varieties and their corresponding similar varieties. It was found that for the 54 cotton applications to which similar varieties with genetic similarity exceeding 90.00% existed, 18 (33.33%) failed to meet the distinctness requirement. In contrast, all 123 cotton applications with genetic similarity to their similar varieties below 90.00% could be clearly distinguished, exhibiting clear trait differences, thus fulfilling the distinctness criteria. The genetic similarity threshold for similar variety selection in upland cotton DUS testing based on these SSR markers could be set at 90.00%. For the variety pairs showing genetic similarity above this threshold, further field-based phenotypic evaluations are required. 【Conclusion】 In summary, NY/T 2469-2013, the standard for identifying upland cotton varieties using SSR markers, was revised. A DNA fingerprint database was constructed to support DUS testing of upland cotton in China. Furthermore, a genetic similarity threshold of 90.00% based on these SSR markers was established for selecting similar varieties, enhancing the precision and reliability of this process within DUS testing.

Key words: Upland cotton, DUS testing, SSR marker, similar variety selection, genetic similarity threshold

Table 1

Information of 42 pairs of primers used in revised standard"

序号
No.
SSR标记位点
SSR marker
荧光基团
Fluorescence
重复基序
Repeat motif
染色体位置
Chromosome (bp)
产物长度
Size (bp)
1 JNC01 FAM (AT)9 A01: 110738544-110738773 229
2 JNC02 FAM (TGCCAA)4 A01: 115886896-115887183
D01: 64518929-64519178
287
249
3 NAU0895 ROX (ACAT)13 A02: 105363308-105363513
D03: 313063-313252
205
189
4 HAU1413 TAMRA (GATAGG)4 A03: 4212030-4212314
D03: 49797166-49797432
284
266
5 *NAU1071 FAM (AGG)5 A03: 103704047-103704204
D02: 65745826-65745988
157
162
6 *NAU1167 ROX (GATAGG)4 A03: 4212030-4212236
D03: 49797244-49797432
206
188
7 MUCS101 HEX (GAC)6 A04: 80764224-80764381
D04: 51800594- 51800745
157
151
8 NAU2026 ROX (GCT)4, (GGA)4 A05: 102020983-102021180
D04: 6171852-6172043
197
191
9 HAU0878 TAMRA (TCAGGC)5 A05: 15551226-15551358
D05: 14036487-14036613
132
126
10 JNC03 ROX (AAGCAT)6 A06: 2063861-2064214 353
11 BNL1694 FAM (ACAT)5 A07: 39612789-39613036
D07: 27649095- 27649318
247
223
12 SHIN-0376 FAM (TTC)10 A07: 5533136-5533300
D07: 5108398-5108573
164
175
13 BNL3257 FAM (AC)15, (AT)8 A08: 78637284-78637490 206
14 JNC04 HEX (AAT)6 A08: 45532050-45532275 225
15 NAU1369 ROX (AGGCGG)3 A08: 118955689-118955942
D08: 62509921-62510159
253
238
16 *Gh111 TAMRA (GAA)22 A09: 15754878-15755046 168
17 *DPL0431 TAMRA (ATA)5 A10: 71856253-71856443 190
18 BNL1231 HEX (AG)15 A11: 114687920-114688118 198
19 NAU1233 ROX (TTA)8 A11: 317755-318002
D11: 430059-430297
247
238
20 BNL3261 ROX (TC)18 A12: 6727325-6727533 208
21 JNC05 TAMRA (TTC)4, (TCT)14 A12: 84228913-84229159
D12: 45952735- 45952951
246
216
22 *BNL2449 FAM (TC)16 A13: 34459134-34459278 144
23 JESPR0153 FAM (GTA)17 A13: 83187366-83187491 125
24 *NAU3468 HEX (GCA)3 A13: 98049111-98049327
D13: 53711180-53711389
216
209
25 *BNL2646 TAMRA (AG)17 D01: 41611341-41611483
A01: 71410584-71410680
142
96
26 JNC06 HEX (TATATG)6 D02: 58293915-58294264 349
27 JNC07 ROX (TTGTC)5 D03: 88456-88686
A02: 105603420-105603646
230
226
28 *BNL4030 ROX (GT)8 D04: 6181856-6181967 111
29 CGR6410 FAM (AGA)13 D04: 6485043-6485194
A05: 101587520-101587651
151
131
30 DPL0071 FAM (AG)18 D05: 21037170-21037348
A05: 23482746-23482905
178
159
31 *NAU1102 TAMRA (TCT)10 D05: 57808586-57808826
A04: 6050794-6051013
240
219
32 *DPL0532 ROX (ATGT)8, (TATG)8 D06: 21142557-21142788
A06: 33746935-33747075
231
140
33 HAU2022 TAMRA (ATGC)3 D06: 1766468-1766630
A06: 1839082-1839240
162
158
34 JESPR0292 HEX (GAA)9 D07: 4493445-4493624
A07: 4840237-4840413
179
176
35 *NAU1043 TAMRA (TTC)12 D07: 5108405-5108641 236
36 *Gh273 FAM (CT)9 D08: 63045128-63045225 97
37 NAU3100 ROX (AAG)12 D09: 1513299-1513487
A09: 1560171- 1560374
188
203
38 BNL3948 FAM (TG)11 D10: 21827957-21828057 100
39 DPL0376 HEX (AGT)10 D11: 71951682-71951860
A11: 118740400- 118740569
178
169
40 CIR170 HEX (TG)7 D12: 493264-493421 157
41 JNC08 HEX (CATCAC)4 D12: 62408314-62408579
A12: 105507504- 105507787
265
283
42 CIR216 TAMRA (TG)9 D13: 62204584-62204727 143

Fig. 1

Fluorescence detection peak map of 42 pairs of SSR primers in Upland cotton The purple boxes show the two alleles marked by HAU1413 and NAU1167, respectively"

Table 2

Polymorphism evaluation of 44 SSR primers based on 261 Upland cotton varieties"

序号
No.
SSR标记位点
SSR marker
基因型数量
Genotype No.
等位变异数量
Allele No.
PIC 固定不变位点
Invariable allele
多态性位点等位变异
Major allele (bp)
1 BNL1231 8 5 0.47 188; 190; 194; 196; 198
2 BNL1694 5 4 0.38 222 235; 239; 247; 249
3 BNL2449 6 4 0.39 133; 139; 141; 158
4 BNL2646 7 4 0.37 101 114; 118; 122; 146
5 BNL3261 10 5 0.43 194; 198; 202; 210; 212
6 BNL4030 5 5 0.38 100; 114; 116; 118; 120
7 CIR170 5 4 0.27 155; 157; 159; 161
8 CIR216 4 3 0.37 139; 142; 145
9 DPL0071 9 5 0.56 158 171; 175; 177; 195; 197
10 DPL0431 5 3 0.38 194; 200; 206
11 DPL0532 7 5 0.28 206 211; 231; 235; 239; 243
12 Gh111 13 7 0.64 159; 173; 176; 179; 187; 190; 193
13 Gh273 7 4 0.38 91; 93; 95; 97
14 JESPR0292 5 3 0.39 242 174; 180; 183
15 JESPR153 11 6 0.46 111; 114; 117; 120; 126; 145
16 MUCS101 5 4 0.38 150 0; 156; 162; 177
17 NAU0895 13 5 0.51 188 0; 184; 192; 200; 204
18 NAU1043 8 4 0.46 220; 226; 229; 232
19 NAU1071 5 3 0.39 162 157; 171; 177
20 NAU1102 4 3 0.37 224 233; 239; 242
21 NAU1167-1* 3 2 0.30 190; 196
22 NAU1167-2* 3 2 0.35 202; 208
23 NAU1369 5 4 0.34 247 238; 244; 250; 256
24 NAU2026 3 2 0.36 195 179; 190
25 NAU3468 5 3 0.24 216 220; 226; 232
26 BNL3257 11 5 0.57 192; 204; 206; 208; 210
27 BNL3948 6 3 0.40 93; 97; 99
28 CGR6410 5 3 0.39 129 132; 135; 148
29 DPL0376 5 4 0.34 169 0; 178; 184; 193
30 HAU0878 4 3 0.38 127 110; 116; 134
31 HAU1413-1* 3 2 0.32 269; 275
32 HAU1413-2* 3 2 0.36 281; 287
33 HAU2022 3 2 0.37 161 165; 169
34 NAU1233 12 6 0.66 235 238; 247; 250; 253; 256; 259
35 NAU3100 5 3 0.39 206 184; 187; 190
36 SHIN-0376 8 4 0.47 168 0; 156; 162; 165
37 JNC01 7 4 0.56 219; 222; 226; 228
38 JNC02 3 2 0.37 248 280; 286
39 JNC03 7 4 0.41 340; 352; 358; 368
40 JNC04 6 4 0.15 218; 223; 226; 228
41 JNC05 9 5 0.54 220 232; 235; 247; 253; 256
42 JNC06 6 3 0.39 352; 358; 364
43 JNC07 5 3 0.34 230 232; 237; 242
44 JNC08 4 3 0.37 265 0; 277; 283
平均Mean 6.20 3.73 0.40 / /

Fig. 2

Cluster dendrogram of 261 Upland cotton varieties based on SSR markers"

Fig. 3

Statistics on missing data in the DNA fingerprint database of Upland cotton varieties a: Missing rate of DNA fingerprint data collected by SSR markers; b: Missing number of SSR markers in DNA fingerprint data of 2 100 known varieties"

Table 3

Pairwise comparison of cotton varieties with fingerprint data"

遗传相似度
Genetic similarity (%)
2100份已知品种两两比较
Pairwise comparison of 2100 cotton varieties
648份品种权授权品种两两比较
Pairwise comparison of 648 protected cotton varieties
843份审定品种两两比较
Pairwise comparison of 843 approved cotton varieties
涉及成对比较的对数
The number of pairwise comparisons
成对比较的
百分比
Percentage of pairwise comparisons (%)
成对比较的累计
百分比
Cumulative percentage of pairwise comparisons (%)
涉及成对比较的对数
The number of pairwise comparisons
成对比较的
百分比
Percentage of pairwise comparisons (%)
涉及成对比较的对数
The number of pairwise comparisons
成对比较的
百分比
Percentage of pairwise comparisons (%)
GS=100.00 201 0.01 0.01 9 0.00 30 0.01
95.00<GS<100.00 1216 0.06 0.06 67 0.03 150 0.04
90.00<GS<=95.00 1236 0.06 0.12 60 0.03 150 0.04
80.00<GS<=90.00 4141 0.19 0.31 456 0.22 758 0.21
70.00<GS<=80.00 39628 1.80 2.11 4414 2.11 7388 2.08
60.00<GS<=70.00 347729 15.78 17.88 39044 18.63 63344 17.85
50.00<GS<=60.00 878750 39.87 57.76 89500 42.69 149513 42.13
40.00<GS<=50.00 772602 35.06 92.81 65449 31.22 114052 32.14
30.00<GS<=40.00 151733 6.88 99.70 10273 4.90 18836 5.31
20.00<GS<=30.00 6674 0.30 100.00 355 0.17 680 0.19
10.00<GS<=20.00 40 0.00 100.00 1 0.00 2 0.00
5.00<GS<=10.00 0 0.00 100.00 0 0.00 0 0.00
0.00<=GS<=5.00 0 0.00 100.00 0 0.00 0 0.00

Table 4

Distinctness evaluation of Upland cotton applications in DUS testing from 2022 to 2024"

序号
No.
申请品种
Application variety
近似品种
Similar variety
品种类型
Variety type
遗传相似度
Genetic similarity (%)
测试结果
Testing
1 ZSM7 ZSM4 常规种Conventional varieties 92.05 三性合格Qualified
2 JM9117 JM9116 常规种Conventional varieties 100.00 三性合格Qualified
3 GXM33 GXM32 常规种Conventional varieties 96.51 三性合格Qualified
4 XZ1 EB008 常规种Conventional varieties 93.18 三性合格Qualified
5 ZMS9C05 HM568 常规种Conventional varieties 64.77 三性合格Qualified
6 JCM779 ZMS97 常规种Conventional varieties 73.81 三性合格Qualified
7 JM128 ZMS97 常规种Conventional varieties 67.44 三性合格Qualified
8 KR026 L6269 常规种Conventional varieties 79.27 三性合格Qualified
9 LM247 LM246 常规种Conventional varieties 100.00 三性合格Qualified
10 ZMS95611 YM111 常规种Conventional varieties 71.95 三性合格Qualified
11 YM111 BM15 常规种Conventional varieties 73.17 三性合格Qualified
12 YM409 BM15 常规种Conventional varieties 61.90 三性合格Qualified
13 ZMS9C04 ZMS9D04 常规种Conventional varieties 85.23 三性合格Qualified
14 ZM5022 XFZ010 常规种Conventional varieties 71.59 三性合格Qualified
15 YM616 XFZ010 常规种Conventional varieties 65.48 三性合格Qualified
16 LM4125 XM39 常规种Conventional varieties 72.09 三性合格Qualified
17 YM514 WYM121 常规种Conventional varieties 65.48 三性合格Qualified
18 LM5171 WYM121 常规种Conventional varieties 65.85 三性合格Qualified
19 QCM40 WYM121 常规种Conventional varieties 66.67 三性合格Qualified
20 XJC8 JSHM129 常规种Conventional varieties 84.88 三性合格Qualified
21 ZMZ181 ZMEB001 常规种Conventional varieties 92.05 三性合格Qualified
22 ZMS9710 ZMB905 常规种Conventional varieties 73.81 三性合格Qualified
23 JM127 ZMB905 常规种Conventional varieties 69.05 三性合格Qualified
24 ZMS95613 LM45 常规种Conventional varieties 53.57 三性合格Qualified
25 HM292 XS71143 常规种Conventional varieties 92.86 三性合格Qualified
26 ZM5024 ZMS110 常规种Conventional varieties 70.45 三性合格Qualified
27 ZH8142R HM12 常规种Conventional varieties 54.55 三性合格Qualified
28 ZMS1601 JK1062 常规种Conventional varieties 79.07 三性合格Qualified
29 H46R LZM169 常规种Conventional varieties 81.82 三性合格Qualified
30 LM261 LMY36 常规种Conventional varieties 82.14 三性合格Qualified
31 YM516 XM8 常规种Conventional varieties 55.81 三性合格Qualified
32 XM8 JFY122 常规种Conventional varieties 88.64 三性合格Qualified
33 ZMS99020 ZM001 杂交种Hybrid varieties 72.09 三性合格Qualified
34 HZM15 YHM19 杂交种Hybrid varieties 61.63 三性合格Qualified
35 ZMS1603 ZMS1701 杂交种Hybrid varieties 79.76 三性合格Qualified
36 HZM9 HZM14 杂交种Hybrid varieties 82.56 三性合格Qualified
37 HZM15 HZM13 杂交种Hybrid varieties 87.21 三性合格Qualified
38 JZ277 ZMS95614 杂交种Hybrid varieties 69.32 三性合格Qualified
39 ZMS95614 GXM30 杂交种Hybrid varieties 74.42 三性合格Qualified
40 ZMS9B04 ZMS9B05 杂交种Hybrid varieties 75.00 三性合格Qualified
41 LH462 LZ311 杂交种Hybrid varieties 55.00 三性合格Qualified
42 ZMS9D05 SNSF17 杂交种Hybrid varieties 78.57 三性合格Qualified
43 ZZM28 XK18 杂交种Hybrid varieties 58.75 三性合格Qualified
44 NX1 EB008 常规种Conventional varieties 92.05 特异性不合格Non-distinct
45 JZ658 X822 常规种Conventional varieties 97.73 三性合格Qualified
46 JS83 CM45 常规种Conventional varieties 81.40 三性合格Qualified
47 HM883 HM802 常规种Conventional varieties 87.21 三性合格Qualified
48 XM3 XM4 常规种Conventional varieties 86.05 三性合格Qualified
49 LM45 JS813 常规种Conventional varieties 60.23 三性合格Qualified
50 JS813 JM623 常规种Conventional varieties 79.55 三性合格Qualified
51 HM872 YF39 常规种Conventional varieties 84.88 三性合格Qualified
52 HM5104 HM3026 常规种Conventional varieties 69.05 三性合格Qualified
53 HM5201 HM3026 常规种Conventional varieties 97.62 三性合格Qualified
54 JND46 J3816 常规种Conventional varieties 70.45 三性合格Qualified
55 HM5272 HM12 常规种Conventional varieties 65.91 三性合格Qualified
56 LM43 HM121 常规种Conventional varieties 70.24 三性合格Qualified
57 HW339 LZM169 常规种Conventional varieties 75.00 三性合格Qualified
58 H6203A JF106 常规种Conventional varieties 71.59 三性合格Qualified
59 HM5123 ZMS41 常规种Conventional varieties 77.91 三性合格Qualified
60 ZM5014 ZMEB002 杂交种Hybrid varieties 97.73 三性合格Qualified
61 LZ206 JZ299 杂交种Hybrid varieties 51.14 三性合格Qualified
62 ZMS1812 ZMS1702 杂交种Hybrid varieties 97.73 特异性不合格Non-distinct
63 ZMS1802 ZMS9702 杂交种Hybrid varieties 96.59 三性合格Qualified
64 ZMS1811 JZ277 杂交种Hybrid varieties 71.59 三性合格Qualified
65 DM23 HM6105 常规种Conventional varieties 76.19 三性合格Qualified
66 P1528 MH410433 常规种Conventional varieties 81.82 三性合格Qualified
67 ZSM31 HM18 常规种Conventional varieties 55.81 三性合格Qualified
68 LM481 ZMS9A05 常规种Conventional varieties 63.64 三性合格Qualified
69 SNM22 H613 常规种Conventional varieties 68.60 三性合格Qualified
70 LM2436 LM696 常规种Conventional varieties 77.38 三性合格Qualified
71 FM20 WYM121 常规种Conventional varieties 88.10 三性合格Qualified
72 LM264 LH462 常规种Conventional varieties 100.00 三性合格Qualified
73 LM306 LM395 常规种Conventional varieties 60.47 三性合格Qualified
74 LM482 LM265 常规种Conventional varieties 59.30 三性合格Qualified
75 JND48 HR5105 常规种Conventional varieties 51.16 三性合格Qualified
76 ZMS1602 XM8 常规种Conventional varieties 58.14 三性合格Qualified
77 JK1651 ZSM8 常规种Conventional varieties 100.00 三性合格Qualified
78 GXM36 JZ716 杂交种Hybrid varieties 78.41 三性合格Qualified
79 HZM17 YH172 杂交种Hybrid varieties 73.86 三性合格Qualified
80 HM11 HZM9 杂交种Hybrid varieties 90.91 三性合格Qualified
81 JFZ17 Z5009 杂交种Hybrid varieties 70.45 三性合格Qualified
82 ZMS100913 ZMS100901 杂交种Hybrid varieties 76.14 三性合格Qualified
83 ZM5026 ZMEB002 杂交种Hybrid varieties 94.19 特异性不合格Non-distinct
84 ZMS9E01 ZMS9D05 杂交种Hybrid varieties 75.58 三性合格Qualified
85 ZMS96021 ZMS9E01 杂交种Hybrid varieties 64.77 三性合格Qualified
86 LWM3 YM3 常规种Conventional varieties 81.82 三性合格Qualified
87 DM13 JS868 常规种Conventional varieties 64.10 三性合格Qualified
88 HM12 JS868 常规种Conventional varieties 68.18 三性合格Qualified
89 HM3134 LM696 常规种Conventional varieties 65.85 三性合格Qualified
90 BM17 BM17 常规种Conventional varieties 98.86 特异性不合格Non-distinct
91 ZB79185R ZMS9706 常规种Conventional varieties 100.00 特异性不合格Non-distinct
92 ZMS100915 ZMS9A07 常规种Conventional varieties 72.50 三性合格Qualified
93 ZJMT01 HD109 常规种Conventional varieties 97.37 三性合格Qualified
94 ZMS96024 JS835 常规种Conventional varieties 57.95 三性合格Qualified
95 YM706 J172 常规种Conventional varieties 53.41 三性合格Qualified
96 LWM8 XLZ61 常规种Conventional varieties 88.37 三性合格Qualified
97 LWM1 XLZ61 常规种Conventional varieties 54.65 三性合格Qualified
98 JDHM618 KSM8 常规种Conventional varieties 100.00 特异性不合格Non-distinct
99 ZMS95612 ZMS110 常规种Conventional varieties 91.86 三性合格Qualified
100 ZSM13 ZSM8 常规种Conventional varieties 98.86 三性合格Qualified
101 ZMS100903 LM1127 常规种Conventional varieties 100.00 三性合格Qualified
102 H963 JM35 常规种Conventional varieties 97.73 特异性不合格Non-distinct
103 HM6319 HM3026 常规种Conventional varieties 97.73 特异性不合格Non-distinct
104 HM554 SZ1 常规种Conventional varieties 98.84 三性合格Qualified
105 HM922 HM568 常规种Conventional varieties 98.86 特异性不合格Non-distinct
106 JF01 J172 常规种Conventional varieties 96.51 特异性不合格Non-distinct
107 SNMTC15 YXM28 常规种Conventional varieties 97.73 三性合格Qualified
108 J3010 XM62 常规种Conventional varieties 100.00 三性合格Qualified
109 GXM53 YM10 常规种Conventional varieties 97.73 三性合格Qualified
110 GXM52 CM531 常规种Conventional varieties 97.73 三性合格Qualified
111 ZMS2312 ZMS2316 常规种Conventional varieties 98.86 特异性不合格Non-distinct
112 ZMS2310 ZMS1607 常规种Conventional varieties 86.36 三性合格Qualified
113 JM628 ZSM22 常规种Conventional varieties 97.73 特异性不合格Non-distinct
114 TLJ168 SFK218 常规种Conventional varieties 97.73 特异性不合格Non-distinct
115 ZMS2313 ZMS1702 杂交种Hybrid varieties 80.68 三性合格Qualified
116 ZMS2314 ZMS2306 杂交种Hybrid varieties 98.86 三性合格Qualified
117 ZMS2311 ZMS1802 杂交种Hybrid varieties 86.36 三性合格Qualified
118 ZA057 JS367 常规种Conventional varieties 90.91 三性合格Qualified
119 HM216 ZM9978 常规种Conventional varieties 65.91 三性合格Qualified
120 YM603 ZM9978 常规种Conventional varieties 64.77 三性合格Qualified
121 HM256 SNM11 常规种Conventional varieties 88.64 三性合格Qualified
122 XHM8 HM1091 常规种Conventional varieties 98.86 特异性不合格Non-distinct
123 ZMS9C07 HM288 常规种Conventional varieties 70.93 三性合格Qualified
124 HXM501 JK1651 常规种Conventional varieties 63.64 三性合格Qualified
125 ZM316 ZM425 常规种Conventional varieties 92.05 特异性不合格Non-distinct
126 JF178 MH410433 常规种Conventional varieties 90.91 三性合格Qualified
127 JF238 LM338 常规种Conventional varieties 93.18 特异性不合格Non-distinct
128 LM351 LM552 常规种Conventional varieties 90.91 三性合格Qualified
129 HXM9 JM918 常规种Conventional varieties 100.00 三性合格Qualified
130 J3036 J3058 常规种Conventional varieties 77.27 三性合格Qualified
131 J3076 J3058 常规种Conventional varieties 75.00 三性合格Qualified
132 ZR055 JS367 常规种Conventional varieties 90.91 三性合格Qualified
133 HM118 ZMS95622 常规种Conventional varieties 63.64 三性合格Qualified
134 GXM51 ZR718 常规种Conventional varieties 77.27 三性合格Qualified
135 ZR113 ZA109 常规种Conventional varieties 98.86 三性合格Qualified
136 LM249 HM5278 常规种Conventional varieties 73.86 三性合格Qualified
137 HZ28 ZMS1607 杂交种Hybrid varieties 60.23 三性合格Qualified
138 J3018 JND23 常规种Hybrid varieties 86.36 三性合格Qualified
139 JND47 JZ716 杂交种Hybrid varieties 70.45 三性合格Qualified
140 HZ69 JZ716 杂交种Hybrid varieties 80.68 三性合格Qualified
141 LZ316 ZMS9A03 杂交种Hybrid varieties 62.50 三性合格Qualified
142 ZMS9A03 ZMS9B08 杂交种Hybrid varieties 64.77 三性合格Qualified
143 ZMS9B08 ZMS95623 杂交种Hybrid varieties 65.91 三性合格Qualified
144 ZMS9B07 ZM9134 杂交种Hybrid varieties 64.77 三性合格Qualified
145 LM272 LM271 常规种Conventional varieties 84.09 三性合格Qualified
146 LM49 ZM328 常规种Conventional varieties 68.18 三性合格Qualified
147 JF108 ZM9003 常规种Conventional varieties 65.91 三性合格Qualified
148 HXM50 ZMS99033 杂交种Hybrid varieties 60.23 三性合格Qualified
149 JND44 HM216 常规种Conventional varieties 52.27 三性合格Qualified
150 JS18 ZMSEM1704 常规种Conventional varieties 78.41 三性合格Qualified
151 ZMZ182 ZM425 常规种Conventional varieties 85.23 三性合格Qualified
152 HMM36 JN16 常规种Conventional varieties 95.45 三性合格Qualified
153 HMM35 JX2103 常规种Conventional varieties 100.00 特异性不合格Non-distinct
154 LWM9 HM16 常规种Conventional varieties 72.73 三性合格Qualified
155 LWM10 HM6105 常规种Conventional varieties 60.23 三性合格Qualified
156 LM22 LM23 常规种Conventional varieties 89.77 三性合格Qualified
157 LWM11 SDM2 常规种Conventional varieties 84.09 三性合格Qualified
158 LWM15 ZSM37 常规种Conventional varieties 84.09 三性合格Qualified
159 LWM13 SDM21 常规种Conventional varieties 97.73 特异性不合格Non-distinct
160 JM906 J3018 常规种Conventional varieties 65.91 三性合格Qualified
161 JND33 JND45 常规种Conventional varieties 80.23 三性合格Qualified
162 XM4 XM3 常规种Conventional varieties 86.05 三性合格Qualified
163 ZMS9D04 ZMS9C04 常规种Conventional varieties 85.23 三性合格Qualified
164 LM266 LM258 常规种Conventional varieties 98.86 三性合格Qualified
165 JS370 JN16 常规种Conventional varieties 86.36 三性合格Qualified
166 DM14 JM1109 常规种Conventional varieties 80.68 三性合格Qualified
167 ZSM47 SDM192 常规种Conventional varieties 100.00 三性合格Qualified
168 JM1109 DM14 常规种Conventional varieties 80.68 三性合格Qualified
169 H505 GXM37 常规种Conventional varieties 80.68 三性合格Qualified
170 GXM37 H505 常规种Conventional varieties 80.68 三性合格Qualified
171 ZMEB002 ZM5014 杂交种Hybrid varieties 97.73 三性合格Qualified
172 JF188 JF272 常规种Conventional varieties 81.40 三性合格Qualified
173 JF272 JF188 常规种Conventional varieties 81.40 三性合格Qualified
174 JND45 JDN33 常规种Conventional varieties 80.23 三性合格Qualified
175 ZSM16 ZSM16 常规种Conventional varieties 95.24 三性合格Qualified
176 GK99-1 GXM25 常规种Conventional varieties 84.09 三性合格Qualified
177 X98 JM3345 常规种Conventional varieties 100.00 三性合格Qualified
[1]
李晓辉, 李新海, 张世煌. 植物新品种保护与DUS测试技术. 中国农业科学, 2003, 36(11): 1419-1422. doi: 10.3864/j.issn.0578-1752.031134.
LI X H, LI X H, ZHANG S H. New plant variety protection and DUS testing technique system. Scientia Agricultura Sinica, 2003, 36(11): 1419-1422. doi: 10.3864/j.issn.0578-1752.031134. (in Chinese)
[2]
杨江龙, 唐浩, 李硕碧, 杜联盟, 张丽, 孙虎, 张锦荣. DUS测试将促进我国种业规范创新发展. 中国种业, 2018(4): 21-23.
YANG J L, TANG H, LI S B, DU L M, ZHANG L, SUN H, ZHANG J R. Promoting the normative and innovation development of China’s seed industry through DUS testing. China Seed Industry, 2018(4): 21-23. (in Chinese)
[3]
UPOV. TG/1/3. General introduction to the examination of distinctness, uniformity and stability and the development of harmonized descriptions of new varieties of plants. Geneva: Switzerland, 2002.
[4]
GUNJACA J, BUHINICEK I, JUKIC M, SARCEVIC H, VRAGOLOVIC A, KOZIC Z, JAMBROVIC A, PEJIC I. Discriminating maize inbred lines using molecular and DUS data. Euphytica, 2008, 161(1): 165-172.
[5]
ARENS P, MANSILLA C, DEINUM D, CAVELLINI L, MORETTI A, ROLLAND S, VAN DER SCHOOT H, CALVACHE D, PONZ F, COLLONNIER C, et al. Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theoretical and Applied Genetics, 2010, 120(3): 655-664.
[6]
YADAV V K, SINGH I S. Comparative evaluation of maize inbred lines (Zea mays L.) according to dus testing using morphological, physiological and molecular markers. Agricultural Sciences, 2010, 1(3): 131-142.
[7]
KUANG M, WEI S J, WANG Y Q, ZHOU D Y, MA L, FANG D, YANG W H, MA Z Y. Development of a core set of SNP markers for the identification of upland cotton cultivars in China. Journal of Integrative Agriculture, 2016, 15(5): 954-962.
[8]
王红娟, 林清, 蒋晓英, 白文钦, 官玲, 吴红. 植物新品种DUS测试中近似品种的筛选方法. 热带农业科学, 2018, 38(10): 36-41.
WANG H J, LIN Q, JIANG X Y, BAI W Q, GUAN L, WU H. Screening approach for similar varieties in the DUS testing of new plant varieties. Chinese Journal of Tropical Agriculture, 2018, 38(10): 36-41. (in Chinese)
[9]
李宜蒙, 陈孟强, 王晨宇, 罗元凯, 徐振江, 刘亚菊. 我国冬瓜产业发展及新品种保护与测试现状. 中国蔬菜, 2025(4): 14-19.
LI Y M, CHEN M Q, WANG C Y, LUO Y K, XU Z J, LIU Y J. Industrial development of wax gourd and its new varieties protection and testing status quo in China. China Vegetables, 2025(4): 14-19. (in Chinese)
[10]
UPOV. C/36/10. Progress report of the 36th session of the technical committee, the technical working parties and working group on biochemical and molecular techniques and DNA-profiling in particular. Geneva: Switzerland, 2002.
[11]
UPOV. TGP/15. Guidance on the use of biochemical and molecular markers in the examination of distinctness, uniformity and stability (DUS). Geneva: Switzerland, 2013.
[12]
王凤格, 易红梅, 赵久然, 刘平, 张新明, 田红丽, 堵苑苑. 玉米品种鉴定技术规程 SSR标记法: NY/T 1432-2014. 北京: 中国农业出版社, 2014.
WANG F G, YI H M, ZHAO J R, LIU P, ZHANG X M, TIAN H L, DU Y Y. Protocol for the identification of maize varieties-SSR marker method: NY/T 1432-2014. Beijing: China Agriculture Press, 2014. (in Chinese)
[13]
王凤格, 晋芳, 田红丽, 易红梅, 赵久然, 金石桥, 杨扬, 王蕊, 葛建镕, 支巨振, 等. 玉米品种真实性鉴定 SNP标记法: NY/T 4022-2021. 北京: 中国农业出版社, 2022.
WANG F G, JIN F, TIAN H L, YI H M, ZHAO J R, JIN S Q, YANG Y, WANG R, GE J R, ZHI J Z, et al. Maize (Zea mays L.) variety genuineness identification-SNP based method: NY/T 4022-2021. Beijing: China Agriculture Press, 2022. (in Chinese)
[14]
徐群, 魏兴华, 庄杰云, 吕波, 袁筱平, 刘平, 张新明, 余汉勇, 堵苑苑. 水稻品种鉴定技术规程 SSR标记法: NY/T 1433-2014. 北京: 中国农业出版社, 2014.
XU Q, WEI X H, ZHUANG J Y, LV B, YUAN X P, LIU P, ZHANG X M, YU H Y, DU Y Y. Protocol for the identification of rice varieties-SSR marker method: NY/T 1433-2014. Beijing: China Agriculture Press, 2014. (in Chinese)
[15]
李汝玉, 张晗, 王东建, 孙加梅, 姚凤霞, 郑永胜, 许金芳, 段丽丽, 李华. 小麦品种鉴定技术规程 SSR分子标记法: NY/T 2470-2013. 北京: 中国农业出版社, 2014.
LI R Y, ZHANG H, WANG D J, SUN J M, YAO F X, ZHENG Y S, XU J F, DUAN L L, LI H. Protocol for the identification of wheat varieties-SSR marker method: NY/T 2470-2013. Beijing: China Agriculture Press, 2014. (in Chinese)
[16]
庞斌双, 任雪贞, 刘丽华, 赵昌平, 张明明, 金石桥, 李宏博, 刘阳娜, 周泽宇, 张风廷, 等. 小麦品种真实性鉴定 SNP标记法: NY/T 4021-2021. 北京: 中国农业出版社, 2022.
PANG B S, REN X Z, LIU L H, ZHAO C P, ZHANG M M, JIN S Q, LI H B, LIU Y N, ZHOU Z Y, ZHANG F T, et al. Wheat (Triticum aestivum L.) variety genuineness identification-SNP based method: NY/T 4021-2021. Beijing: China Agriculture Press, 2022. (in Chinese)
[17]
邱丽娟, 刘丰泽, 关荣霞, 任雪贞, 郭潇阳, 刘谢香, 王羡国, 孟全业, 邓澍, 郑静宜, 等. 大豆品种真实性鉴定SSR分子标记法: NY/T 2595-2025. 北京: 中国农业出版社, 2025.
QIU L J, LIU F Z, GUAN R X, REN X Z, GUO X Y, LIU X X, WANG X G, MENG Q Y, DENG S, ZHENG J Y, et al. Soybean [Glycinemax (L.) Merr.] variety genuineness identification-SSR-based methods: NY/T 2595-2025. Beijing: China Agriculture Press, 2025. (in Chinese)
[18]
戴剑, 王显生, 丁奎敏, 王艳平, 徐鹏, 冯继宏, 陈二龙. 陆地棉品种鉴定技术规程SSR分子标记法: NY/T 2469-2013. 北京: 中国农业出版社, 2014.
DAI J, WANG X S, DING K M, WANG Y P, XU P, FENG J H, CHEN E L. Protocol for the identification of cotton variety-SSR marker method: NY/T 2469-2013. Beijing: China Agriculture Press, 2014. (in Chinese)
[19]
匡猛, 晋芳, 吴玉珍, 金石桥, 彭军, 黄龙雨, 何团结, 魏守军, 周大云, 王延琴, 等. 棉花品种真实性鉴定SSR分子标记法: NY/T 2634-2022. 北京: 中国农业出版社, 2023.
KUANG M, JIN F, WU Y Z, JIN S Q, PENG J, HUANG L Y, HE T J, WEI S J, ZHOU D Y, WANG Y Q, et al. Cotton (Gossypium spp. L.) variety genuineness identification-SSR based methods: NY/T 2634-2022. Beijing: China Agriculture Press, 2023. (in Chinese)
[20]
刘国栋, 王芙蓉, 宫永超, 马和欢, 张军. 棉花品种遗传纯度的SSR分子标记鉴定技术研究. 棉花学报, 2013, 25(5): 382-387.
LIU G D, WANG F R, GONG Y C, MA H H, ZHANG J. A new method for identification of the genetic purity of cotton varieties by SSR markers. Cotton Science, 2013, 25(5): 382-387. (in Chinese)
[21]
匡猛, 王延琴, 周大云, 方丹, 马磊, 杨伟华. 棉花DUS测试标准品种的SSR指纹数据库构建. 棉花学报, 2015, 27(1): 46-52.
KUANG M, WANG Y Q, ZHOU D Y, FANG D, MA L, YANG W H. Construction of SSR fingerprinting database of standard varieties on cotton in DUS testing. Cotton Science, 2015, 27(1): 46-52. (in Chinese)
[22]
杨剑波, 路曦结, 何团结, 陆徐忠, 郑曙峰, 张小娟, 倪金龙. 棉花品种真实性鉴定 SSR分子标记法: NY/T 2634-2014. 北京: 中国农业出版社, 2015.
YANG J B, LU X J, HE T J, LU X Z, ZHENG S F, ZHANG X J, NI J L. Identification genuineness of cotton varieties using SSR markers: NY/T 2634-2014. Beijing: China Agriculture Press, 2015. (in Chinese)
[23]
LIU K, MUSE S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21(9): 2128-2129.
[24]
POURABED E, JAZAYERI NOUSHABADI M R, JAMALI S H, MOHEB ALIPOUR N, ZAREYAN A, SADEGHI L. Identification and DUS testing of rice varieties through microsatellite markers. International Journal of Plant Genomics, 2015, 2015(1): 965073.
[25]
SUBRAMANIAN B, GAO S H, LERCHER M J, HU S N, CHEN W H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Research, 2019, 47(W1): W270-W275.
[26]
杨伟华, 吕波, 沈奇, 王艳平, 许红霞, 周大云, 堵苑苑, 王延琴, 冯新爱, 丁奎敏, 等. 植物新品种特异性、一致性和稳定性测试指南棉花: NY/T 2238-2012. 北京: 中国农业出版社, 2013.
YANG W H, LV B, SHEN Q, WANG Y P, XU H X, ZHOU D Y, DU Y Y, WANG Y Q, FENG X A, DING K M, et al. Guidelines for the conduct of tests for distinctness, uniformity and stability-cotton (Gossypium hirsutum L. and Gossypium barbacitense L.): NY/T 2238-2012. Beijing: China Agriculture Press, 2013. (in Chinese)
[27]
YANG Z E, GE X Y, YANG Z R, QIN W Q, SUN G F, WANG Z, LI Z, LIU J, WU J, WANG Y, et al. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nature Communications, 2019, 10: 2989.
[28]
GROVER C E, GALLAGHER J P, JARECZEK J J, PAGE J T, UDALL J A, GORE M A, WENDEL J F. Re-evaluating the phylogeny of allopolyploid Gossypium L.. Molecular Phylogenetics and Evolution, 2015, 92: 45-52.
[29]
GALLAGHER J P, GROVER C E, REX K, MORAN M, WENDEL J F. A new species of cotton from wake atoll, Gossypium stephensii (Malvaceae). Systematic Botany, 2017, 42(1): 115-123.
[30]
SENCHINA D S, ALVAREZ I, CRONN R C, LIU B, RONG J K, NOYES R D, PATERSON A H, WING R A, WILKINS T A, WENDEL J F. Rate variation among nuclear genes and the age of polyploidy in Gossypium. Molecular Biology and Evolution, 2003, 20(4): 633-643.
[31]
郭志军, 赵云雷, 陈伟, 李运海, 王红梅, 龚海燕, 桑晓慧. 陆地棉SSR标记遗传多样性及其与农艺性状的关联分析. 棉花学报, 2014, 26(5): 420-430.
GUO Z J, ZHAO Y L, CHEN W, LI Y H, WANG H M, GONG H Y, SANG X H. Genetic diversity and association analysis of upland cotton based on SSR markers. Cotton Science, 2014, 26(5): 420-430. (in Chinese)
[32]
MA Z Y, HE S P, WANG X F, SUN J L, ZHANG Y, ZHANG G Y, WU L Q, LI Z K, LIU Z H, SUN G F, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nature Genetics, 2018, 50(6): 803-813.
[33]
HE S P, SUN G F, GENG X L, GONG W F, DAI P H, JIA Y H, SHI W J, PAN Z E, WANG J D, WANG L Y, et al. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nature Genetics, 2021, 53(6): 916-924.
[34]
吴玉珍, 黄龙雨, 周大云, 黄义文, 付守阳, 彭军, 匡猛. 中国棉花审定品种SSR指纹库的构建与综合评价. 中国农业科学, 2024, 57(8): 1430-1443. doi: 10.3864/j.issn.0578-1752.2024.08.002.
WU Y Z, HUANG L Y, ZHOU D Y, HUANG Y W, FU S Y, PENG J, KUANG M. Construction of SSR fingerprint library and comprehensive evaluation for approved cotton varieties in China. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443. doi: 10.3864/j.issn.0578-1752.2024.08.002. (in Chinese)
[35]
OLIVEIRA M B, VIEIRA E N, SCHUSTER I. Construction of a molecular database for soybean cultivar identification in Brazil. Genetics and Molecular Research, 2010, 9(2): 705-720.
[36]
赵艳杰, 冯艳芳, 黄思思, 马莹雪, 李嫒嫒, 张蝶, 邓超, 韩瑞玺, 唐浩. 182份东北地区受保护大豆品种DNA指纹库的构建及分析. 中国种业, 2019(11): 43-47.
ZHAO Y J, FENG Y F, HUANG S S, MA Y X, LI Y Y, ZHANG D, DENG C, HAN R X, TANG H. Construction and analysis of DNA fingerprint database of 182 protected soybean varieties in Northeast China. China Seed Industry, 2019(11): 43-47. (in Chinese)
[37]
SARAO N K, VIKAL Y, SINGH K, JOSHI M A, SHARMA R C. SSR marker-based DNA fingerprinting and cultivar identification of rice (Oryza sativa L.) in Punjab state of India. Plant Genetic Resources, 2010, 8(1): 42-44.
[38]
REID A, HOF L, FELIX G, RÜCKER B, TAMS S, MILCZYNSKA E, ESSELINK D, UENK G, VOSMAN B, WEITZ A. Construction of an integrated microsatellite and key morphological characteristic database of potato varieties on the EU common catalogue. Euphytica, 2011, 182(2): 239-249.
[39]
COOKE R J, REEVES J C. Plant genetic resources and molecular markers: Variety registration in a new era. Plant Genetic Resources, 2003, 1(2/3): 81-87.
[40]
郑永胜, 张晗, 王雪梅, 王东建, 孙加梅, 王穆穆, 王晖, 王玮, 李华, 段丽丽, 等. 小麦DUS测试已知品种DNA指纹数据库构建及其应用. 植物遗传资源学报, 2019, 20(4): 845-853.
ZHENG Y S, ZHANG H, WANG X M, WANG D J, SUN J M, WANG M M, WANG H, WANG W, LI H, DUAN L L, et al. Construction of DNA profile database of wheat reference varieties and its application in wheat DUS test. Journal of Plant Genetic Resources, 2019, 20(4): 845-853. (in Chinese)
[41]
王凤格, 杨扬, 易红梅, 赵久然, 任洁, 王璐, 葛建镕, 江彬, 张宪晨, 田红丽, 等. 中国玉米审定品种标准SSR指纹库的构建. 中国农业科学, 2017, 50(1): 1-14. doi: 10.3864/j.issn.0578-1752.2017.01.001.
WANG F G, YANG Y, YI H M, ZHAO J R, REN J, WANG L, GE J R, JIANG B, ZHANG X C, TIAN H L, et al. Construction of an SSR-based standard fingerprint database for corn variety authorized in China. Scientia Agricultura Sinica, 2017, 50(1): 1-14. doi: 10.3864/j.issn.0578-1752.2017.01.001. (in Chinese)
[1] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[2] LI KaiLi, WEI YunXiao, CHONG ZhiLi, MENG ZhiGang, WANG Yuan, LIANG ChengZhen, CHEN QuanJia, ZHANG Rui. Red and Blue Light Promotes Cotton Callus Induction and Proliferation [J]. Scientia Agricultura Sinica, 2024, 57(4): 638-649.
[3] ZHAI CaiJiao, GE LiJiao, CHENG YuJing, QIU Liang, WANG XiaoQiu, LIU ShuiDong. Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers [J]. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457.
[4] SU GuoZhao, LI AiAi, LIU ZhongHua, CHEN YuHua, ZHANG XiuJie, MA YingXue, YANG XuHong, DENG Chao, XU ZhenJiang. Construction and Application of SSR Marker Identification System for Bitter Gourd Varieties [J]. Scientia Agricultura Sinica, 2024, 57(11): 2227-2242.
[5] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[6] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[7] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[8] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[9] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[10] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[11] ZhiJun XU, Sheng ZHAO, Lei XU, XiaoWen HU, DongSheng AN, Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[12] WEI Xin, WANG HanTao, WEI HengLing, FU XiaoKang, MA Liang, LU JianHua, WANG XingFen, YU ShuXun. Cloning and Drought Resistance Analysis of GhWRKY33 in Upland Cotton [J]. Scientia Agricultura Sinica, 2020, 53(22): 4537-4549.
[13] QU YuJie, SUN JunLing, GENG XiaoLi, WANG Xiao, Zareen Sarfraz, JIA YinHua, PAN ZhaoE, HE ShouPu, GONG WenFang, WANG LiRu, PANG BaoYin, DU XiongMing. Correlation Between Genetic Distance of Parents and Heterosis in Upland Cotton [J]. Scientia Agricultura Sinica, 2019, 52(9): 1488-1501.
[14] LIU XiQiang, ZHANG Han, WANG XueMin, YI DengXia, WANG Zan. Association Mapping of Fall Dormancy with SSR Markers in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2018, 51(2): 226-232.
[15] YANG ZiBo, WANG AnBang, LENG SuFeng, GU ZhengZhong, ZHOU YangMei. Genetic Analysis of the Novel High-Yielding Wheat Cultivar Huaimai33 [J]. Scientia Agricultura Sinica, 2018, 51(17): 3237-3248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!