Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (9): 1488-1501.doi: 10.3864/j.issn.0578-1752.2019.09.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Correlation Between Genetic Distance of Parents and Heterosis in Upland Cotton

QU YuJie,SUN JunLing,GENG XiaoLi,WANG Xiao,Zareen Sarfraz,JIA YinHua,PAN ZhaoE,HE ShouPu,GONG WenFang,WANG LiRu,PANG BaoYin,DU XiongMing()   

  1. Cotton Research Institute, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
  • Received:2018-12-18 Accepted:2019-03-12 Online:2019-05-01 Published:2019-05-16
  • Contact: XiongMing DU E-mail:dxm630723@163.com

Abstract:

【Objective】The correlation between heterosis and genetic distance (GD) of quantitative traits between parents was analyzed by 1500 hybrid combinations in upland cotton, and the possibility of using GD between parents of large-scale combinations to improve the efficiency of hybrid vigour prediction of upland cotton was discussed in order to provide theoretical guidance for cotton hybrid breeding and utilization of heterosis.【Method】305 upland cotton core collections from 15 countries and 23 provinces (municipalities) of China were selected as parents, and 1500 cross combinations were produced by L×T (Line×Tester) cross design. From 2012 to 2013, ten yield and fiber quality related traits, including plant height (PH), boll weight (BW), boll number per plant (BN), lint percentage (LP), fiber length (FL), fiber strength (FS), fiber elongation (FE), fiber length uniformity (FU), micronaire (MIC) and spinning consistent index (SCI), were investigated in 13 ecological conditions in north and south China. F1 hybrids mid-parent heterosis (MPH), heterobeltiosis (HB), GD between parents and population structure were analyzed. The correlation between GD and hybrid vigour was calculated by four schemes (Cor1-Cor4). 【Result】The mean values of MPH of the ten traits ranged from 1.70% to 7.40%, with an average of 4.36%, and F1 hybrids were divided into 5 groups (A-E) according to different male parents, the mean values of MPH: A>E>B>C>D. The mean values of HB ranged from -4.17% to 1.87%, with an average of -0.17%, and the average values of group A, B, and E were positive. In 5 groups, except for MIC of group D and E, other 9 traits had obvious MPH, among them, MPH of BW and FL were mainly positive (more than 80%) in the 5 groups, the maximum MPH values were 34.01% and 9.83% respectively, and the corresponding HB values were 24.25% and 5.80% respectively. The significant difference analysis between F1 hybrids and their parents indicated that BW, PH, FL, FE, and FU showed some HB. The GDs between male parents (testers) and 300 female parents ranged from 2.280 to 61.430, with an average of 21.550. The mean GDs between 5 testers and female parents: D>C>E>A>B, in which the nearest value was 11.721, and the farthest value was 33.271. According to “Ward” clustering method, 305 upland cotton parents were divided into two groups, including five subgroups. The results of four correlation analysis methods between GD and heterosis showed that the consequences varied with the sample size, the range of GD, and the male parent, the correlation increased with the sample size. Cor1 was the overall embodiment of Cor2 results; compared with Cor1 and Cor2, Cor3 had different correlations between MPH and GD in some traits; Cor4 had the weakest correlations. To sum up, the genetic distance was positively correlated with the MPH of LP, FS, FU, and SCI, the correlation between GD and MPH of other traits was different due to the different analysis schemes. In the four schemes, except for FU, the relationship between GD and HB was negatively correlated on the whole, and there was a strong correlation between genetic distance and HB of MIC, FL and LP. 【Conclusion】There is a linear relationship between GD of quantitative traits and hybrid vigour in upland cotton. The correlations are positive or negative, strong or weak due to different traits, and the larger the sample size, the stronger the correlation. Thus, the large-scale hybrid combinations are used to well study the relationship between GD and heterosis in upland cotton.

Key words: upland cotton, core collection, quantitative trait, L×T, genetic distance, cluster analysis, heterosis prediction

Table 1

Correlation analysis schemes between genetic distance of quantitative traits with heterosis"

编号 Serial No. 相关性分析方案 Correlation analysis schemes
Cor1 Dtij vs Fijk
Cor2 Dtij-m vs Fijk-m
Cor3 DtAj vs FAjk,DtBj vs FBjk,DtCj vs FCjk,DtDj vs FDjk,DtEj vs FEjk
Cor4 DtAj-m vs FAjk-m,DtBj-m vs FBjk-m,DtCj-m vs FCjk-m,DtDj-m vs FDjk-m,DtEj-m vs FEjk-m

Fig. 1

Significant difference analysis of 10 traits between F1 hybrids and parents FL: Fiber length; FE: Fiber elongation; FU: Fiber length uniformity; BW: Boll weight; PH: Plant height; MIC: Micronaire; LP: Lint percentage; BN: Boll number per plant; FS: Fiber strength; SCI: Spinning consistency index. *: Significance at P<0.05; **: Significance at P<0.01; ***: Significance at P<0.001"

Table 2

Heterosis of 10 quantitative traits in upland cotton"

性状
Trait
分组
Group
中亲优势MPH 超亲优势HB
变幅
Range
(%)
均值
Mean
(%)
正(负)优势组合数
No. of F1s with positive
(negative) heterosis
变幅
Range
(%)
均值
Mean
(%)
正(负)优势组合数
No. of F1s with positive
(negative) heterosis
PH A -5.69—24.29 9.67 286(14) -8.67—19.98 5.08 243(57)
B -7.07—16.79 5.08 267(33) -15.81—14.16 1.29 183(117)
C -1.93—22.05 10.16 298(2) -8.26—15.36 3.87 242(58)
D -7.77—13.02 3.45 254(46) -22.39—4.34 -6.03 17(283)
E -6.25—11.99 2.57 227(72) -16.40—6.74 -2.28 76(223)
BW A -12.48—34.01 15.55 298(2) -21.65—24.25 8.58 284(16)
B -19.71—26.00 8.29 291(9) -22.75—19.28 2.51 220(80)
C -13.87—17.57 5.82 276(24) -19.93—12.21 -0.15 149(151)
D -13.81—24.95 7.16 285(15) -20.97—18.79 2.69 224(76)
E -12.72—30.82 9.68 289(10) -20.78—20.24 2.08 195(104)
LP A -4.72—9.30 2.62 260(40) -8.80—5.04 -1.45 96(204)
B -3.06—11.96 3.38 275(25) -17.14—6.68 -1.06 107(193)
C -16.00—13.33 3.35 268(32) -25.18—3.97 -5.32 22(278)
D -0.38—13.14 5.07 297(3) -13.54—7.80 0.30 186(114)
E -14.04—7.54 0.87 195(104) -20.33—4.20 -4.42 51(248)
BN A 2.10—50.41 23.35 300(0) -13.52—22.49 7.03 265(35)
B -3.72—67.89 20.77 295(5) -16.86—34.80 7.45 243(57)
C -13.03—34.73 4.81 215(85) -27.49—10.85 -9.91 18(282)
D -18.18—39.5 2.36 169(131) -31.41—5.50 -13.38 5(295)
E -11.18—75.92 26.20 290(9) -22.14—47.65 10.61 245(54)
FL A -1.59—7.33 2.93 291(9) -5.69—6.08 0.88 219(81)
B -3.79—5.03 1.45 255(45) -8.61—4.09 -0.44 122(178)
C -5.62—6.79 1.88 264(36) -12.08—4.68 -0.17 147(153)
D -3.69—6.65 1.93 269(31) -7.61—4.26 -1.35 78(222)
E -4.13—9.83 2.75 283(16) -10.79—5.80 0.79 205(94)
表2 Continued table 2
性状
Trait
分组
Group
中亲优势MPH 超亲优势HB
变幅
Range
(%)
均值
Mean
(%)
正(负)优势组合数
No. of F1s with positive
(negative) heterosis
变幅
Range
(%)
均值
Mean
(%)
正(负)优势组合数
No. of F1s with positive
(negative) heterosis
FS A -6.68—8.60 0.53 163(137) -12.11—4.40 -2.98 32(268)
B -5.91—10.75 1.02 201(99) -11.47—5.43 -1.97 76(224)
C -4.99—12.19 3.08 272(28) -11.44—9.62 0.38 177(123)
D -7.54—12.55 2.03 228(72) -16.52—6.33 -2.46 66(234)
E -9.01—12.78 1.96 212(87) -15.61—10.40 -1.04 124(175)
MIC A -6.75—11.80 3.95 262(38) -13.06—7.12 -1.54 108(192)
B -8.70—10.91 2.13 243(57) -16.29—5.22 -1.66 90(210)
C -10.38—8.33 0.03 154(146) -15.67—5.78 -5.00 23(277)
D -11.10—6.40 -3.19 23(277) -18.40—2.27 -7.64 1(299)
E -14.4—19.63 -0.42 128(171) -22.09—4.52 -5.22 20(279)
FU A -0.87—2.76 0.78 277(23) -1.31—1.64 0.18 185(115)
B -1.22—2.60 0.30 223(77) -2.01—1.47 -0.31 76(224)
C -1.02—2.14 0.44 241(59) -2.38—1.70 -0.12 118(182)
D -0.55—2.22 0.81 289(11) -1.60—1.69 0.15 184(116)
E -1.81—1.97 0.39 224(75) -2.13—1.41 -0.13 120(179)
FE A -3.64—3.82 0.36 181(119) -7.25—1.36 -2.04 12(288)
B -1.83—3.95 0.63 211(89) -4.57—2.90 -0.50 99(201)
C -3.17—4.13 0.93 246(54) -4.42—3.57 -0.11 142(158)
D -3.75—3.19 0.23 178(122) -5.82—1.63 -1.39 36(264)
E -4.38—10.46 3.28 261(38)) -7.21—8.96 0.47 164(135)
SCI A -6.77—15.10 2.42 226(74) -13.31—9.08 -2.42 78(222)
B -11.15—11.87 0.85 180(120) -17.11—7.75 -2.94 50(250)
C -8.74—17.67 4.59 275(25) -21.08—10.57 0.08 151(149)
D -6.42—18.16 6.09 288(12) -14.11—11.77 -0.78 133(167)
E -10.00—16.34 3.88 258(41) -16.43—12.82 -0.25 152(147)
均值Mean A 1.59—11.71 6.21 300(0) -3.54—4.73 1.13 236(64)
B -0.07—10.37 4.39 299(1) -3.87—4.94 0.24 172(128)
C -0.71—8.11 3.51 298(2) -6.88—2.33 -1.64 39(261)
D -1.31—6.55 2.59 188(12) -7.41—0.55 -2.99 3(297)
E 0.11—11.52 5.12 299(0) -4.93—5.53 0.06 150(149)
总均值Total mean 1.70—7.40 4.36 -4.17—1.87 -0.64

Fig. 2

Population structure analysis of 305 parents"

Table 3

Correlation between heterosis and genetic distance by Cor1"

性状
Trait
与遗传距离的相关性系数
Correlation coefficient with genetic distance
中亲优势MPH 超亲优势HB
PH 0.0115 -0.2798***
BW -0.1618*** -0.1250***
LP 0.2459*** -0.1234***
BN -0.3870*** -0.5277***
FL 0.0109 -0.3482***
FS 0.1890*** -0.1055***
MIC -0.3627*** -0.5161***
FU 0.1764*** 0.0921***
FE -0.0495 -0.0315
SCI 0.3530*** -0.0634*

Table 4

Correlation between heterosis and genetic distance by Cor2"

性状
Trait
与遗传距离的相关性系数 Correlation coefficient with genetic distance
中亲优势MPH 超亲优势HB
PH 0.2433*** -0.0173 0.0870 -0.1815*** 0.0196 -0.0037 -0.3721*** -0.1579** -0.5368*** -0.1613
BW -0.1003 -0.1486** -0.2628*** -0.2738*** -0.2346** -0.0008 -0.0864 -0.1819*** -0.2451*** -0.4287***
LP 0.3801*** 0.2978*** 0.2879*** 0.1346** 0.2462** -0.0562 -0.0356 -0.0852 -0.0949 -0.4010***
BN -0.5678*** -0.4537*** -0.5135*** -0.3352*** 0.0049 -0.6861*** -0.6001*** -0.6672*** -0.4586*** -0.0976
FL -0.0951 0.0630 -0.0964 0.0163 -0.2031* -0.4566*** -0.3952*** -0.2698*** -0.0866 -0.5788***
FS -0.0239 0.1614*** 0.2813*** 0.1780*** 0.2144* -0.2216** -0.1698*** 0.1662** 0.0818 -0.0685
MIC -0.2862*** -0.3924*** -0.4440*** -0.4387*** -0.1036 -0.4695*** -0.5275*** -0.4915*** -0.5194*** -0.1980*
FU 0.1141 0.2487*** 0.1173* 0.1518** 0.1791* -0.0189 0.2020*** 0.0613 0.1870*** -0.2032*
FE -0.3579*** -0.1354** -0.1053 0.0999 0.1257 -0.2300** -0.1320** 0.0370 0.1207* -0.0573
SCI 0.1834** 0.4003*** 0.4058*** 0.3726*** 0.2354** -0.2461*** -0.0577 0.2116*** 0.2357*** -0.2630**

Table 5

Correlation between heterosis and genetic distance by Cor3"

性状
Trait
与遗传距离的相关性系数 Correlation coefficient with genetic distance
中亲优势MPH 超亲优势HB
A B C D E A B C D E
PH -0.11067 0.0312 0.0017 0.0052 0.1615** -0.1641** -0.0833 0.0051 -0.3327*** 0.0227
BW 0.1073 -0.0282 0.1353* 0.2430*** 0.0554 -0.0087 -0.0669 0.1034 0.1466* 0.0074
LP 0.1419* 0.1554** 0.0350 0.1358* -0.1145* -0.0849 -0.3894*** -0.1031 -0.2701*** -0.3032***
BN 0.1857** 0.1712** 0.1544** 0.0346 0.1311* 0.0608 0.0268 0.0603 -0.2319*** 0.1402*
FL 0.1765** 0.0001 0.1664** 0.2205*** -0.1417* -0.1908*** -0.3943*** -0.0480 -0.3636*** -0.3814***
FS 0.1470* 0.1501** 0.0881 0.0730 -0.1812** -0.2267*** -0.3329*** -0.2339*** -0.3668*** -0.2409***
MIC 0.0100 0.0416 -0.0033 -0.0042 -0.0834 -0.2506*** -0.3376*** -0.2372*** -0.4879*** -0.1338*
FU 0.0130 0.1898*** 0.0281 0.1364* 0.0113 -0.0461 -0.0260 -0.0401 0.0644 -0.0909
FE 0.2138*** 0.0941 0.2281*** 0.1783** 0.0139 0.1112 -0.1177* 0.0892 -0.0334 -0.0138
SCI 0.0193 0.1416* 0.0804 0.1335* -0.0742 -0.3766*** -0.3699*** -0.2454*** -0.4021*** -0.2531***

Table 6

Correlation between heterosis and genetic distance by Cor4"

优势
Heterosis
性状
Trait
与遗传距离的相关性 Correlation with genetic distance
A B C D E A B C D E A B C D E A B C D E A B C D E
中亲优势
MPH
PH P P P
BW P P
LP N P P P P
BN P P P P P P
FL P P
FS N P
MIC P P P P P
FU N P P P P
FE N P P P
SCI P N
超亲优势
HB
PH P N N P N N P N N
BW N P N N
LP N N N N N N N N N N N N N N N
BN P P N P
FL N N N N N N N N N N N
FS N N N N N N N N N
MIC N N N N N N N N N N N P P N
FU N N
FE N N P P N N N
SCI N N N N N N N N N N N N
[1] CHEN Z J, SCHEFFLER B E, ELIZABETH D, TRIPLETT B A, TIANZHEN Z, WANGZHEN G, XIAOYA C, STELLY D M, RABINOWICZ P D, TOWN C D . Toward sequencing cotton (Gossypium) genomes. Plant Physiology, 2007,145(4):1303-1310.
[2] ZHANG J, FANG H, ZHOU H P, SANOGO S, MA Z . Genetics, breeding, and marker-assisted selection for verticillium wilt resistance in cotton. Crop Science, 2014,54(4):1289-1303.
doi: 10.2135/cropsci2013.08.0550
[3] FANG L, WANG Q, HU Y, JIA Y, CHEN J, LIU B, ZHANG Z, GUAN X, CHEN S, ZHOU B . Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 2017,49(7):1089-1098.
doi: 10.1038/ng.3887 pmid: 28581501
[4] 彭倩, 薛亚东, 张向歌, 李慧敏, 孙高阳, 李卫华, 谢慧玲, 汤继华 . 利用单片段代换系测交群体定位玉米产量相关性状的杂种优势位点. 作物学报, 2016,42(4):482-491.
doi: 10.3724/SP.J.1006.2016.00482
PENG Q, XUE Y D, ZHANG X G, LI H M, SUN G Y, LI W H, XIE H L, TANG J H . Identification of heterotic loci for yield and ear traits using CSSL test population in maize. Acta Agronomica Sinica, 2016,42(4):482-491. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00482
[5] LI D Y, HUANG Z Y, SONG S H, XIN Y Y, MAO D H, LV Q M, ZHOU M, TIAN D M, TANG M F, ZHUNL H . Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(41):E6026-E6035.
doi: 10.1073/pnas.1610115113 pmid: 27663737
[6] DUVICK D N . The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy, 2005,86(5):83-145.
doi: 10.1016/S0065-2113(05)86002-X
[7] 傅廷栋 . 油菜杂种优势研究利用的现状与思考. 中国油料作物学报, 2008: 1-5.
FU T D . On research and application of heterosis in rapessed. Chinese Journal of Oil Crop Sciences, 2008: 1-5. (in Chinese)
[8] 邢朝柱, 靖深蓉, 邢以华 . 中国棉花杂种优势利用研究回顾和展望. 棉花学报, 2007,19(5):337-345.
doi: 10.3969/j.issn.1002-7807.2007.05.003
XING C Z, JING S R, XING Y H . Review and prospect on cotton heterosis utilization and study in China. Cotton Science, 2007,19(5):337-345. (in Chinese)
doi: 10.3969/j.issn.1002-7807.2007.05.003
[9] 袁有禄, 靖深蓉 . 世界棉花杂种优势利用研究进展, 问题与前景. 中国棉花, 2000,27(8):2-5.
doi: 10.3969/j.issn.1000-632X.2000.08.001
YUAN Y L, JING S R . Advances, problems and prospects of heterosis utilization of cotton in the world. China Cotton, 2000,27(8):2-5. (in Chinese)
doi: 10.3969/j.issn.1000-632X.2000.08.001
[10] WU Y T, YIN J M, GUO W Z, ZHU X F, ZHANG T Z . Heterosis performance of yield and fibre quality in F1 and F2 hybrids in upland cotton. Plant Breeding, 2010,123(3):285-289.
doi: 10.1111/j.1439-0523.2004.00990.x
[11] 邢朝柱, 喻树迅 . 棉花杂种优势表达机理研究进展. 棉花学报, 2004,16(6):379-382.
doi: 10.3969/j.issn.1002-7807.2004.06.012
XING C Z, YU S X . Progress of cotton heterosis expression mechanisms. Cotton Science, 2004,16(6):379-382. (in Chinese)
doi: 10.3969/j.issn.1002-7807.2004.06.012
[12] NEI M. Genetic Distance and Molecular Phylogeny. University of Washington Press, Seattle, Washington, 1987, 193-223.
[13] 徐静斐, 汪路应 . 水稻杂种优势和配合力的初步研究. 遗传, 1980,2(2):17-19.
XU J P, WANG L Y . Preliminary study on heterosis and combining ability of rice. Hereditas, 1980,2(2):17-19. (in Chinese)
[14] MOLL R H, LONNQUIST J H, FORTUNO J V, JOHNSON E C . The relationship of heterosis and genetic divergence in maize. Genetics, 1965,52(1):139-144.
doi: 10.0000/PMID17248265 pmid: 17248265
[15] GHADERI A, ADAMS M W, NASSIB A M . Relationship between genetic distance and heterosis for yield and morphological traits in dry edible bean and faba bean1. Crop Science, 1984,24(1):37-42.
doi: 10.2135/cropsci1984.0011183X002400010009x
[16] ALI M, COPELAND L O, ELIAS S G, KELLY J D . Relationship between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus L.). Theoretical & Applied Genetics, 1995,91(1):118-121.
doi: 10.1007/BF00220867 pmid: 24169676
[17] TEKLEWOLD A, BECKER H C . Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braun). Theoretical & Applied Genetics, 2006,112(4):752-759.
doi: 10.1007/s00122-005-0180-3 pmid: 16365759
[18] 王学德, 潘家驹 . 棉花亲本遗传距离与杂种优势间的相关性研究. 作物学报, 1990,16(1):32-38.
doi: 10.1007/BF02015343
WANG X D, PAN J J . Studies on the relationship between genetic distance of parents and yield heterosis in hybrid cotton. Acta Agronomica Sinica, 1990,16(1):32-38. (in Chinese)
doi: 10.1007/BF02015343
[19] 赵玉昌, 曹栓柱, 曹新川 . 陆地棉数量性状遗传距离与杂种优势关系的研究. 塔里木大学学报, 2008,20(1):19-22.
doi: 10.3969/j.issn.1009-0568.2008.01.006
ZHAO Y C, CAO S Z, CAO X C . Study of the relationship between genetic distance and heterosis in upland cotton. Journal of Tarim University, 2008,20(1):19-22. (in Chinese)
doi: 10.3969/j.issn.1009-0568.2008.01.006
[20] 郝德荣, 何林池, 刘水东, 周金凤, 邢建美, 黄昭平 . 抗虫棉数量性状遗传距离与杂种优势关系的研究. 金陵科技学院学报, 2008,24(4):50-55.
doi: 10.3969/j.issn.1672-755X.2008.04.012
HAO D R, HE L C, LIU S D, ZHOU J F, XING J M, HUANG S P . Study of the relationship between genetic distance and heterosis in insect resistant cotton. Journal of Jinling Institute of Technology, 2008,24(4):50-55. (in Chinese)
doi: 10.3969/j.issn.1672-755X.2008.04.012
[21] 陈强, 杨祖荣, 王谧, 范玉刚 . 几个陆地棉表型遗传距离与杂种优势之间的关系研究. 江西农业学报, 2011,23(5):25-26.
doi: 10.3969/j.issn.1001-8581.2011.05.009
CHEN Q, YANG Z R, WANG M, FAN Y G . Research on relationship between phenotypic genetic distance and heterosis of several upland cotton combinations. Acta Agriculture Jiangxi, 2011,23(5):25-26. (in Chinese)
doi: 10.3969/j.issn.1001-8581.2011.05.009
[22] 赵仁渠, 杨明 . 样本对小麦遗传距离与杂种优势关系的影响. 生物数学学报, 1994(1):48-53.
doi: 10.1007/BF02007173
ZHAO R Q, YANG M . Studies on the effects of sample on the relationship between genetic distance and heterosis in wheat. Journal of Biomathematics, 1994(1):48-53. (in Chinese)
doi: 10.1007/BF02007173
[23] 代攀虹, 孙君灵, 贾银华, 杜雄明, 王谧 . 利用表型数据构建陆地棉核心种质. 植物遗传资源学报, 2016,17(6):961-968.
doi: 10.13430/j.cnki.jpgr.2016.06.001
DAI P H, SUN J L, JIA Y H, DU X M, WANG M . Construction of core collection of upland cotton based on phenotypic data. Journal of Plant Genetic Resources, 2016,17(6):961-968. (in Chinese)
doi: 10.13430/j.cnki.jpgr.2016.06.001
[24] 代攀虹, 孙君灵, 何守朴, 王立如, 贾银华, 潘兆娥, 庞保印, 杜雄明, 王谧 . 陆地棉核心种质表型性状遗传多样性分析及综合评价. 中国农业科学, 2016,49(19):3694-3708.
doi: 10.3864/j.issn.0578-1752.2016.19.003
DAI P H, SUN J L, HE S P, WANG L R, JIA Y H, PAN Z E, PANG B Y, DU X M, WANG M . Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland ctton. Scientia Agricultura Sinica, 2016,49(19):3694-3708. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.19.003
[25] KEMPTHORNE O, FINNEY D J . An introduction to genetic statistics. Aibs Bulletin, 1957,39(2):69-79.
doi: 10.2307/1292411
[26] BORCARD D, GILLET F, LEGENDRE P . Numerical Ecology with R. Springer, 2011: 332-334.
[27] GB —2007《棉花细绒棉》条款解释. 中国纤检, 2007(7):6-14.
doi: 10.3969/j.issn.1671-4466.2007.07.002
GB 1103—2007《Cotton–Upland cotton》Interpretation. China Fiber Inspection, 2007(7):6-14. (in Chinese)
doi: 10.3969/j.issn.1671-4466.2007.07.002
[28] MILLER M, SONG Q, SHI X, JUENGER T E, CHEN Z J . Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis. Nature Communications, 2015,6:7453-7455.
[29] 张锡顺, 杨建国, 杨若菡, 徐宁生, 刘旭云, 杜刚 . 蓖麻数量性状遗传距离与杂种优势关系的研究. 中国农业科学, 2006,39(3):209-216.
doi: 10.3321/j.issn:0578-1752.2006.03.029
ZHANG X S, YANG J G, YANG R H, XU N S, LIU X Y, DU G . Study of the relationship between genetic distance and heterosis in castor. Scientia Agricultura Sinica, 2006,39(3):209-216. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2006.03.029
[30] 武耀廷, 张天真, 朱协飞, 王广明 . 陆地棉遗传距离与杂种F1、F2产量及杂种优势的相关分析. 中国农业科学, 2002,35(1):22-28.
doi: 10.3321/j.issn:0578-1752.2002.01.005
WU Y T, ZHANG T Z, ZHU X F, WANG G M . Relationship between F1, F2 yield, heterosis and genetic distance measured by molecular markers and parent performance in cotton. Scientia Agricultura Sinica, 2002,35(1):22-28. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2002.01.005
[31] 杨代刚, 马雄风, 周晓箭, 张先亮, 白凤虎, 王海风, 孟清芹, 裴小雨, 喻树迅 . 陆地棉配合力与杂种优势、遗传距离的相关性分析. 棉花学报, 2012,24(3):191-198.
doi: 10.3969/j.issn.1002-7807.2012.03.001
YANG D G, MA X F, ZHOU X J, ZHANG X L, BAI F H, WANG H F, MENG Q Q, PEI X Y, YU S X . Correlation among combining ability, heterosis and genetic distance in upland cotton. Cotton Science, 2012,24(3):191-198. (in Chinese)
doi: 10.3969/j.issn.1002-7807.2012.03.001
[32] 宿俊吉, 陈红, 余渝, 林海, 宁新柱, 李吉莲, 刘萍, 刘丽, 相吉山, 邓福军 . 陆地棉遗传距离与纤维品质性状中亲优势及F1、F2表现的相关性研究. 棉花学报, 2013,25(2):142-147.
doi: 10.3969/j.issn.1002-7807.2013.02.008
SU J J, CHEN H, YU Y, LIN H, NING X Z, LI J L, LIU P, LIU L, XIANG J S, DENG F J . The relationship of genetic distance to mid-parent heterosis and manifestations of F1&F2 of fiber quality traits in upland cotton. Cotton Science, 2013,25(2):142-147. (in Chinese)
doi: 10.3969/j.issn.1002-7807.2013.02.008
[33] ZHANG J F, ABDELRAHEEM A, WU J X . Heterosis, combining ability and genetic effect, and relationship with genetic distance based on a diallel of hybrids from five diverse Gossypium barbadense cotton genotypes. Euphytica, 2017,213(9):208-222.
doi: 10.1007/s10681-017-1997-y
[34] CHRISTIAN R, ANGELIKA C E, CHRISTOPH G, JAN L, FRANK T, RONAN S, THOMAS A, MARK S, LOTHAR W, MELCHINGER A E . Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nature Genetics, 2012,44(2):217-220.
[35] 桑世飞, 王会, 梅德圣, 刘佳, 付丽, 王军, 汪文祥, 胡琼 . 利用全基因组SNP芯片分析油菜遗传距离与杂种优势的关系. 中国农业科学, 2015,48(12):2469-2478.
doi: 10.3864/j.issn.0578-1752.2015.12.020
SANG S F, WANG H, MEI D S, LIU J, FU L, WANG J, WANG W X, HU Q . Correlation analysis between heterosis and genetic distance evaluated by genome-wide SNP chip in Brassica napus. Scientia Agricultura Sinica, 2015,48(12):2469-2478. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.12.020
[36] YANG M, WANG X, REN D, HUANG H, XU M, HE G, DENG X W . Genomic architecture of biomass heterosis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(30):8101-8106.
[37] 孙正文, 匡猛, 马峙英, 王省芬 . 利用CottonSNP63K芯片构建棉花品种的指纹图谱. 中国农业科学, 2017,50(24):4692-4704.
doi: 10.3864/j.issn.0578-1752.2017.24.003
SUN Z W, KUANG M, MA Z Y, WANG S F . Using cotton SNP63K chip to construct fingerprint map of cotton varieties. Scientia Agricultura Sinica, 2017,50(24):4692-4704. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.24.003
[38] WANG M, TU L, LIN M, LIN Z, WANG P, YANG Q, YE Z, SHEN C, LI J, ZHANG L . Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nature Genetics, 2017,49(4):579-590.
doi: 10.1038/ng.3807 pmid: 28263319
[39] MA Z, HE S, WANG X, SUN J, ZHANG Y, ZHANG G, WU L, LI Z, LIU Z, SUN G . Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nature Genetics, 2018,50(6):803-813.
doi: 10.1038/s41588-018-0119-7 pmid: 29736016
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[7] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[8] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[9] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[10] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[11] LI JiaWei,SU JiangShuo,ZHANG Fei,FANG WeiMin,GUAN ZhiYong,CHEN SuMei,CHEN FaDi. Construction of Core Collection of Traditional Chrysanthemum morifolium Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2021, 54(16): 3514-3526.
[12] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[13] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[14] Ge SONG,DongMei SHI,XiaoYing ZENG,GuangYi JIANG,Na JIANG,Qing YE. Quality Barrier Characteristics of Cultivated Layer for Sloping Farmland in Purple Hilly Region [J]. Scientia Agricultura Sinica, 2020, 53(7): 1397-1410.
[15] WEI Xin, WANG HanTao, WEI HengLing, FU XiaoKang, MA Liang, LU JianHua, WANG XingFen, YU ShuXun. Cloning and Drought Resistance Analysis of GhWRKY33 in Upland Cotton [J]. Scientia Agricultura Sinica, 2020, 53(22): 4537-4549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!