Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (17): 3440-3457.doi: 10.3864/j.issn.0578-1752.2024.17.010

• HORTICULTURE • Previous Articles     Next Articles

Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers

ZHAI CaiJiao(), GE LiJiao, CHENG YuJing(), QIU Liang, WANG XiaoQiu, LIU ShuiDong   

  1. Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226012, Jiangsu
  • Received:2024-01-25 Accepted:2024-07-22 Online:2024-09-01 Published:2024-09-04
  • Contact: CHENG YuJing

Abstract:

【Objective】To analyze the genetic diversity of wax gourd and chieh-qua germplasm resources, this study constructed a comprehensive evaluation system of wax gourd and chieh-qua germplasm and screened out excellent wax gourd and chieh-qua germplasms, so as to provide the valuable theoretical support for the innovation and variety selection of wax gourd and chieh-qua germplasm.【Method】148 wax gourd and chieh-qua germplasms from different sources were used as the test materials, and then the genetic diversity analysis was conducted using 28 phenotypic traits and 19 pairs of SSR markers. A variety of multiple statistical methods, including variation coefficient, Shannon-Wiener genetic diversity index, correlation analysis, principal component analysis, subordinate function value analysis, stepwise regression analysis, and cluster analysis, were used to analyze the genetic diversity and comprehensively evaluate on wax gourd and chieh-qua germplasm resources.【Result】Wax gourd and chieh-qua germplasm resources exhibited high genetic diversity, with the genetic diversity index of the 11 qualitative traits ranging from 0.39 (Generotype) to 1.45 (Fruit shape), the genetic diversity index of the 17 quantitative traits ranging from 1.89 (First male flower node) to 2.09 (Petiole length), and the variation coefficients of the 17 quantitative traits ranging from 9.76% (Seed shape index) to 63.95% (Weight per fruit). The variation coefficients of the first female flower node (42.32%), fruit length (42.95%), fruit shape index (47.05%), first male flower node (47.48%) and weight per fruit (63.95%) were all greater than 40%, which showed great potential for genetic improvement. Principal component analysis showed that the 18 main phenotypic traits were integrated into 6 principal components, with contribution rates ranging from 6.427% to 29.605%, and the additive contributing rate came up to 81.236%. The phenotypic comprehensive evaluation F value calculated by subordinate function values analysis showed that the BR12 (1.47) and BR25 (1.14) had the best characteristics. 15 phenotypic traits were extremely significantly correlated with the F value. The mathematical model of phenotypic evaluation was established by stepwise regression analysis, and 9 phenotypic comprehensive evaluation indicators were screened out. The number of alleles amplified by 19 SSR primers in the population material ranged from 2 to 6, the variation range of polymorphic information was 0.02-0.70, the Shannon’s diversity index distribution range was 0.06-1.48, which showed that 148 wax gourd and chieh-qua germplasm resources had rich genetic diversity. The genetic diversity of chieh-qua population was slightly higher than that of wax gourd population, and the genetic variation within individuals was the main reason for the overall genetic diversity of wax gourd and chieh-qua. Based on the classification of phenotypic traits and molecular markers, 148 wax gourd and chieh-qua germplasm resources were divided into 6 categories and 3 categories, respectively.The clustering results of the two methods did not cluster wax gourd and chieh-qua resources into two categories, and there was no obvious correlation with geographical location.【Conclusion】148 wax gourd and chieh-qua germplasms resources had rich phenotypic genetic variation and high genetic diversity. The leaf length, first female flower node, fruit length, fruit thick, pedicle length, seed width, wax powder, fruit shape and seed type could be used as the key indicators for identifying wax gourd and chieh-qua germplasm resources. The clustering results based on the classification of main agronomic traits and molecular markers were consistent to some extent. There was no obvious correlation between the cluster and the geographical origin.

Key words: wax gourd, chieh-qua, phenotypic traits, SSR markers, genetic diversity, comprehensive evaluation

Fig. 1

Partial germplasm of collected wax gourd resources"

Table 1

Description and classification of wax gourd and chieh-qua germplasms qualitative traits"

性状
Trait
分级 Classification
0 1 2 3 4 5 6 7 8
叶片形状
Leaf shape
掌状
Palmate
心脏形Cordate 近圆形
Subround
近三角形Subtriangular
叶片颜色Leaf color 浅绿Light green 绿Green 深绿Dark green
性型
Generotype
纯雌株Gynoecious 强雌株
Predominately gynoecious
雌全株Gynomonoecious 雌雄全株 Dimonoecious 雌雄株Monoecious 完全株Hermaphrodite line 雄全株Androdioecy 纯雄株Androecy
瓜面蜡粉
Wax powder

Without

Little

Medium

More
老瓜皮色
Fruit basal color
银灰
Silvery grey
浅绿
Light green
绿
Green
深绿
Dark green
墨绿
Blackish green
棱沟
Furrow depth

Without

Shallow

Medium

Deep
瓜形状
Fruit shape
扁球形
Depressed-globose
球形
Globose
短圆筒
Short cylindrical
椭球形Spheroidicity 梨形
Pyriform
长圆筒
Long cylindrical
瓜瓤类型
Melon flesh type
散瓤
Loose flesh
吊瓤
Lifting flesh
近瓜蒂端瓜面形状
Shape of the fruit surface near the pedicel

Concave

Flat

Circle

Sharp
瓜顶形状
Shape of the fruit surface near the top

Concave

Flat

Circle

Sharp
种子类型
Seed type
无棱光籽
Light seed without edge
有棱扁籽Corded flat seed

Table 2

Classification of raw data for quantitative traits"

等级
Grade
计算公式
Computational formula
分级标准
Grading standard
1 x-2δ <x-2δ
2 (x-2δ)+0.5δ x-2δ—(x-2δ)+0.5δ
3 (x-2δ)+2×0.5δ (x-2δ)+0.5δ—(x-2δ)+2×0.5δ
4 (x-2δ)+3×0.5δ (x-2δ)+2×0.5δ—(x-2δ)+3×0.5δ
5 (x-2δ)+4×0.5δ (x-2δ)+3×0.5δ—(x-2δ)+4×0.5δ
6 (x-2δ)+5×0.5δ (x-2δ)+4×0.5δ—(x-2δ)+5×0.5δ
7 (x-2δ)+6×0.5δ (x-2δ)+5×0.5δ—(x-2δ)+6×0.5δ
8 (x-2δ)+7×0.5δ (x-2δ)+6×0.5δ—(x-2δ)+7×0.5δ
9 (x-2δ)+8×0.5δ (x-2δ)+7×0.5δ—(x-2δ)+8×0.5δ
10 x+2δ >x+2δ

Table 3

Frequency distribution and genetic diversity index of 148 wax gourd and chieh-qua germplasm resources qualitative traits"

性状
Trait
频率Frequency 遗传多样性指数
Genetic diversity index (H′)
0 1 2 3 4 5 6 7 8
叶片形状 Leaf shape 0.56 0.34 0.10 0.92
叶片颜色 Leaf color 0.28 0.47 0.25 1.06
性型 Generotype 0.02 0.03 0.92 0.03 0.01 0.39
瓜面蜡粉 Wax powder 0.39 0.15 0.27 0.19 1.32
老瓜皮色 Fruit basal color 0.01 0.51 0.32 0.05 0.10 1.15
棱沟 Furrow depth 0.18 0.61 0.14 0.07 1.08
瓜形状 Fruit shape 0.03 0.05 0.46 0.10 0.11 0.24 1.45
瓜瓤类型 Melon flesh type 0.50 0.50 0.69
近瓜蒂端瓜面形状
Shape of the fruit surface near the pedicel
0.39 0.26 0.32 0.03 1.18
瓜顶形状
Shape of the fruit surface near the top
0.26 0.16 0.36 0.21 1.34
种子类型 Seed type 0.24 0.76 0.55

Table 4

Variation of quantitative traits of 148 wax gourd and chieh-qua germplasm resources"

性状
Trait
最大值
Maximum
最小值
Minimum
平均值
Mean
标准差
Standard deviation
变异系数
Coefficient of variation (CV, %)
遗传多样性指数
Genetic diversity index (H′)
老瓜单瓜重Weight per fruit (kg) 31.52 1.05 8.02 5.13 63.95 1.92
叶片长度 Leaf length (cm) 42.83 21.65 33.35 4.39 13.17 2.06
叶片宽度 Leaf width (cm) 46.07 20.70 33.94 4.56 13.43 2.03
叶柄长度 Petiole length (cm) 25.43 9.87 17.10 3.24 18.94 2.09
首雄花节位 First male flower node 25.33 3.75 10.05 4.77 47.48 1.89
首雌花节位 First female flower node 39.00 5.00 14.42 6.10 42.32 1.96
老瓜纵径 Fruit length (cm) 109.67 14.33 43.37 18.62 42.95 1.93
老瓜横径 Fruit diameter (cm) 34.58 9.60 19.95 6.22 31.19 2.06
老瓜肉厚 Fruit thick (mm) 64.00 18.94 40.41 8.43 20.86 2.02
瓜形指数 Fruit shape index 7.18 0.66 2.34 1.10 47.05 1.94
瓜梗长度 Pedicle length (cm) 12.00 2.73 6.08 1.87 30.80 2.00
可溶性固形物含量 Soluble solid content (%) 4.23 1.73 2.85 0.53 18.46 2.07
种子厚度 Seed thickness (mm) 4.09 1.54 2.59 0.47 17.98 2.05
种子长度 Seed length (mm) 14.46 7.11 11.18 1.76 15.76 1.98
种子宽度 Seed width (mm) 9.74 4.31 6.91 1.31 18.93 1.99
种形指数 Seed shape index 2.14 1.23 1.64 0.16 9.76 2.05
种子千粒重Seed-1000-kernel weight (g) 10.10 1.68 5.33 1.94 36.46 1.95

Table 5

Principal component analysis of main phenotypic traits of wax gourd and chieh-qua germplasm resources"

性状
Trait
主成分 Principal component
老瓜单瓜重 Weight per fruit 0.847 -0.109 0.179 -0.105 0.224 0.163
叶片长度 Leaf length 0.641 0.447 -0.001 0.404 -0.207 -0.253
叶片宽度 Leaf width 0.656 0.419 0.057 0.382 -0.225 -0.295
叶柄长度 Petiole length 0.503 0.372 -0.144 0.294 -0.535 0.084
首雌花节位 First female flower node 0.344 -0.185 0.389 0.163 0.612 -0.140
老瓜纵径 Fruit length 0.700 0.490 -0.016 -0.235 0.248 0.283
老瓜横径 Fruit diameter 0.694 -0.620 0.182 0.017 -0.018 0.055
老瓜肉厚 Fruit thick 0.655 -0.183 0.468 -0.042 0.135 -0.190
瓜形指数 Fruit shape index 0.142 0.865 -0.103 -0.130 0.226 0.263
瓜梗长度 Pedicle length 0.440 0.290 0.166 0.266 0.313 -0.084
种子长度 Seed length 0.716 -0.393 -0.263 -0.297 -0.186 0.169
种子宽度 Seed width 0.689 -0.401 -0.554 -0.120 0.012 -0.054
种形指数 Seed shape index -0.179 0.113 0.646 -0.249 -0.318 0.377
种子千粒重 Seed-1000-kernel weight 0.770 -0.369 -0.321 -0.155 -0.127 0.125
瓜面蜡粉 Wax powder 0.000 -0.337 0.090 0.653 0.005 0.507
老瓜皮色 Fruit basal color 0.270 0.400 0.241 -0.514 -0.175 -0.405
瓜形状 Fruit shape 0.194 0.718 -0.212 -0.073 0.131 0.348
种子类型 Seed type -0.251 0.085 -0.715 0.073 0.329 -0.161
特征值 Eigenvalue 5.329 3.310 2.017 1.469 1.341 1.157
贡献率 Contribution rate (%) 29.605 18.390 11.203 8.159 7.452 6.427
累计贡献率 Accumulated contribution rate (%) 29.605 47.995 59.198 67.357 74.809 81.236

Table 6

The ranking of wax gourd and chieh-qua germplasm resources by calculating quality-related traits"

编号
Material code
主成分因子分值 Principal component value 综合得分
F value
排名
Ranking
F1 F2 F3 F4 F5 F6
BR12 3.05 0.48 -0.02 1.36 0.51 0.91 1.47 1
BR25 1.63 0.84 -0.65 1.35 2.21 1.43 1.14 2
BR44 1.34 2.24 1.65 -1.26 0.02 0.51 1.14 2
BR91 0.88 1.82 -0.01 -1.11 2.50 2.56 1.05 3
BR24 1.40 2.02 1.38 -1.16 -0.80 0.06 0.97 4
BR17 1.94 1.62 -0.33 -0.66 0.40 -1.37 0.89 5
BR90 1.49 -0.38 1.37 1.25 1.86 -1.26 0.84 6
BR38 1.07 2.02 0.08 -0.17 1.34 -1.55 0.84 6
BR16 0.93 1.83 1.42 -0.87 0.11 -0.44 0.84 6
BR26 1.47 1.72 0.10 -0.72 0.30 -0.86 0.83 7
BR34 1.38 1.63 -0.44 -0.18 0.92 -0.76 0.82 8
BR19 1.32 1.30 1.61 -1.26 -0.33 -0.30 0.82 8
BR29 1.09 1.65 0.73 -0.12 -0.42 -0.70 0.76 9
BR89 1.53 -0.41 1.41 -0.13 1.96 -1.46 0.71 10

Table 7

Correlation coefficients between comprehensive value (F-value) and 18 phenotypic traits"

性状
Trait
WPF LL LW PL FFN FL FDM FT FSI PDL SL SW SSI SKW WP FBC FS ST
WPF 1
LL 0.38** 1
LW 0.38** 0.93** 1
PL 0.22** 0.59** 0.59** 1
FFN 0.37** 0.13 0.17* -0.18* 1
FL 0.72** 0.46** 0.44** 0.36** 0.18* 1
FDM 0.76** 0.17* 0.21* 0.10 0.35** 0.20* 1
FT 0.70** 0.33** 0.35** 0.11 0.41** 0.33** 0.64** 1
FSI 0.10 0.33** 0.27** 0.26** -0.06 0.73** -0.46** -0.13 1
PDL 0.30** 0.35** 0.39** 0.25** 0.33** 0.38** 0.08 0.28** 0.26** 1
SL 0.54** 0.17* 0.20* 0.25** 0.12 0.35** 0.64** 0.33** -0.18* 0.09 1
SW 0.48** 0.20* 0.21** 0.23** 0.13 0.30** 0.59** 0.26** -0.18* 0.11 0.85** 1
SSI -0.07 -0.13 -0.11 -0.06 -0.05 -0.03 -0.09 0.02 0.03 -0.06 -0.03 -0.54** 1
SKW 0.57** 0.27** 0.27** 0.30** 0.13 0.38** 0.66** 0.34** -0.14 0.17* 0.89** 0.86** -0.22** 1
WP 0.06 -0.04 -0.05 0.05 0.10 -0.18* 0.24** -0.01 -0.24** 0.06 0 0.01 0 0.04 1
FBC 0.16* 0.23** 0.28** 0.16 -0.03 0.33** -0.07 0.25** 0.26** 0.19* 0.1 0.01 0.13 0.03 -0.45** 1
FS 0.11 0.30** 0.27** 0.31** -0.10 0.54** -0.30** -0.08 0.70** 0.19* -0.03 -0.04 0 -0.02 -0.14 0.17* 1
ST -0.24** -0.07 -0.14 -0.17* -0.18* -0.11 -0.35** -0.37** 0.09 -0.08 -0.09 0.13 -0.41** -0.1 -0.1 -0.23** 0.12 1
F值 0.69** 0.70** 0.70** 0.49** 0.42** 0.81** 0.30** 0.53** 0.55** 0.62** 0.21** 0.14 0.05 0.28** 0.09 0.26** 0.49** -0.31**

Fig. 2

Cluster analysis of of wax gourd and chieh-qua germplasm resources based on phenotypic traits The red represents wax gourd, and the blue represents chieh-qua"

Table 8

Mean analysis of main agronomic characters of wax gourd and chieh-qua germplasm resources in different cluster"

性状
Trait
类群Ⅰ
Cluster Ⅰ
类群Ⅱ
Cluster Ⅱ
类群Ⅲ
Cluster Ⅲ
类群Ⅳ
Cluster Ⅳ
类群Ⅴ
Cluster Ⅴ
类群Ⅵ
Cluster Ⅵ
老瓜单瓜重 Weight per fruit (kg) 12.01 8.55 5.95 10.95 10.66 2.68
叶片长度 Leaf length (cm) 35.24 29.15 33.34 36.73 36.45 31.46
叶片宽度 Leaf width (cm) 36.17 29.77 33.68 38.02 36.90 31.72
叶柄长度 Petiole length (cm) 18.38 13.59 17.39 18.40 19.60 16.21
首雌花节位 First female flower node 16.53 20.08 9.04 17.35 14.45 10.86
老瓜纵径 Fruit length (cm) 42.49 35.04 39.28 63.97 63.70 31.61
老瓜横径 Fruit diameter (cm) 27.43 23.17 19.30 19.03 19.90 12.03
老瓜肉厚 Fruit thick (mm) 45.51 42.99 36.22 47.80 42.38 32.79
瓜形指数 Fruit shape index 1.56 1.48 2.17 3.42 3.29 2.72
瓜梗长度 Pedicle length (cm) 6.21 5.76 4.72 7.17 7.81 5.52
种子长度 Seed length (mm) 12.18 11.64 11.97 11.25 12.48 8.63
种子宽度 Seed width (mm) 7.74 7.02 7.52 6.35 8.05 5.18
种形指数 Seed shape index 1.59 1.67 1.59 1.78 1.55 1.67
种子千粒重 Seed-1000-kernel weight (g) 7.01 5.38 5.77 5.27 6.83 2.62

Table 9

Genetic diversity of 19 SSR markers in 148 wax gourd and chieh-qua germplasm resources"

引物
Primer name
引物序列
Primer sequence (5′-3′)
等位基因数
Number of
alleles (Na)
有效等位基因数
Number of effective
alleles (Ne)
Shannon’s多样性指数
Shannon’s diversity
index (I)
Nei’s多样性指数
Nei’s diversity index (H)
多态性信息含量
Polymorphism
information content (PIC)
1c096 F: GACACTACCTTGCGCAGTGA
R: TGCTACAACGGCAAATTCCA
3 2.92 1.08 0.66 0.58
1c189 F:GAGAAAAGTTTGACATATCCACTCT
R: GAGTGTAGCTCAACTGGCGT
6 3.65 1.48 0.73 0.68
2c053 F: CCCGCCACTCAATCTTCCTT
R: AGTGGATGATGAGGTATGCGA
2 1.19 0.30 0.16 0.15
3c190 F: TTTGCTCGACTGACTCCGAC
R: ACGAGACACAATGCAGGGAG
4 2.79 1.14 0.64 0.57
4c020 F: ACCTCTGTTCAGGGTAAAGCA
R:AGTGACACACTTAAATGGTGAAACC
5 3.95 1.47 0.75 0.70
4c071 F: CGCAACTTGCAACCTACTCG
R: ACACTTTTGTTGTCATCCCACCT
2 1.21 0.32 0.18 0.16
5c190 F: TGAACGGTCGTTAACTGCGT
R: AGACTCAAACTACTCGGACAAA
2 2.00 0.69 0.50 0.37
8c050 F: GATGCGAGCCTTCTTCAAACA
R: AGTACGTATTGTTGCACTTACACT
3 2.20 0.86 0.55 0.44
8c070 F: CTGGAACGCATCTCTCTGCT
R: TCCAGTGTCTCTTCATCCGA
2 2.00 0.69 0.50 0.37
8c186 F: CCCGCCAATTCGAACCATTC
R: TACCAACCAGGGCAAAACGT
6 1.41 0.53 0.29 0.26
9c051 F: AAAACGAGAAACTGCAGCCG
R: TCCTCCTCTTCTCCTCTGCC
2 1.02 0.06 0.02 0.02
9c071 F: ACCCATTTTGTCCTACCATGTGT
R: CGTCTTCGTCAAATTGGGACT
3 2.43 0.96 0.59 0.50
9c255 F: CCTTTCTTCCATAAGTCGAGGGT
R: AGGTTTGCTCCAACCAAAAAGA
2 1.43 0.48 0.30 0.26
10c006 F: CGATGCGTGCGCCTAAAATT
R: ACACGAGAAATTGGCAAACAACT
4 2.63 1.08 0.62 0.54
10c148 F: AAGCGTACCTTCACAGAGCC
R: TCCCCAAATGCCCTAACGTC
3 2.34 0.92 0.57 0.48
11c160 F: GCCCACACTCACCTTACACA
R: AGCCCCACCGAATTAATGCT
3 2.52 0.99 0.60 0.52
11c204 F: AGAAGCTTGTGGAAAAGTCAACT
R: CGAAGTAGCCCAATCAAAGTGT
2 1.28 0.38 0.22 0.19
11c239 F: AGACTCCTAGAACACACACACC
R: ACCCCTTCAAATCCAAACTCA
3 1.09 0.20 0.08 0.08
12c147 F: ACAAATCCCCACAAGACGGG
R: TGCGTTTTACTTGCCTATGTGA
3 2.57 1.00 0.61 0.53
均值Mean 3.16 2.14 0.77 0.45 0.39

Fig. 3

Partial amplification of SSR primers 8c186 in wax gourd and chieh-qua germplasm resources"

Table 10

Genetic diversity analysis of populations of wax gourd and chieh-qua"

群体
Population
群体大小
Sample
size
等位基因数
Number of
alleles (Na)
有效等位基因数
Number of effective
alleles (Ne)
Shannon’s多样性指数
Shannon’s diversity
index (I)
Nei’s多样性指数
Nei’s diversity index
(H)
多态性信息含量
Polymorphism information content (PIC)
冬瓜Wax gourd 121 3.16 2.09 0.77 0.44 0.38
节瓜Chieh-qua 27 2.79 2.27 0.78 0.47 0.40

Table 11

Analysis of molecular variance (AMOVA) and coefficients of gene differentiation of different populations based on SSR in wax gourd and chieh-qua"

变异来源
Source
自由度
DF
平方和
SS
均方差
MSE
方差分量
Variance component
方差分量百分率
Total variance (%)
基因流
(Nm)
群体间Among population 1 12.887 12.887 0.108 2
群体内In population 161 467.244 2.902 0 0
个体内In individual 163 896.5 5.5 5.5 98
总体Total 325 1376.632 5.608 100
平均Mean 22.014

Fig. 4

The change curve of Log-likelihood function value LnP(D) and ΔK based on the K value of subgroup numbers"

Fig. 5

Analysis on genetic structure of 148 wax gourd and chieh-qua germplasm resources"

Fig. 6

Neighbor-joining cluster of 148 wax gourd and chieh-qua germplasm resources based on Nei of SSR data The color of the outer ring in clockwise corresponds to group I-Ⅲ, respectively"

[1]
周胜军, 陈新娟, 朱育强, 陈丽萍, 张鹏. 我国冬瓜和节瓜种质资源的研究现状及建议. 植物遗传资源学报, 2014, 15(1): 211-214.
ZHOU S J, CHEN X J, ZHU Y Q, CHEN L P, ZHANG P. Research progress and suggestion on germplasms of ash gourd and chieh-qua. Journal of Plant Genetic Resources, 2014, 15(1): 211-214. (in Chinese)
[2]
乔燕春, 林锦英, 谢伟平, 谢丽芳, 李莲芳. 节瓜、冬瓜重要性状多样性及亲缘关系的SRAP分析. 植物遗传资源学报, 2014, 15(5): 1150-1155.

doi: 10.13430/j.cnki.jpgr.2014.05.034
QIAO Y C, LIN J Y, XIE W P, XIE L F, LI L F. Genetic relationship of chieh-qua and wax-gourd on the morphological phenotypes and SRAP markers. Journal of Plant Genetic Resources, 2014, 15(5): 1150-1155. (in Chinese)
[3]
JIANG B, XIE D S, LIU W R, PENG Q W, HE X M. De novo assembly and characterization of the transcriptome, and development of SSR markers in wax gourd (Benicasa hispida). PLoS ONE, 2013, 8(8): e71054.
[4]
万正林, 武鹏, 周艳霞, 邓俭英, 李立志, 龙明华. 同源四倍体及起源二倍体黑皮冬瓜营养品质与耐贮性比较. 江苏农业科学, 2019, 47(8): 209-212.
WAN Z L, WU P, ZHOU Y X, DENG J Y, LI L Z, LONG M H. Comparison of nutritional quality and storability of autotetraploid and original diploid wax gourd. Jiangsu Agricultural Sciences, 2019, 47(8): 209-212. (in Chinese)
[5]
谢大森, 江彪, 刘文睿, 薛舒丹, 张白鸽. 优质、抗病冬瓜多样化育种研究进展. 广东农业科学, 2020, 47(11): 50-59.
XIE D S, JIANG B, LIU W R, XUE S D, ZHANG B G. Research progress in diversification breeding of high-quality and disease- resistant on wax gourd. Guangdong Agricultural Sciences, 2020, 47(11): 50-59. (in Chinese)
[6]
孙远涛, 龙文靖, 李元, 刘天朋, 赵甘霖, 丁国祥, 倪先林. 45份糯高粱种质资源主要农艺性状和SSR标记的遗传多样性分析. 作物杂志, 2024(1): 57-64.
SUN Y T, LONG W J, LI Y, LIU T P, ZHAO G L, DING G X, NI X L. Genetic diversity analysis of 45 glutinous Sorghum germplasms based on major agronomic traits and SSR markers. Crops, 2024(1): 57-64. (in Chinese)
[7]
叶新如, 刘建汀, 李永平, 朱海生, 温庆放. 基于EST-SSR标记的MCID法鉴定冬瓜种质资源. 核农学报, 2021, 35(4): 780-788.

doi: 10.11869/j.issn.100-8551.2021.04.0780
YE X R, LIU J T, LI Y P, ZHU H S, WEN Q F. Identification of wax gourd by using EST-SSR markers-based MCID method. Journal of Nuclear Agricultural Sciences, 2021, 35(4): 780-788. (in Chinese)

doi: 10.11869/j.issn.100-8551.2021.04.0780
[8]
焦贤贤, 刘文睿, 江彪, 彭庆务, 刘政国, 谢大森. 基于SSR标记的冬瓜种质资源遗传多样性分析. 分子植物育种, 2019, 17(1): 161-168.
JIAO X X, LIU W R, JIANG B, PENG Q W, LIU Z G, XIE D S. Genetic diversity analysis of wax gourd germplasm resources based on SSR markers. Molecular Plant Breeding, 2019, 17(1): 161-168. (in Chinese)
[9]
向艳涛, 刘昌燕, 韩雪松, 李莉, 孙龙清, 陈宏伟, 沙爱华. 基于SSR标记的毛豆种质资源遗传多样性分析. 中国油料作物学报. https://doi.org/10.19802/j.issn.1007-9084.2023040.
XIANG Y T, LIU C Y, HAN X S, LI L, SUN L Q, CHEN H W, SHA A H. Genetic diversity analysis of vegetable soybean germplasm resources based on SSR markers. Chinese Journal of Oil Crop Sciences. https://doi.org/10.19802/j.issn.1007-9084.2023040. (in Chinese)
[10]
张一中, 张晓娟, 梁笃, 郭琦, 范昕琦, 聂萌恩, 王绘艳, 赵文博, 杜维俊, 柳青山. 基于表型性状的高粱育种材料遗传多样性分析及综合评价. 中国农业科学, 2023, 56(15): 2837-2853. doi:10.3864/j.issn.0578-1752.2023.15.001.
ZHANG Y Z, ZHANG X J, LIANG D, GUO Q, FAN X Q, NIE M E, WANG H Y, ZHAO W B, DU W J, LIU Q S. Genetic diversity analysis and comprehensive evaluation of Sorghum breeding materials based on phenotypic traits. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853. doi:10.3864/j.issn.0578-1752.2023.15.001. (in Chinese)
[11]
任明刚, 李春红, 杨平, 何大智, 赵艳花, 范金华, 卢平, 唐兴发, 冯明友. 44份黑花生资源的表型遗传多样性及综合鉴评. 中国油料作物学报, 2024, 46(1): 51-61.

doi: 10.19802/j.issn.1007-9084.2022192
REN M G, LI C H, YANG P, HE D Z, ZHAO Y H, FAN J H, LU P, TANG X F, FENG M Y. Phenotypic genetic diversity and comprehensive evaluation of 44 black seed coat peanut resources. Chinese Journal of Oil Crop Sciences, 2024, 46(1): 51-61. (in Chinese)
[12]
李欢, 鄢小青, 杨占烈, 谭金玉, 黎小冰, 陈能刚, 吴荣菊, 陈惠查, 阮仁超. 贵州香禾糯地方稻种资源表型遗传多样性分析与综合评价. 中国农业科学, 2023, 56(11): 2035-2046. doi:10.3864/j.issn.0578-1752.2023.11.001.
LI H, YAN X Q, YANG Z L, TAN J Y, LI X B, CHEN N G, WU R J, CHEN H C, RUAN R C. Analysis and comprehensive evaluation of phenotype genetic diversity in kam sweet rice germplasm resources in Guizhou. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046. doi:10.3864/j.issn.0578-1752.2023.11.001. (in Chinese)
[13]
李赢, 刘海翠, 石晓旭, 石吕, 韩笑, 刘建, 魏亚凤. 398份裸大麦种质资源表型性状遗传多样性分析. 植物遗传资源学报, 2023, 24(5): 1311-1320.

doi: 10.13430/j.cnki.jpgr.20230301002
LI Y, LIU H C, SHI X X, SHI L, HAN X, LIU J, WEI Y F. Phenotypic diversity analysis of 398 naked barley germplasm resources. Journal of Plant Genetic Resources, 2023, 24(5): 1311-1320. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20230301002
[14]
关峰, 石博, 万新建, 张景云, 黄长林, 张会国, 黄国东. 江西省地方冬瓜种质资源表型性状遗传多样性分析. 植物遗传资源学报, 2022, 23(2): 385-397.

doi: 10.13430/j.cnki.jpgr.20210830001
GUAN F, SHI B, WAN X J, ZHANG J Y, HUANG C L, ZHANG H G, HUANG G D. Genetic diversity analysis of wax gourd resources collected from Jiangxi Province using phenotypic traits. Journal of Plant Genetic Resources, 2022, 23(2): 385-397. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20210830001
[15]
谢大森, 何晓明, 彭庆务. 冬瓜种质资源的综合鉴评. 中国蔬菜, 2009(8): 36-41.
XIE D S, HE X M, PENG Q W. Identification and evaluation of Benincasa hispida Cogn.Germplasm resources. China Vegetables, 2009(8): 36-41. (in Chinese)
[16]
WEI W L, QI X Q, WANG L H, ZHANG Y X, HUA W, LI D H, LV H X, ZHANG X R. Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics, 2011, 12: 451.
[17]
李赢, 刘海翠, 石吕, 石晓旭, 韩笑, 刘建, 魏亚凤. 江苏裸大麦种质资源遗传多样性和群体结构分析. 作物学报, 2023, 49(10): 2687-2697.
LI Y, LIU H C, SHI L, SHI X X, HAN X, LIU J, WEI Y F. Genetic diversity and population structure analysis of naked barley germplasm resources in Jiangsu province. Acta Agronomica Sinica, 2023, 49(10): 2687-2697. (in Chinese)

doi: 10.3724/SP.J.1006.2023.31006
[18]
张凯歌, 胡倩梅, 靳志恒, 杨会会, 杨路明, 胡建斌, 朱华玉. 219份甜瓜种质资源的遗传多样性分析. 河南农业大学学报, 2020, 54(2): 216-230.
ZHANG K G, HU Q M, JIN Z H, YANG H H, YANG L M, HU J B, ZHU H Y. Genetic diversity analysis of 219 melon germplasms. Journal of Henan Agricultural University, 2020, 54(2): 216-230. (in Chinese)
[19]
宋世威, 李珍, 刘厚诚, 孙光闻, 陈日远. 冬瓜和节瓜种质资源遗传多样性的RAPD分析. 中国蔬菜, 2010(22): 47-53.
SONG S W, LI Z, LIU H C, SUN G W, CHEN R Y. RAPD analysis of genetic diversity of wax gourd and chieh-qua germplasm. China Vegetables, 2010(22): 47-53. (in Chinese)
[20]
江彪, 刘文睿, 谢大森, 何晓明, 彭庆务. 冬瓜种质资源亲缘关系的ISSR分析. 热带作物学报, 2013, 34(4): 616-620.
JIANG B, LIU W R, XIE D S, HE X M, PENG Q W. Phylogenetic relationships of wax gourd (Benincasa hispida) germplasms based on ISSR markers. Chinese Journal of Tropical Crops, 2013, 34(4): 616-620. (in Chinese)
[21]
杜旋, 田守波, 张红梅, 刘娜. SCoT标记分析节瓜育种材料的遗传多样性. 分子植物育种. http://kns.cnki.net/kcms/detail/46.1068.S.20211110.1637.008.html.
DU X, TIAN S B, ZHANG H M, LIU N. Genetic diversity of 36 chieh-qua resources based on SCoT. Molecular Plant Breeding. http://kns.cnki.net/kcms/detail/46.1068.S.20211110.1637.008.html. (in Chinese)
[22]
王鹏, 刘政国, 黄成秋, 陈勇, 覃海平. 节瓜自交系遗传多样性的ISSR分析. 植物遗传资源学报, 2015, 16(5): 1123-1127.

doi: 10.13430/j.cnki.jpgr.2015.05.028
WANG P, LIU Z G, HUANG C Q, CHEN Y, QIN H P. Genetic diversity of 36 chieh-qua inbred lines based on ISSR. Journal of Plant Genetic Resources, 2015, 16(5): 1123-1127. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2015.05.028
[23]
PANDEY S, KUMAR S, MISHRA U, RAI A, SINGH M, RAI M. Genetic diversity in Indian ash gourd (Benincasa hispida) accessions as revealed by quantitative traits and RAPD markers. Scientia Horticulturae, 2008, 118(1): 80-86.
[24]
王长林, 沈镝. 冬瓜和节瓜种质资源描述规范和数据标准. 北京: 中国农业出版社, 2008.
WANG C L, SHEN D. Descriptors and Data Standard for Wax Gourd. Beijing: China Agriculture Press, 2008. (in Chinese)
[25]
赵陆滟, 许俊强, 许彬, 胡安平, 张应华. 236份黄瓜种质资源农艺性状的遗传多样性分析及优质种质筛选. 南方农业学报, 2021, 52(1): 145-154.
ZHAO L Y, XU J Q, XU B, HU A P, ZHANG Y H. Genetic diversity analysis of agronomic traits and elite accession selection in 263 cucumber germplasm resources. Journal of Southern Agriculture, 2021, 52(1): 145-154. (in Chinese)
[26]
孙东雷, 卞能飞, 陈志德, 邢兴华, 徐泽俊, 齐玉军, 王幸, 王晓军, 王伟. 花生种质资源表型性状的综合评价及指标筛选. 植物遗传资源学报, 2018, 19(5): 865-874.

doi: 10.13430/j.cnki.jpgr.20180105001
SUN D L, BIAN N F, CHEN Z D, XING X H, XU Z J, QI Y J, WANG X, WANG X J, WANG W. Comprehensive evaluation and index screening of phenotypic traits in peanut germplasm resources. Journal of Plant Genetic Resources, 2018, 19(5): 865-874. (in Chinese)
[27]
EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620.

doi: 10.1111/j.1365-294X.2005.02553.x pmid: 15969739
[28]
赵芹, 谢大森, 何晓明, 陈仁芳, 彭庆务, 罗少波. 节瓜及近缘葫芦科作物种质资源rDNA-ITS序列分析与系统进化研究. 植物遗传资源学报, 2014, 15(5): 1096-1106.
ZHAO Q, XIE D S, HE X M, CHEN R F, PENG Q W, LUO S B. Analysis on the internal transcribed spacers (ITS) sequences and phylogenetics of chieh-qua and its affinis Cucurbitaceae germplasm resources. Journal of Plant Genetic Resources, 2014, 15(5): 1096-1106. (in Chinese)
[29]
张晓煜, 王仕鹏, 曹昆山, 李旭婧, 叶晗, 李小玉, 汪奎, 方玉川, 刘柏林. 基于表型性状与SSR标记的马铃薯种质资源遗传多样性研究. 西北农业学报. http://kns.cnki.net/kcms/detail/61.1220.s.20230703.1314.002.html.
ZHANG X Y, WANG S P, CAO K S, LI X J, YE H, LI X Y, WANG K, FANG Y C, LIU B L. Genetic diversity analysis of potato germplasm resources based on phenotypic traits and SSR markers. Acta Agriculturae Boreali-occidentalis Sinica. http://kns.cnki.net/kcms/detail/61.1220.s.20230703.1314.002.html. (in Chinese)
[30]
牛雪婧, 王新栋, 王金萍, 孙娟, 郄彦敏, 王丽娜, 耿立格. 高粱地方种质资源表型多样性分析及综合评价. 植物遗传资源学报, 2024, 25(4): 922-935.
NIU X J, WANG X D, WANG J P, SUN J, QIE Y M, WANG L N, GENG L G. Genetic diversity and comprehensive evaluation of Sorghum germplasm based on phenotypic traits. Journal of Plant Genetic Resources, 2024, 25(4): 922-935. (in Chinese)
[1] GUO Lei, HUANG ChenYan, SONG HongFeng, SHEN ZhiJun, ZHANG BinBin, MA RuiJuan, SUN Meng, HE Xin, YU MingLiang. Screening, Compounding and Safety Evaluation of Herbicides Suitable for Peach Nursery [J]. Scientia Agricultura Sinica, 2024, 57(9): 1734-1747.
[2] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[3] WANG XiaoJun, WANG JinLan, JU ZeLiang, LIANG GuoLing, JIA ZhiFeng, LIU WenHui, MA Xiang, MA JinXiu, LI Wen. Comprehensive Evaluation on Production Performance and Nutritional Quality of Different Varieties of Forage Oat in the Qinghai Lake Area [J]. Scientia Agricultura Sinica, 2024, 57(19): 3730-3742.
[4] YANG Chun, YANG DaiXing, LI Yan, LIANG SiHui, DENG XiaoQiang, QIAO DaHe, CHEN Juan, GUO Yan, LIN KaiQin, CHEN ZhengWu. Comprehensive Analysis of Morphologic Characters and Biochemical Components of Guizhou Dashu Tea Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(19): 3894-3916.
[5] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[6] LEI MengLin, LIU Xia, WANG YanZhen, CUI GuoQing, MU ZhiXin, LIU LongLong, LI Xin, LU LaHu, LI XiaoLi, ZHANG XiaoJun. Genetic Diversity Analysis of Winter Wheat Germplasm Resources in Shanxi Province Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2024, 57(10): 1845-1856.
[7] SONG Xiang, WANG ZhongMan, ZHANG QiuLing, WEI YuanYuan, ZHAO XiaoGang, LIU Bo, DAI SiLan. Comprehensive Evaluation and Selection of Hybrid Offsprings of Early Flowering Spray Outdoor Chrysanthemum [J]. Scientia Agricultura Sinica, 2024, 57(1): 173-189.
[8] HOU ZhaoYu, GONG YiZhao, QIAN Yi, CHENG ZhuoYa, TAO Jun, ZHAO DaQiu. Evaluation of Heat Tolerance of Herbaceous Peony and Screening of Its Identification Indices [J]. Scientia Agricultura Sinica, 2023, 56(23): 4742-4756.
[9] KAYOUMU MiReZhaTiJiang, WUMAIERJIANG XiErAiLi, LI XiaoTong, WANG XiangRu, GUI HuiPing, ZHANG HengHeng, ZHANG XiLing, DONG Qiang, SONG MeiZhen. Screening of Low Phosphorus Tolerant Germplasm in Cotton at Seedling Stage and Comprehensive Evaluation of Low Phosphorus Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(21): 4150-4162.
[10] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[11] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[12] CHEN ZhiMin, CHEN XiaoLin, TAN ZhenHua, CHEN ZhaoXing, SHEN DanDan, MA YanYan, ZHENG YongQiang, YI ShiLai, LÜ Qiang, XIE RangJin. Comprehensive Fruit Quality Evaluation and Suitable Areas Selection of Newhall Navel Orange in China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1949-1965.
[13] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[14] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[15] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!