Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (11): 2227-2242.doi: 10.3864/j.issn.0578-1752.2024.11.014

• HORTICULTURE • Previous Articles     Next Articles

Construction and Application of SSR Marker Identification System for Bitter Gourd Varieties

SU GuoZhao1,2(), LI AiAi2, LIU ZhongHua3, CHEN YuHua3, ZHANG XiuJie2, MA YingXue2, YANG XuHong2, DENG Chao2(), XU ZhenJiang1()   

  1. 1 College of Agriculture, South China Agricultural University/Guangzhou Sub-center for New Plant Variety Tests, Ministry of Agriculture and Rural Affairs, Guangzhou 510642
    2 Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176
    3 Crop Research Institute, Fujian Academy of Agricultural Sciences/Fuzhou Sub-center for New Plant Variety Tests, Ministry of Agriculture and Rural Affairs, Fuzhou 350013
  • Received:2023-10-20 Accepted:2024-01-11 Online:2024-06-01 Published:2024-06-07
  • Contact: DENG Chao, XU ZhenJiang

Abstract:

【Objective】In order to provide a practical support for authenticity identification, purity identification and protection of new variety rights of bitter gourd, a set of SSR core primers were screened, and then, the molecular identification system and SSR fingerprint database were established.【Method】Firstly, by using 8 representative varieties with large phenotypic differences, the preliminary 138 pairs SSR primer screening were carried out through 6% polyacrylamide-gel electrophoresis, and the preliminarily screened primers were synthesized into fluorescent primers. Secondly, the primer re-screening was carried out by fluorescence capillary electrophoresis against 95 bitter gourd varieties with diverse geographical sources. Then, the discrimination rate, PIC value, number of alleles, and other parameters of each re-screened primer were calculated respectively, and a set of SSR primer combinations with high discrimination rate and good polymorphism were selected. Finally, the total of 208 bitter gourd varieties were tested by the re-screened primers and a set of SSR core primers were further selected and used to construct a DNA fingerprint database of bitter gourd varieties.【Result】45 pairs of SSR primers with high specificity, high polymorphism and clear bands were screened by polyacrylamide gel electrophoresis. 20 pairs of SSR core primers were finally screened from small populations to large populations by fluorescence capillary electrophoresis. The core primers were divided into 4 groups for multiple electrophoresis, and DNA fingerprint data of 208 bitter gourd varieties were collected. The total of 65 alleles and 102 genotypes were detected by 20 pairs of SSR core primers. 12 reference varieties were selected, which could cover all alleles. Through phylogenetic tree construction, 208 bitter gourd varieties were divided into 2 categories, indicating that 20 pairs of SSR core primers were suitable for genetic diversity analysis of bitter gourd population. 202 of 208 bitter gourd varieties could be identified by core primers, and the discrimination rate was 97.11%. 11 groups of parents and hybrid materials were used to analyze genetic relationship and then conformed to Mendel’s genetic law. There were only 1 locus of fragment loss in each 2 groups, which provided a reference for the decision threshold value of identification of bitter gourd hybrids.【Conclusion】In this study, the identification system of bitter gourd varieties constructed based on 20 pairs of SSR core primers had superior applicability and excellent identification effect, and could also be used for authenticity identification, purity identification, hybrids identification of bitter gourd varieties, similar varieties selection in DUS test and protection of new variety rights of bitter gourd.

Key words: bitter gourd, SSR marker, DNA fingerprints, capillary electrophoresis

Table 1

Information of 208 bitter gourd varieties"

编号
No.
品种名称
Variety name
地区
Region
编号
No.
品种名称
Variety name
地区
Region
编号
No.
品种名称
Variety name
地区
Region
编号
No.
品种名称
Variety name
地区
Region
1 广良2号
Guangliang 2 haoA
广东
Guangdong
53 M3吉强
M3 JiqiangA
广东
Guangdong
105 莆田苦瓜
PutiankuguaB
福建
Fujian
157 桂农科8号
Guinongke 8 haoA
广西
Guangxi
2 齐胜
QishengA
广东
Guangdong
54 利农52号
Linong 52 haoA
广东
Guangdong
106 良苦1402
Liangku 1402A
浙江
Zhejiang
158 桂农科12号
Guinongke 12 haoA
广西
Guangxi
3 碧俊
BijunA
广东
Guangdong
55 利农G4
Linong G4A
广东
Guangdong
107 桂农科育1号
Guinongkeyu 1 haoB
广西
Guangxi
159 桂农科17号
Guinongke 17 haoA
广西
Guangxi
4 青俊
QingjunA
广东
Guangdong
56 阿宝7号
Abao 7 haoA
广东
Guangdong
108 桂农科育2号
Guinongkeyu 2 haoB
广西
Guangxi
160 桂农科1号
Guinongke 1 haoA
广西
Guangxi
5 领俊
LingjunA
广东
Guangdong
57 E39吉早
E39 JizaoA
广东
Guangdong
109 丰绿苦瓜
FenglükuguaA
广东
Guangdong
161 桂农科18号
Guinongke 18 haoA
广西
Guangxi
6 雅俊
YajunA
广东
Guangdong
58 利农9号
Linong 9 haoA
广东
Guangdong
110 广良3号
Guangliang 3 haoA
广东
Guangdong
162 桂农科5号
Guinongke 5 haoA
广西
Guangxi
7 赏玉
ShangyuA
广东
Guangdong
59 宝玛88
Baoma 88A
广东
Guangdong
111 MC1-6-12B 广西
Guangxi
163 桂农科20号
Guinongke 20 haoA
广西
Guangxi
8 广良108
Guangliang 108A
广东
Guangdong
60 利农3号
Linong 3 haoA
广东
Guangdong
112 真功夫13号
Zhengongfu 13 haoA
广东
Guangdong
164 春晓4号
Chunxiao 4 haoA
福建
Fujian
9 广良177
Guangliang 117A
广东
Guangdong
61 汕江大顶
ShanjiangdadingA
广东
Guangdong
113 奇胜105
Qisheng 105A
福建
Fujian
165 闽绿1号
Minlü 1 haoA
福建
Fujian
10 广良315
Guangliang 315A
广东
Guangdong
62 汕海明珠
ShanhaimingzhuA
广东
Guangdong
114 奇胜201
Qisheng 201A
福建
Fujian
166 闽研8号
Minyan 8 haoA
福建
Fujian
11 绿健
LüjianA
广东
Guangdong
63 利农22号
Linong 22 haoA
广东
Guangdong
115 奇胜202
Qisheng 202A
福建
Fujian
167 C19B 广东
Guangdong
12 碧珠2号
Bizhu 2 haoA
广东
Guangdong
64 阿宝1号
Abao 1 haoA
广东
Guangdong
116 奇胜419
Qisheng 419A
福建
Fujian
168 C129B 广东
Guangdong
13 秀珠
XiuzhuA
广东
Guangdong
65 翡丽2号
Feili 2 haoA
广东
Guangdong
117 奇胜122
Qisheng 122A
福建
Fujian
169 如玉178
Ruyu 178A
福建
Fujian
14 广良934
Guangliang 934A
广东
Guangdong
66 E37吉早
E37 JizaoA
广东
Guangdong
118 田美9号
Tianmei 9 haoA
福建
Fujian
170 亮丽三号
Liangli 3 haoA
福建
Fujian
15 广良995
Guangliang 995A
广东
Guangdong
67 阿宝12号
Abao 12 haoA
广东
Guangdong
119 田美5号
Tianmei 5 haoA
福建
Fujian
171 大白苦瓜
DabaikuguaC
四川
Sichuan
16 碧珠3号
Bizhu 3 haoA
广东
Guangdong
68 龙头2号
Longtou 2 haoA
广东
Guangdong
120 奇胜302
Qisheng 302A
福建
Fujian
172 长汀苦瓜
ChangtingkuguaC
福建
Fujian
17 碧珠5号
Bizhu 5 haoA
广东
Guangdong
69 早翠
ZaocuiA
广东
Guangdong
121 田美31号
Tianmei 31 haoA
福建
Fujian
173 光泽米黄苦瓜
GuangzemihuangkuguaC
福建
Fujian
18 碧珠8号
Bizhu 8 haoA
广东
Guangdong
70 利农11号
Linong 11 haoA
广东
Guangdong
122 新翠
XincuiA
福建
Fujian
174 南平青苦瓜
NanpingqingkuguaC
福建
Fujian
19 广良900
Guangliang 900A
广东
Guangdong
71 阿宝10号
Abao 10 haoA
广东
Guangdong
123 如玉5号
Ruyu 5 haoA
福建
Fujian
175 永定大顶苦瓜
YongdingdadingkuguaC
福建
Fujian
20 广良106
Guangliang 106A
广东
Guangdong
72 奇胜389
Qisheng 389A
福建
Fujian
124 丰绿3号
Fenglü 3 haoA
广东
Guangdong
176 文县苦瓜
WenxiankuguaC
甘肃
Gansu
21 绿健30
Lüjian 30A
广东
Guangdong
73 田美油亮一号
Tianmeiyouliang 1 haoA
福建
Fujian
125 吉美1号
Jimei 1 haoA
广东
Guangdong
177 潮安大瘤苦瓜
ChaoandaliukuguaC
广东
Guangdong
22 珍珠
ZhenzhuA
广东
Guangdong
74 田美黑珍珠
TianmeiheizhenzhuA
福建
Fujian
126 槟城苦瓜
PenangkuguaB
引自马来西亚
Malaysia
178 长滑苦瓜
ChanghuakuguaC
广东
Guangdong
23 阿宝11号
Abao11haoA
广东
Guangdong
75 亮丽五号
Liangli 5 haoA
福建
Fujian
127 热科2号
Reke 2 haoA
海南
Hainan
179 苦瓜
KuguaC
河北
Hebei
24 利农E36
Linong E36A
广东
Guangdong
76 亮丽六号
Liangli 6 haoA
福建
Fujian
128 热研黑玉
ReyanheiyuB
海南
Hainan
180 白苦瓜
BaikuguaC
黑龙江
Heilongjiang
25 翠竹
CuizhuA
广东
Guangdong
77 巴奈特
BanaiteA
福建
Fujian
129 利农珍珠
LinongzhenzhuA
广东
Guangdong
181 邵阳长白苦瓜
ShaoyangchangbaikuguaC
湖南
Hunan
26 点翠
DiancuiA
广东
Guangdong
78 奇胜543
Qisheng 543A
福建
Fujian
130 阿宝1号
Abao 1 haoA
广东
Guangdong
182 沅江青苦瓜
YuanjiangqingkuguaC
湖南
Hunan
27 宝马99
Baoma 99A
广东
Guangdong
79 奇胜553
Qisheng 553A
福建
Fujian
131 青脆1号
Qingcui 1 haoA
上海
Shanghai
183 三江口苦瓜
SanjiangkoukuguaC
江西
Jiangxi
28 阿宝3号
Abao 3 haoA
广东
Guangdong
80 奇胜555
Qisheng 555A
福建
Fujian
132 热科1号
Reke 1 haoA
海南
Hainan
184 青皮苦瓜
QingpikuguaC
新疆引
Xinjiang
29 泰来石头
TailaishitouA
广东
Guangdong
81 田美油亮二号
Tianmeiyouliang 2 haoA
福建
Fujian
133 闽研6号
Minyan 6 haoA
福建
Fujian
185 白皮苦瓜
BaipikuguaC
四川
Sichuan
30 玉帅绿白
YushuailübaiA
广东
Guangdong
82 奇胜572
Qisheng 572A
福建
Fujian
134 奇胜370
Qisheng 370A
福建
Fujian
186 白苦瓜
BaikuguaC
四川
Sichuan
31 翡丽
FeiliA
广东
Guangdong
83 奇胜573
Qisheng 573A
福建
Fujian
135 安其罗
AnqiluoA
福建
Fujian
187 长白苦瓜
ChangbaikuguaC
四川
Sichuan
32 强野
QiangyeA
广东
Guangdong
84 田美明珠
TianmeimingzhuA
福建
Fujian
136 亮丽一号
Liangli 1 haoA
福建
Fujian
188 二白苦瓜
ErbaikuguaC
四川
Sichuan
33 海宝
HaibaoA
广东
Guangdong
85 奇胜245
Qisheng 245A
福建
Fujian
137 奇胜383
Qisheng 383A
福建
Fujian
189 绵阳苦瓜
MianyangkuguaC
四川
Sichuan
34 吉美1号
Jimei 1 haoA
广东
Guangdong
86 奇胜279
Qisheng 279A
福建
Fujian
138 田美115
Tianmei 115A
福建
Fujian
190 苦瓜
KuguaC
四川
Sichuan
35 澄选珍珠
ChengxuanzhenzhuA
广东
Guangdong
87 奇胜219
Qisheng 219A
福建
Fujian
139 奇胜346
Qisheng 346A
福建
Fujian
191 长白苦瓜
ChangbaikuguaC
四川
Sichuan
36 阿宝19号
Abao 19 haoA
广东
Guangdong
88 金晓601
Jinxiao 601A
福建
Fujian
140 亮丽二号
Liangli 2 haoA
福建
Fujian
192 汉源苦瓜
HanyuankuguaC
四川
Sichuan
37 真功夫11号
Zhengongfu11haoA
广东
Guangdong
89 田美127
Tianmei127A
福建
Fujian
141 金晓301
Jinxiao 301A
福建
Fujian
193 南平长苦瓜
NanpingchangkuguaC
福建
Fujian
38 汕海2号
Shanhai 2 haoA
广东
Guangdong
90 农福759
Nongfu 759A
福建
Fujian
142 KTCQ36A 福建
Fujian
194 樟木苦瓜
ZhangmukuguaC
广西
Guangxi
39 吉早2号
Jizao 2 haoA
广东
Guangdong
91 农运来1897
Nongyunlai 1897A
福建
Fujian
143 春宝
ChunbaoA
福建
Fujian
195 青皮苦瓜
QingpikuguaC
广西
Guangxi
40 36号油身
36 HaoyoushenA
广东
Guangdong
92 绿脆1号
Lücui 1 haoA
上海
Shanghai
144 金晓402
Jinxiao 402A
福建
Fujian
196 白苦瓜
BaikuguaC
广西
Guangxi
41 利农12号
Linong 12 haoA
广东
Guangdong
93 青脆2号
Qingcui 2 haoA
上海
Shanghai
145 奇胜148
Qisheng 148A
福建
Fujian
197 长苦瓜
ChangkuguaC
湖北
Hubei
42 利农17号
Linong 17 haoA
广东
Guangdong
94 明绿1号
Minglü 1 haoA
福建
Fujian
146 白富美
BaifumeiA
福建
Fujian
198 白苦瓜
BaikuguaC
四川
Sichuan
43 利农21号
Linong 21 haoA
广东
Guangdong
95 百利1437
Baili 1437A
福建
Fujian
147 田美21号
Tianmei 21 haoA
福建
Fujian
199 长白苦瓜
ChangbaikuguaC
宁夏
Ningxia
44 春雅大顶
ChunyadadingA
广东
Guangdong
96 秀玉7号
Xiuyu 7 haoA
江苏
Jiangsu
148 奇胜127
Qisheng 127A
福建
Fujian
200 白苦瓜
BaikuguaC
北京
Beijing
45 玉珠1号
Yuzhu 1 haoA
广东
Guangdong
97 碧绿3号
Bilü 3 haoA
广东
Guangdong
149 奇胜小玲珑
QishengxiaolinglongA
福建
Fujian
201 白苦瓜
BaikuguaC
北京
Beijing
46 明珠3号
Mingzhu 3 haoA
广东
Guangdong
98 寿光疙瘩绿
ShouguanggedalüB
山东
Shandong
150 白珍珠二号
Baizhenzhu 2 haoA
福建
Fujian
202 大白苦瓜
DabaikuguaC
北京
Beijing
47 超油3号
Chaoyou 3 haoA
广东
Guangdong
99 良苦1403
Liangku 1403A
浙江
Zhejiang
151 越高56号
Yuegao 56 haoA
福建
Fujian
203 绿苦瓜
LükuguaC
北京
Beijing
48 碧丽
BiliA
广东
Guangdong
100 良苦1405
Liangku 1405A
浙江
Zhejiang
152 越高94号
Yuegao 94 haoA
福建
Fujian
204 LayizC 引自泰国
Thailand
49 假珍珠13号
Jiazhenzhu 13 haoA
广东
Guangdong
101 良苦1406
Liangku 1406A
浙江
Zhejiang
153 金晓405
Jinxiao 405A
福建
Fujian
205 金晓401
Jinxiao 401A
福建
Fujian
50 107#2#假珍珠
107#2#JiazhenzhuA
广东
Guangdong
102 云霄苦瓜
YunxiaokuguaB
福建
Fujian
154 碧绿9号
Bilü 9 haoA
广东
Guangdong
206 秀玉5号
Xiuyu 5 haoA
江苏
Jiangsu
51 14#23#假珍珠
14#23#JiazhenzhuA
广东
Guangdong
103 良苦1401
Liangku 1401A
浙江
Zhejiang
155 绿冰清
LübingqingA
广东
Guangdong
207 超群3号
Chaoqun 3 haoA
福建
Fujian
52 M1吉强
M1 JiqiangA
广东
Guangdong
104 疙瘩绿
GedalüB
浙江
Zhejiang
156 桂农科10号
Guinongke 10 haoA
广西
Guangxi
208 金晓403
Jinxiao 403A
福建
Fujian

Fig. 1

Polymorphism of partial SSR primers in 8 representative varieties"

Table 2

Information of 20 pairs of SSR core primer"

序号
No.
引物编号
Primer No.
引物名称
Primer name
染色体定位
Chromosome location
重复基序
SSR motifs
正向引物序列
Forward primer sequences
(5′-3′)
反向引物序列
Reverse primer sequences
(5′-3′)
1 KG4 N9 1 (TC) 17 ATCCATCCCCACAAGTTGAA CCATAAGGATATGTTTGCATGG
2 KG51 Bdcs_SSr-0097 2 (TA) 8 AATGCCAGATGTAATTGCTATGGTG TACACATCCATACCGCTAGAAGAAG
3 KG2 N5 3 (CT) 13 CGTCGCTCTCACAAGAGATAAG TTTGGTGGAAATCCCCTATT
4 KG41 Bdcs_SSr-0064 4 (AT) 7 GACTTTTGTCCGATCGAACATAACT TGGCATCCATTTTGTTTTTCTTTCA
5 KG20 AVRDC-BG48 4 (GA) 8 GCAAAAACACTGTCACCCAC TTCGCTTCTTCCCTCTTCAT
6 KG16 McSSR20 4 (TCT) 9 GGAATTCAGGTGAACCTGACG CCAGGAGGAAGAGGAACTGC
7 KG49 Bdcs_SSr-0080 5 (TAT) 6 TGCTACTTGAACCAATGAGAAGAAAC TGATTTGTTCTTTCTATGAAAATGTTGT
8 KG23 AVRDC-BG136 6 (TTC) 7 TCGCAGTCTCATTTCTCAAG AGTGGCAGAGCGTTTTACCT
9 KG33 Bdcs_SSr-0038 6 (TA) 6 TCTCGAGGTGGGAGATTTAATCTTC TTATTTGGTTTCTGATGCGTCTGTC
10 KG30 MC07_92319 7 (TC) 15 GCAAATCAAAGAAGCCAAGC GTAGGGGTTGGGTTGATCCT
11 KG26 MC07_95456 7 (CT) 16 TTCTTGAGAGACGGTTGGCT GATACAAAGAAACGGTGGCG
12 KG18 AVRDC-BG2 8 (AC) 8 GAGCACACAGAAAATTGGGT TGATCCACTCCCAATCTTAGC
13 KG43 Bdcs_SSr-0098 8 (AAT) 6 TATTTGTATTTGTCCGTCGGAGGG CGCCATTTCCTGTTTGATTCAATAT
14 KG42 Bdcs_SSr-0085 8 (TC) 6 ATGGACTCAGAATGAACTGAAAAGG ACTTTGTTCTCATAAGAGGGGAGTT
15 KG8 S15 8 (AG) 6 (AG) 12 GGGTAGTGGAATGATGGGTT TAGTGTTTTCGTGAGGGAGG
16 KG22 AVRDC-BG85 8 (GAA) 8 TGCAACCACTTGGGTTCTAA CACGCCAGTAGCTTCAACAT
17 KG50 Bdcs_SSr-0088 9 (TTA) 7 AAGAAGGTGTACTAGTAGCTCCTCT CCAAGTGGCATCTTATCAACACATT
18 KG24 MC10_147313 10 (CT) 21 CGGCATGAAGAATGGCTAAT GGGGTTTTCCCCTAATTGAA
19 KG39 Bdcs_SSr-0094 11 (ATA) 6 ACATATTACTTGGTAATTGCTAGACAA TGAACATTGTTGAGGCACCTAAAAA
20 KG45 Bdcs_SSr-0025 11 (GA) 5 CCAACAATTATCCACTTGTGCTTCT GACTTTATTGTGTGGGGACATGAAC

Table 3

Genetic diversity parameters of 20 pairs of core primers"

引物
Primer
主要等位基因
频率
Major allele frequency
基因型数量Number of genotypes 多态性信息含量
Polymorphism information content
等位基因数
Number of observed
alleles
有效等位基因数Number of effective
alleles
观察杂合度
Observed heterozygosity
期望杂合度
Expected heterozygosity
香农-多样性
指数
Shannon-
Wiener index
KG16 0.60 3 0.37 2 1.93 0.47 0.48 0.67
KG18 0.60 7 0.41 4 2.04 0.44 0.51 0.81
KG2 0.67 5 0.35 4 1.80 0.43 0.44 0.66
KG20 0.53 4 0.38 3 2.00 0.48 0.50 0.71
KG22 0.71 8 0.34 5 1.72 0.37 0.42 0.67
KG23 0.66 3 0.35 2 1.82 0.39 0.45 0.64
KG24 0.58 12 0.48 8 2.24 0.46 0.55 0.99
KG26 0.68 12 0.45 6 1.97 0.43 0.49 0.96
KG30 0.75 8 0.38 5 1.70 0.36 0.41 0.77
KG33 0.69 3 0.34 2 1.74 0.44 0.43 0.62
KG39 0.65 3 0.35 2 1.84 0.34 0.46 0.65
KG4 0.75 5 0.31 3 1.60 0.36 0.38 0.59
KG41 0.63 3 0.36 2 1.88 0.40 0.47 0.66
KG42 0.55 3 0.37 2 1.98 0.58 0.49 0.69
KG43 0.53 5 0.43 4 2.16 0.45 0.54 0.86
KG45 0.65 3 0.35 2 1.84 0.42 0.46 0.65
KG49 0.64 3 0.36 2 1.86 0.47 0.46 0.66
KG50 0.58 3 0.37 2 1.95 0.37 0.49 0.68
KG51 0.62 3 0.36 2 1.89 0.35 0.47 0.66
KG8 0.74 6 0.34 3 1.67 0.35 0.40 0.67
合计Total \ 102 \ 65 37.61 \ \ \
均值Average 0.64 \ 0.37 3.25 1.88 0.42 0.46 0.71

Table 4

Grouping of 20 pairs of fluorescent primers"

组数 Group FAM TAMRA ROX HEX
1 KG20 (97-101)
KG8 (229-233)
KG51 (276-278) KG26 (244-258) KG18 (139-158)
2 KG45 (97-99) KG43 (297-300)
KG22 (245-273)
KG49 (211-214) KG23 (107-118)
3 KG24 (230-248) KG2 (158-166) KG42 (255-257) KG33 (103-105)
KG16 (206-215)
4 KG30 (228-250) KG50 (259-262) KG39 (273-276) KG41 (187-196)
KG4 (91-103)

Fig. 2

5 pairs of primers multiple capillary electrophoresis peak diagram"

Fig. 3

Data reading examples of partial SSR locus including 4 types of fluorescence"

Table 5

Information of 12 reference varieties"

编号
No.
品种名称
Variety name
品种来源
Variety origin
保藏编号
Preservation No.
编号
No.
品种名称
Variety name
品种来源
Variety origin
保藏编号
Preservation No.
1 广良995
Guangliang 995
广东省良种引进服务公司
Guangdong Provincial Improved Variety Introduce Service Corp.
\ 7 奇胜小玲珑Qishengxiaolinglong 福建省农业科学院
Fujian Academy of Agricultural Sciences
\
2 碧珠3号
Bizhu 3 hao
广东省良种引进服务公司
Guangdong Provincial Improved Variety Introduce Service Corp.
\ 8 桂农科5号
Guinongke 5 hao
福建省农业科学院
Fujian Academy of Agricultural Sciences
\
3 碧珠5号
Bizhu 5 hao
广东省良种引进服务公司
Guangdong Provincial Improved Variety Introduce Service Corp.
\ 9 槟城苦瓜Penangkugua 农业农村部植物新品种保藏中心
New Plant Variety Preservation Center,Ministry of Agriculture and Rural Affairs
XIN41090
4 碧珠8号
Bizhu 8 hao
广东省良种引进服务公司
Guangdong Provincial Improved Variety Introduce Service Corp.
\ 10 田美115
Tianmei 115
农业农村部植物新品种保藏中心
New Plant Variety Preservation Center,Ministry of Agriculture and Rural Affairs
XIN43633
5 广良900
Guangliang 900
广东省良种引进服务公司
Guangdong Provincial Improved Variety Introduce Service Corp.
\ 11 长滑苦瓜Changhuakugua 国家园艺种质资源库
National Horticultural Germplasm Resource Library
V05G0020
6 利农9号
Linong 9 hao
广东和利农生物种业股份有限公司
Guangdong Helinong Biological Seed Industry Co.,Ltd.
\ 12 长白苦瓜Changbaikugua 国家园艺种质资源库
National Horticultural Germplasm Resource Library
V05G0159

Fig. 4

Evolutionary tree of 208 bitter gourd varieties"

Table 6

Partial locus data of 2 groups of parents and hybrid materials"

品种名称
Variety name
位点Locus 品种名称
Variety name
位点Locus
KG2 KG8 KG33 KG39 KG2 KG8 KG33 KG39
广良2号父本
Male parent of Guangliang 2 hao
162/162 229/229 103/103 273/273 田美115父本
Male parent of Tianmei 115
162/162 229/229 103/103 273/273
广良2号母本
Female parent of Guangliang 2 hao
164/164 229/229 105/105 273/273 田美115母本
Female parent of Tianmei 115
164/164 231/231 103/105 273/276
广良2号Guangliang 2 hao 162/164 229/229 103/105 273/273 田美115 Tianmei 115 164/164 229/231 103/105 273/273

Fig. 5

Electrophoresis map of gene separation locus KG2"

[1]
GB/T 39917-2021. 主要农作物品种真实性和纯度SSR分子标记检测稻. 北京: 中华人民共和国农业农村部, 2021.
GB/T 39917-2021. Protocol for identification of rice varieties-SSR marker method. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2021. (in Chinese)
[2]
王凤格, 杨扬, 易红梅, 赵久然, 任洁, 王璐, 葛建镕, 江彬, 张宪晨, 田红丽, 侯振华. 中国玉米审定品种标准SSR指纹库的构建. 中国农业科学, 2017, 50(1): 1-14. doi: 10.3864/j.issn.0578-1752.2017.01.001.
WANG F G, YANG Y, YI H M, ZHAO J R, REN J, WANG L, GE J R, JIANG B, ZHANG X C, TIAN H L, HOU Z H. Construction of an SSR-based standard fingerprint database for corn variety authorized in China. Scientia Agricultura Sinica, 2017, 50(1): 1-14. doi: 10.3864/j.issn.0578-1752.2017.01.001. (in Chinese)
[3]
郑永胜, 张晗, 王东建, 孙加梅, 王雪梅, 段丽丽, 李华, 王玮, 李汝玉. 基于荧光检测技术的小麦品种SSR鉴定体系的建立. 中国农业科学, 2014, 47(19): 3725-3735. doi: 10.3864/j.issn.0578-1752.2014.19.001.
ZHENG Y S, ZHANG H, WANG D J, SUN J M, WANG X M, DUAN L L, LI H, WANG W, LI R Y. Development of a wheat variety identification system based on fluorescently labeled SSR Markers. Scientia Agricultura Sinica, 2014, 47(19): 3725-3735. doi: 10.3864/j.issn.0578-1752.2014.19.001. (in Chinese)
[4]
李益, 马先锋, 唐浩, 李娜, 江东, 龙桂友, 李大志, 牛英, 韩瑞玺, 邓子牛. 柑橘品种鉴定的SSR标记开发和指纹图谱库构建. 中国农业科学, 2018, 51(15): 149-159. doi: 10.3864/j.issn.0578-1752.2018.15.012.
LI Y, MA X F, TANG H, LI N, JIANG D, LONG G Y, LI D Z, NIU Y, HAN R X, DENG Z N. SSR markers screening for identification of citrus cultivar and construction of DNA fingerprinting library. Scientia Agricultura Sinica, 2018, 51(15): 149-159. doi: 10.3864/j.issn.0578-1752.2018.15.012. (in Chinese)
[5]
NY/T 2474-2013. 黄瓜品种鉴定技术规程 SSR分子标记法. 北京: 中华人民共和国农业农村部, 2013.
NY/T 2474-2013. Protocol for the identification of cucumber varieties-SSR marker method. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2013. (in Chinese)
[6]
NY/T 2472-2013. 西瓜品种鉴定技术规程 SSR分子标记法. 北京: 中华人民共和国农业农村部, 2013.
NY/T 2472-2013. Identification of watermelon varieties-SSR marker method. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2013. (in Chinese)
[7]
王国莉, 徐毓璇, 黄梅花. 基于SSR和SRAP标记的苦瓜品种鉴定及亲缘关系分析. 分子植物育种, 2016, 14(2): 501-510.
WANG G L, XU Y X, HUANG M H. Identification and genetic relationship analysis of bitter gourd varieties based on SSR and SPAP. Molecular Plant Breeding, 2016, 14(2): 501-510. (in Chinese)
[8]
姚春鹏, 张晓爱, 吴廷全, 邓洁, 金庆敏, 李海达, 王瑞娟, 张长远. 用于长绿2号苦瓜种子纯度鉴定的SSR分子标记的开发. 分子植物育种, 2019, 17(11): 3660-3664.
YAO C P, ZHANG X A, WU T Q, DENG J, JIN Q M, LI H D, WANG R J, ZHANG C Y. Development of SSR molecular markers for seed purity identification of bitter gourd hybrid Changlü No.2. Molecular Plant Breeding, 2019, 17(11): 3660-3664. (in Chinese)
[9]
DHILLON N P S, SANGUANSIL S, SCHAFLEITNER R, WANG Y W, MCCREIGHT J D. Diversity among a wide Asian collection of bitter gourd landraces and their genetic relationships with commercial hybrid cultivars. Journal of the American Society for Horticultural Science, 2016, 141(5): 475-484.
[10]
CUI J J, CHENG J W, NONG D G, PENG J Z, HU Y F, HE W M, ZHOU Q J, DHILLON N P S, HU K L. Genome-wide analysis of simple sequence repeats in bitter gourd (Momordica charantia). Frontiers in Plant Science, 2017, 8: 1103.
[11]
POWELL W, MORGANTE M, ANDRE C, HANAFEY M, VOGEL J, TINGEY S, RAFALSKI A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 1996, 2(3): 225-238.
[12]
DAR A A, MAHAJAN R, SHARMA S. Molecular markers for characterization and conservation of plant genetic resources. The Indian Journal of Agricultural Sciences, 2019, 89(11): 1755-1763.
[13]
WANG S Z, PAN L, HU K, CHEN C Y, DING Y. Development and characterization of polymorphic microsatellite markers in Momordica charantia (Cucurbitaceae). American Journal of Botany, 2010, 97(8): e75-e78.
[14]
GUO D L, ZHANG J P, XUE Y M, HOU X G. Isolation and characterization of 10 SSR markers of Momordica charantia (Cucurbitaceae). American Journal of Botany, 2012, 99(5): e182-e183.
[15]
SAXENA S, SINGH A, ARCHAK S, BEHERA T K, JOHN J K, MESHRAM S U, GAIKWAD A B. Development of novel simple sequence repeat markers in bitter gourd (Momordica charantia L.) through enriched genomic libraries and their utilization in analysis of genetic diversity and cross-species transferability. Applied Biochemistry and Biotechnology, 2015, 175(1): 93-118.
[16]
JI Y, LUO Y M, HOU B W, WANG W Z, ZHAO J F, YANG L M, XUE Q Y, DING X Y. Development of polymorphic microsatellite loci in Momordica charantia (Cucurbitaceae) and their transferability to other cucurbit species. Scientia Horticulturae, 2012, 140: 115-118.
[17]
温常龙, 罗江, 韩向阳, 张建, 杨静静. 一种鉴定苦瓜品种真实性的方法及其专用SSR引物组合: CN202010209970.8. 北京: 北京市农林科学院, 2021.
WEN C L, LUO J, HAN X Y, ZHANG J, YANG J J. A method for identifying the authenticity of bitter gourd varieties and its special SSR primer combination: CN202010209970.8. Beijing: Beijing Academy of Agriculture and Forestry Sciences, 2021. (in Chinese)
[18]
邓俭英, 王绪, 方锋学, 张曼, 孙德利. 不同性别类型苦瓜基因组DNA提取及RAPD标记初步研究. 广西农业科学, 2007, 38(3): 223-226.
DENG J Y, WANG X, FANG F X, ZHANG M, SUN D L. Effective extraction of genomic DNA and RAPD analysis on different sex types of Momordica charantia L. Guangxi Agricultural Sciences, 2007, 38(3): 223-226. (in Chinese)
[19]
LIU K J, MUSE S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21(9): 2128-2129.

doi: 10.1093/bioinformatics/bti282 pmid: 15705655
[20]
PEAKALL R, SMOUSE P E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research: an update. Bioinformatics, 2012, 28(19): 2537-2539.
[21]
TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.

doi: 10.1093/molbev/msab120 pmid: 33892491
[22]
LETUNIC I, BORK P. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics, 2007, 23(1): 127-128.

doi: 10.1093/bioinformatics/btl529 pmid: 17050570
[23]
LYTTLE T W. Segregation distorters. Annual Review of Genetics, 1991, 25: 511-557.

pmid: 1812815
[24]
BOTSTEIN D, WHITE R L, SKOLNICK M, DAVIS R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32(3): 314-331.

pmid: 6247908
[25]
ALHARIRI A, BEHERA T K, JAT G S, DEVI M B, BOOPALAKRISHNAN G, HEMEDA N F, TELEB A A, ISMAIL E, ELKORDY A. Analysis of genetic diversity and population structure in bitter gourd (Momordica charantia L.) using morphological and SSR markers. Plants, 2021, 10(9): 1860.
[26]
聂兴华, 李伊然, 田寿乐, 王雪峰, 苏淑钗, 曹庆芹, 邢宇, 秦岭. 中国板栗品种(系)DNA指纹图谱构建及其遗传多样性分析. 园艺学报, 2022, 49(11): 2313-2324.

doi: 10.16420/j.issn.0513-353x.2021-0863
NIE X H, LI Y R, TIAN S L, WANG X F, SU S C, CAO Q Q, XING Y, QIN L. Construction of DNA fingerprint map and analysis of genetic diversity for Chinese chestnut cultivars(lines). Acta Horticulturae Sinica, 2022, 49(11): 2313-2324. (in Chinese)
[27]
李晓娟, 赵文菊, 赵孟良, 郭怡婷, 马一栋, 马雪杰, 任延靖. 球茎甘蓝SSR分子标记开发及指纹图谱构建. 南方农业学报, 2023, 54(1): 22-33.
LI X J, ZHAO W J, ZHAO M L, GUO Y T, MA Y D, MA X J, REN Y J. SSR molecular markers development and fingerprints construction in kohlrabi(Brassica oleracea var. gongylodes L.). Journal of Southern Agriculture, 2023, 54(1): 22-33. (in Chinese)
[28]
郭栋梁, 黄石连, 王静, 韩冬梅, 李建光. 基于SSR分子标记的龙眼种质资源遗传多样性分析及其指纹图谱构建. 中国农学通报, 2022, 38(36): 67-73.

doi: 10.11924/j.issn.1000-6850.casb2022-0009
GUO D L, HUANG S L, WANG J, HAN D M, LI J G. Longan germplasms resources: Genetic diversity analysis and fingerprint construction based on SSR markers. Chinese Agricultural Science Bulletin, 2022, 38(36): 67-73. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2022-0009
[29]
王瑞, 洪文娟, 罗华, 赵丽娜, 陈颖, 王君. 石榴品种SSR指纹图谱构建及杂种父本鉴定. 园艺学报, 2023, 50(2): 265-278.

doi: 10.16420/j.issn.0513-353x.2021-1008
WANG R, HONG W J, LUO H, ZHAO L N, CHEN Y, WANG J. Construction of SSR fingerprints of pomegranate cultivars and male parent identification of hybrids. Acta Horticulturae Sinica, 2023, 50(2): 265-278. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2021-1008
[30]
孙泽硕, 蒋冬月, 柳新红, 沈鑫, 李因刚, 屈雨飞, 李永华. 基于SSR标记的42份樱花品种的聚类分析及DNA指纹图谱构建. 园艺学报, 2023, 50(3): 657-668.

doi: 10.16420/j.issn.0513-353x.2021-1057
SUN Z S, JIANG D Y, LIU X H, SHEN X, LI Y G, QU Y F, LI Y H. Cluster analysis and construction of DNA fingerprinting of 42 oriental cultivars of flowering cherry based on SSR markers. Acta Horticulturae Sinica, 2023, 50(3): 657-668. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2021-1057
[31]
崔竣杰, 程蛟文, 曹毅, 胡开林. 基于SSR标记和表型性状构建苦瓜核心种质的研究. 中国蔬菜, 2022(2): 25-32.
CUI J J, CHENG J W, CAO Y, HU K L. Studies on construction of bitter gourd core collection based on SSR markers and phenotypic traits. China Vegetables, 2022(2): 25-32. (in Chinese)
[32]
MANGELSDORF P C, JONES D F. The expression of Mendelian factors in the gametophyte of maize. Genetics, 1926, 11(5): 423-455.

doi: 10.1093/genetics/11.5.423 pmid: 17246465
[33]
MATSUSHITA S, ISEKI T, FUKUTA Y, ARAKI E, KOBAYASHI S, OSAKI M, YAMAGISHI M. Characterization of segregation distortion on chromosome 3 induced in wide hybridization between indica and japonica type rice varieties. Euphytica, 2003, 134(1): 27-32.
[34]
WANG G, HE Q Q, XU Z K, SONG R T. High segregation distortion in maize B73 x teosinte crosses. Genetics and Molecular Research, 2012, 11(1): 693-706.
[35]
MANABE M, INO T, KASAYA M, TAKUMI S, MORI N, OHTSUKA I, NAKAMURA C. Segregation distortion through female gametophytes in interspecific hybrids of tetraploid wheat as revealed by RAPD analysis. Hereditas, 2004, 131(1): 47-53.
[36]
ZAMIR D, TANKSLEY S D, JONES R A. Haploid selection for low temperature tolerance of tomato pollen. Genetics, 1982, 101(1): 129-137.

doi: 10.1093/genetics/101.1.129 pmid: 17246078
[37]
LAMBRIDES C J, GODWIN I D, LAWN R J, IMRIE B C. Segregation distortion for seed testa color in mungbean (Vigna radiata L. wilcek). Journal of Heredity, 2004, 95(6): 532-535.
[38]
谷艳鹏, 张泽人, 孙涛, 韩庆军, 栗宁宁, 鲁仪增, 窦德泉, 郑健. 基于EST-SSR标记的花楸树和少叶花楸杂交F1代群体的杂种鉴定及遗传关系分析. 植物资源与环境学报, 2022, 31(4): 65-73.
GU Y P, ZHANG Z R, SUN T, HAN Q J, LI N N, LU Y Z, DOU D Q, ZHENG J. Hybrid identification and genetic relationship analysis of F1 hybrid population of Sorbus pohuashanensis and Sorbus hupehensis var. paucijuga based on EST-SSR marker. Journal of Plant Resources and Environment, 2022, 31(4): 65-73. (in Chinese)
[39]
周宁宁, 李淑斌, 李远波, 蹇洪英, 晏慧君, 王其刚, 陈敏, 邱显钦, 张颢, 唐开学. 二倍体月季F1群体的SSR鉴定与遗传分析. 园艺学报, 2017, 44(1): 151-160.

doi: 10.16420/j.issn.0513-353x.2016-0413
ZHOU N N, LI S B, LI Y B, JIAN H Y, YAN H J, WANG Q G, CHEN M, QIU X Q, ZHANG H, TANG K X. Hybrids identification and genetic analysis in diploid roses population (F1) using SSR markers. Acta Horticulturae Sinica, 2017, 44(1): 151-160. (in Chinese)
[40]
汪国云, 沈禹彤, 贾慧敏, 焦云, 柴春燕, 包劲松, 孙德利, 贾惠娟, 高中山. ‘荸荠’ב东魁’杨梅杂交群体构建与SSR杂种鉴定. 果树学报, 2015, 32(4): 555-560, 737.
WANG G Y, SHEN Y T, JIA H M, JIAO Y, CHAI C Y, BAO J S, SUN D L, JIA H J, GAO Z S. Construction of a crossing population between two Chinese bayberry cultivars ‘Biqi’ and ‘Dongkui’ and hybrid identification by polymorphic SSRs. Journal of Fruit Science, 2015, 32(4): 555-560, 737. (in Chinese)
[41]
王哲. 植物杂交后代中基因偏分离的产生原因及其进化意义. 遗传, 2016, 38(9): 801-810.
WANG Z. Distorted segregation in plant hybrids and its implication for evolution. Hereditas, 2016, 38(9): 801-810. (in Chinese)
[42]
TAYLOR D R, INGVARSSON P K. Common features of segregation distortion in plants and animals. Genetica, 2003, 117(1): 27-35.

doi: 10.1023/a:1022308414864 pmid: 12656570
[1] QI RenJie, NING Yu, LIU Jing, LIU ZhiYang, XU Hai, LUO ZhiDan, CHEN LongZheng. Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(9): 1779-1793.
[2] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[3] ZHAI CaiJiao, GE LiJiao, CHENG YuJing, QIU Liang, WANG XiaoQiu, LIU ShuiDong. Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers [J]. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457.
[4] XUE YaPeng, DING YiBing, WANG YuZhuo, WANG XiaoDan, CAO XiaoNing, SANTRA Dipak K, CHEN Ling, QIAO ZhiJun, WANG RuiYun. Construction of DNA Molecular Identity Card of Core Germplasm of Broomcorn Millet in China Based on Fluorescence SSR [J]. Scientia Agricultura Sinica, 2023, 56(12): 2249-2261.
[5] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[6] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[7] ZhiJun XU, Sheng ZHAO, Lei XU, XiaoWen HU, DongSheng AN, Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[8] LIU XiQiang, ZHANG Han, WANG XueMin, YI DengXia, WANG Zan. Association Mapping of Fall Dormancy with SSR Markers in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2018, 51(2): 226-232.
[9] YANG ZiBo, WANG AnBang, LENG SuFeng, GU ZhengZhong, ZHOU YangMei. Genetic Analysis of the Novel High-Yielding Wheat Cultivar Huaimai33 [J]. Scientia Agricultura Sinica, 2018, 51(17): 3237-3248.
[10] XUE YanTao, LU Ping, QIAO ZhiJun, LIU MinXuan, WANG RuiYun. Genetic Diversity and Genetic Relationship of Broomcorn Millet (Panicum miliaceum L.) Germplasm Based on SSR Markers [J]. Scientia Agricultura Sinica, 2018, 51(15): 2846-2859.
[11] LI Yi, MA XianFeng, TANG Hao, LI Na, JIANG Dong, LONG GuiYou, LI DaZhi, NIU Ying, HAN RuiXi, DENG ZiNiu. SSR Markers Screening for Identification of Citrus Cultivar and Construction of DNA Fingerprinting Library [J]. Scientia Agricultura Sinica, 2018, 51(15): 2969-2979.
[12] WANG FengGe, LI Xin, YANG Yang, YI HongMei, JIANG Bin, ZHANG XianChen, HUO YongXue, ZHU Li, GE JianRong, WANG Rui, REN Jie, WANG Lu, TIAN HongLi, ZHAO JiuRan. SSR Analyser:A Special Software Suitable for SSR Fingerprinting of Plant Varieties [J]. Scientia Agricultura Sinica, 2018, 51(12): 2248-2262.
[13] LIU WenPing, Lü Wei, LI DongHua, REN GuoXiang, ZHANG YanXin, WEN Fei, HAN JunMei, ZHANG XiuRong. Drought Resistance of Sesame Germplasm Resources and Association Analysis at Adult Stage [J]. Scientia Agricultura Sinica, 2017, 50(4): 625-639.
[14] LIU Huan, ZHANG XinQuan, MA Xiao, ZHANG RuiZhen, HE GuangWu, PAN Ling, JIN MengYa. Construction of EST-SSR Fingerprinting Based on Fluorescence Detection Technology for Italian Ryegrass [J]. Scientia Agricultura Sinica, 2017, 50(3): 437-450.
[15] WEN Xin, DENG Shu, ZHANG ChunFen, HOU LiYuan, SHI JiangPeng, NIE YuanJun, XIAO Rong, QIN YongJun, CAO QiuFen. Regeneration of New Germplasms Using Anther Culture of Apple Cultivar ‘Gala’ [J]. Scientia Agricultura Sinica, 2017, 50(14): 2793-2806.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!