Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (22): 4589-4602.doi: 10.3864/j.issn.0578-1752.2025.22.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening and Identification of miRNAs in Potato Seedlings in Response to High Temperature Stress

DING Ning1(), QI EnFang1(), JIA XiaoXia1, HUANG Wei1, MA LiRong1, LI JianWu1, YAN RuNan2   

  1. 1 Potato Research Institute, Gansu Academy of Agricultural Sciences/Gansu Engineering Laboratory of Potato Germplasm Resources Innovation/National Germplasm Resources Agricultural Experimental Station, Weiyuan 748201, Gansu
    2 Agronomy College, Gansu Agricultural University, Lanzhou 730070
  • Received:2025-05-26 Accepted:2025-07-23 Online:2025-11-16 Published:2025-11-21
  • Contact: QI EnFang

Abstract:

【Objective】The potato is a nutrient-rich and widespread non-grain crop that can be eaten as a staple food or vegetable. To reveal the influence of high temperature stress on the growth and development of potato seedlings, this study screened and identified small RNAs (miRNAs) and potential target genes that specifically respond to heat stress, providing a theoretical basis for research on the thermotolerance mechanism in potatoes. 【Method】The experimental material used in this study was 1-month-old tissue-cultured seedlings of Longshu 7, a potato variety independently bred by the Potato Research Institute, Gansu Academy of Agricultural Sciences. After incubation in plant growth chamber under normal temperature (17 ℃) and high temperature (28 ℃) for 10 days, samples were collected and subjected to small RNA sequencing (sRNA-seq) and transcriptome sequencing (RNA-seq). Based on high-quality sequencing data, we used bioinformatics methods to analyze and screen candidate miRNA-target gene pairs exhibiting negative regulatory relationships. In addition, real-time quantitative PCR (RT-qPCR) and dual luciferase assays (DLR) were used to validate some miRNA-target pairs. 【Result】Under high temperature stress, the abundance of 21 and 24 nt miRNAs in potato seedlings increased significantly, and the overall variation of all miRNA expression levels was 27.0% for PC1, while PC1 and PC2 accounted for 39.4% of the overall variation. According to miRNAs differential expression analysis, a total of 100 miRNAs were obtained, including 62 upregulated and 38 downregulated. Among the upregulated miRNAs, the fold change ranged from 1.02 to 6.94; while the fold change ranged from 1.01 to 7.11 in the downregulated miRNAs list. Transcriptome analysis showed that 579 differentially expressed genes were upregulated and 958 differentially expressed genes were downregulated in potato seedlings under high temperature stress. These genes were mainly involved in responding to biotic stress, external stress stimuli, and other cellular components and developmental processes. Integration of sRNA-seq and RNA-seq analyses revealed that a total of 13 miRNA-target pairs were obtained in the up-regulated miRNAs, while 5 miRNA-target gene pairs were obtained in the down-regulated miRNAs. Then, we selected three pairs of differentially expressed regulatory relationships (miRNA8051-Soltu.DM.10G026540, miRNA8051- Soltu.DM.10G026560, and miR5072-Soltu.DM.04G010170) for RT-qPCR. The results revealed that miRNAs showed opposite expression trends with their potential target genes, consistent with the results of bioinformatics analysis. In addition, we analyzed the regulatory pair of miRNA8051-Soltu.DM.10G026540 or Soltu.DM.10G026560 using DLR assay, confirming that miRNA8051 has a negative regulatory effect on both Soltu.DM.10G026540 and Soltu.DM.10G026560. 【Conclusion】It was revealed that potato seedlings under high temperature stress would regulate the target genes expression in a post-transcriptional regulatory manner, thus producing certain adaptations to the adverse environment. These candidate genes may be involved in biological processes such as transcription factors, wax synthesis and epigenetic regulation of methylation.

Key words: potato, high temperature stress, miRNAs, gene expression, regulatory mechanism

Table 1

Primer sequences for RT-qRCR and vector construction"

引物 Primer 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′)
miR8051 GTGGACTGGAATCGGCAGTAT CTCTCAGCTTCCACTTCTCCC
miR5072 GGTTAAAACCTAAGTAAGATTCCCC TTTCGGTTTGTTCGAAATTGGGT
Soltu.DM.10G026540 TGATGTTGGCTGGGAAGGAC GACCGCTTGGAAGGATGTCA
Soltu.DM.10G026560 GCGGGTCCAAGGACTTGTTT TCAAAAGAGCTAAAGATTTGCCCA
Soltu.DM.04G010170 CAGCATGGCGTTTCTGATGG CTGCCTTTTCTCAGCTTGCTC
EF1a-F GATGAAATCGTGAAGGAAGTTTCTTC CAGTCAAGGTTGGTAGACCT
pCAMBIA1300-miR8051 CTATTTACAATTACAGTCGAAAAAGGATCCGATGAAATCCA GCTCCTCGCCCTTGCTCACCTCTCAGCTTCCACTTCTCCC
Soltu.DM.10G026540_Target GGAGAGGACACGCTGAGGATCCATGGATTTTCTTGAAT GTTTTTGGCGTCTTCCATTGTTTGATCCCTCCACGCTCG
Soltu.DM.10G026540_Target_MUT AGAATGACCTTATTGTTCTATGTAATGGGGAGAAT TAGAACAATAAGGTCATTCTTGTTTTTGGACTAACACGATG
Soltu.DM.10G026560_Target GGAGAGGACACGCTGAGATGGATTTCCTTGAATATTCTC GTTTTTGGCGTCTTCCATTTATATCTTTTTTACAACATTAAC

Table 2

Data statistics of sRNA-seq from different samples"

样本
Sample
纯净reads
Clean reads
高质量reads
High quality reads
纯净miRNAs
Clean miRNAs
核糖体RNA丰度
rRNA
abundance
胞质小RNA丰度
scRNA_
abundance
核小RNA丰度
snRNA_
abundance
核仁小RNA丰度
snoRNA_
abundance
转运RNA丰度
tRNA
abundance
TCN-1 16392447 (100%) 16355263 (99.7732%) 15288010 (93.2625%) 3301996
(21.60%)
5671
(0.04%)
25450
(0.17%)
53877
(0.35%)
50606
(0.33%)
TCN-2 14459735 (100%) 14239278 (98.4754%) 13594436 (94.0158%) 2836799
(20.87%)
5398
(0.04%)
21904
(0.16%)
47287
(0.35%)
45777
(0.34%)
TCN-3 13314924 (100%) 12989482 (97.5558%) 12440010 (93.4291%) 2702969
(21.73%)
4754
(0.04%)
22063
(0.18%)
44538
(0.36%)
35753
(0.29%)
TCH-1 14459799 (100%) 14423958 (99.7521%) 13251235 (91.6419%) 1927858
(14.55%)
4535
(0.03%)
19379
(0.15%)
50906
(0.38%)
45752
(0.35%)
TCH-2 14618069 (100%) 14583155 (99.7612%) 10791142 (73.8206%) 1852233
(17.16%)
3781
(0.04%)
18999
(0.18%)
63230
(0.59%)
43899
(0.41%)
TCH-3 15497004 (100%) 15069982 (97.2445%) 14518489 (93.6858%) 2472050
(17.03%)
4907
(0.03%)
22620
(0.16%)
46271
(0.32%)
47418
(0.33%)

Fig. 1

Differences in miRNAs expression under 2 different temperature treatments A: miRNAs frequence, N: Normal temperature; H: High temperature; B: Principal component analysis"

Table 3

List of significantly different miRNAs"

miRNA名称
miRNA ID
miRNAs差异表达倍数
log2(FC)
P
P-value
miRNA名称
miRNA ID
miRNAs差异表达倍数
log2(FC)
P
P-value
novel-m0825-3p 6.94 0.00928592 novel-m0214-3p 1.20 0.040383
stu-miR8026 6.24 0.01507158 stu-miR7992-5p 1.19 0.009089
novel-m0760-5p 5.97 0.036320701 novel-m0449-3p 1.18 0.033509
novel-m0475-3p 3.85 0.022526637 novel-m0151-3p 1.18 0.000186
novel-m0499-5p 3.73 0.002185003 novel-m0152-3p 1.18 0.000181
novel-m0374-3p 3.53 0.023190991 novel-m0153-3p 1.18 0.000176
novel-m0409-3p 3.32 0.034725102 novel-m0311-5p 1.15 0.027759
novel-m0784-5p 3.02 0.027023613 novel-m0303-5p 1.13 0.026385
novel-m0430-3p 2.94 0.021921926 novel-m0207-3p 1.06 0.006632
novel-m0001-5p 2.76 1.02251E-11 novel-m0159-5p 1.06 0.005143
novel-m0771-3p 2.63 0.049871451 novel-m0071-5p 1.02 0.004477
novel-m0772-3p 2.63 0.049702986 novel-m0331-3p 1.02 0.029365
novel-m0364-3p 2.57 0.000123302 novel-m0023-3p -1.01 1.07E-13
novel-m0583-3p 2.52 0.002455583 stu-miR408b-3p -1.01 6.22E-13
novel-m0826-3p 2.44 0.048331723 miR5072-z -1.07 5.04E-06
miR395-x 2.37 1.02044E-06 novel-m0183-3p -1.08 4.48E-05
novel-m0730-5p 2.24 0.047301899 stu-miR166c-5p -1.15 6.85E-11
miR8001-z 2.14 0.026716933 miR169-z -1.16 0.014103
novel-m0429-5p 2.08 0.042388039 stu-miR408a-5p -1.17 8.00E-12
novel-m0717-5p 2.05 0.008140195 novel-m0154-3p -1.18 0.000177
novel-m0595-5p 1.98 0.027233458 miR164-z -1.24 0.003203
novel-m0495-5p 1.97 0.01056079 miR530-x -1.27 6.34E-09
miR5168-y 1.96 2.37146E-05 stu-miR390-5p -1.28 5.92E-11
novel-m0090-3p 1.94 3.57593E-14 miR5059-z -1.30 0.001737
novel-m0205-3p 1.79 0.000604281 stu-miR482b-5p -1.34 2.51E-09
novel-m0100-5p 1.75 9.01756E-16 miR408-z -1.44 1.80E-14
novel-m0372-3p 1.71 0.005205421 stu-miR482a-5p -1.51 3.81E-08
novel-m0099-5p 1.71 4.71339E-15 stu-miR162a-5p -1.59 6.05E-19
novel-m0272-5p 1.71 0.017362178 stu-miR162b-5p -1.59 6.05E-19
novel-m0515-5p 1.66 0.009197853 miR408-y -1.64 1.00E-26
novel-m0456-3p 1.65 0.042559707 novel-m0234-5p -1.67 0.000637
novel-m0216-3p 1.57 0.00066235 miR408-x -1.71 0.000356
novel-m0217-3p 1.57 0.000659518 miR159-x -1.74 0.000291
stu-miR167c-3p 1.44 1.10788E-07 stu-miR171d-3p -1.75 0.005512
novel-m0273-5p 1.41 0.004966411 novel-m0284-3p -1.77 0.003115
novel-m0232-5p 1.39 2.99376E-07 novel-m0787-5p -1.81 0.045229
novel-m0464-5p 1.38 0.030284811 miR162-z -1.83 2.98E-06
novel-m0040-5p 1.36 1.57E-07 stu-miR169f-3p -2.12 0.005891
novel-m0330-3p 1.33 0.042221297 miR9470-y -2.20 6.10E-22
stu-miR156e 1.31 1.82E-08 novel-m0733-3p -2.61 0.005626
stu-miR156g-3p 2.38 1.83E-08 novel-m0749-3p -2.62 0.014988
stu-miR156h-5p 1.31 1.84E-08 miR477-z -2.72 0.043248
stu-miR156i-5p 1.31 1.84E-08 novel-m0829-3p -2.88 0.018293
stu-miR156j-5p 1.31 1.83E-08 novel-m0742-3p -2.93 0.02383
stu-miR156k-5p 1.31 1.83E-08 novel-m0722-5p -3.73 2.47E-07
miR157-x 1.30 0.010945 miR8739-z -4.34 0.000957
novel-m0296-3p 1.27 0.030261 miR1091-z -5.23 0.04115
novel-m0324-5p 1.22 0.026115 novel-m0682-3p -5.74 0.028726
novel-m0325-5p 1.22 0.026033 novel-m0683-3p -5.74 0.028642
novel-m0373-3p 1.21 0.012318 stu-miR8051-5p -7.11 0.021868

Table 4

Data statistics of RNA-seq from different samples"

样本 Sample 原始data Raw data 纯净data Clean data 比对率 Unique mapped
TCN-1 36596200 36480366 (99.68%) 29898162 (82.19%)
TCN-2 50979834 50814196 (99.68%) 42957666 (84.83%)
TCN-3 50663170 50512048 (99.70%) 42795691 (85.03%)
TCH-1 53813724 53673574 (99.74%) 45085569 (84.38%)
TCH-2 51021820 50870562 (99.70%) 42776280 (84.36%)
TCH-3 44572552 44448784 (99.72%) 36244428 (81.83%)

Fig. 2

RNA-seq sequencing analysis under different treatments A: Heat map analysis of correlation between samples; B: Differential gene counts; C: Involved biological pathways. The yellow line in Figure C represents the threshold line at Q value=0.05."

Fig. 3

Integrating sRNA-seq and RNA-seq data to screen candidate miRNA-target pairs"

Table 5

Data statistics of RNA-seq from different samples"

差异表达miRNA
differExp miRNAs
miRNAs名称
miRNAs ID
miRNAs差异表达倍数log2(FC) 基因ID
Gene ID
基因差异表达倍数
log2(FC)
上调的miRNAs
UP-regulated miRNAs
novel-m0499-5p 3.73 Soltu.DM.10G021470 -3.81
novel-m0499-5p 3.73 Soltu.DM.10G021480 -3.24
novel-m0001-5p 2.76 Soltu.DM.10G020770 -2.52
novel-m0001-5p 2.76 Soltu.DM.10G020780 -1.77
novel-m0583-3p 2.52 Soltu.DM.08G004390 -1.40
miR395-x 2.37 Soltu.DM.03G009610 -1.22
miR156e/h/i/j/k 1.31 Soltu.DM.03G028990 -1.34
miR156g-3p 2.38 Soltu.DM.04G015140 -1.76
miR156e/h/i/j/k 1.31 Soltu.DM.05G001040 -1.14
miR156e/h/i/j/k 1.31 Soltu.DM.05G011910 -1.27
miR156e/h/i/j/k 1.31 Soltu.DM.07G005930 -1.82
miR156e/h/i/j/k 1.31 Soltu.DM.10G029290 -1.15
miR156e/h/i/j/k 1.31 Soltu.DM.12G014160 -1.23
下调的miRNAs
Down-regulated miRNAs
miR8051-5p -7.11 Soltu.DM.10G026540 9.13
miR8051-5p -7.11 Soltu.DM.10G026560 7.23
miR1091-z -5.23 Soltu.DM.11G003400 1.63
miR9470-y -2.20 Soltu.DM.12G022800 1.16
miR5072-z -1.07 Soltu.DM.04G010170 1.05

Fig. 4

Verification by RT-qPCR and dual luciferase assay (DLR) A: RT-qPCR assay; B: Illustration of the RNA secondary structure of miR8051 precursor; C: Dual luciferase assay (DLR). WT: The CDS sequence recognized by miR8051 in Soltu.DM.10G026540 or Soltu.DM.10G026560. MUT: The sequence after mutation of the recognized site in CDS sequence"

[1]
ZHAO C, LIU B, PIAO S L, WANG X H, LOBELL D B, HUANG Y, HUANG M T, YAO Y T, BASSU S, CIAIS P, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): 9326-9331.
[2]
ADEKANMBI T, WANG X Q, BASHEER S, LIU S Q, YANG A L, CHENG H Y. Climate change impacts on global potato yields: A review. Environmental Research: Climate, 2024, 3(1): 012001.
[3]
DING N, ZHANG B L. microRNA production in Arabidopsis. Frontiers in Plant Science, 2023, 14: 1096772.
[4]
苏小雨, 谭政委, 李春明, 李磊, 鲁丹丹, 余永亮, 董薇, 安素妨, 杨青, 孙瑶, 等. 高温胁迫下芝麻全基因组甲基化差异及关联基因表达分析. 中国农业科学, 2024, 57(24): 4825-4838. doi: 10.3864/j.issn.0578-1752.2024.24.001.
SU X Y, TAN Z W, LI C M, LI L, LU D D, YU Y L, DONG W, AN S F, YANG Q, SUN Y, et al. Analysis of genome-wide methylation differences and associated gene expression of sesame varieties under high temperature stress. Scientia Agricultura Sinica, 2024, 57(24): 4825-4838. doi: 10.3864/j.issn.0578-1752.2024.24.001. (in Chinese)
[5]
ZHANG Y Y, ZHOU Y, ZHU W M, LIU J Z, CHENG F. Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance. Frontiers in Plant Science, 2022, 13: 965745.
[6]
STIEF A, ALTMANN S, HOFFMANN K, PANT B D, SCHEIBLE W R, BÄURLE I. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell, 2014, 26(4): 1792-1807.
[7]
ÖZTÜRK GÖKÇE Z N, AKSOY E, BAKHSH A, DEMIREL U, ÇALIŞKAN S, ÇALIŞKAN M E. Combined drought and heat stresses trigger different sets of miRNAs in contrasting potato cultivars. Functional & Integrative Genomics, 2021, 21(3): 489-502.
[8]
HE M, LIU J, TAN J, JIAN Y Q, LIU J G, DUAN Y F, LI G C, JIN L P, XU J F. A comprehensive interaction network constructed using miRNAs and mRNAs provides new insights into potato tuberization under high temperatures. Plants, 2024, 13(7): 998.
[9]
ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1): 139-140.
[10]
YAN T, YOO D, BERARDINI T Z, MUELLER L A, WEEMS D C, WENG S, CHERRY J M, RHEE S Y. PatMatch: A program for finding patterns in peptide and nucleotide sequences. Nucleic Acids Research, 2005, 33(suppl_2): W262-W266.
[11]
KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357-360.
[12]
LI B, DEWEY C N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12: 323.
[13]
GAO W W, LI M K, CHENG H P, XIA K F, ZHANG M Y. The miR5810/OsMRLP6 regulatory module affects rice seedling photosynthesis. The Crop Journal, 2023, 11(6): 1686-1695.
[14]
ZHANG G D, TANG R M, NIU S Y, SI H J, YANG Q, RAJORA O P, LI X Q. Heat-stress-induced sprouting and differential gene expression in growing potato tubers: Comparative transcriptomics with that induced by postharvest sprouting. Horticulture Research, 2021, 8(1): 226.
[15]
MUTHONI J, KABIRA J N. Potato production in the hot tropical areas of Africa: Progress made in breeding for heat tolerance. Journal of Agricultural Science, 2015, 7(9): 220-227.
[16]
LI Y, HE Y Z, QIN T, GUO X L, XU K, XU C X, YUAN W Y. Functional conservation and divergence of miR156 and miR529 during rice development. The Crop Journal, 2023, 11(3): 692-703.
[17]
YU N, NIU Q W, NG K H, CHUA N H. The role of miR156/SPLs modules in Arabidopsis lateral root development. The Plant Journal, 2015, 83(4): 673-685.
[18]
XU M L, HU T Q, ZHAO J F, PARK M Y, EARLEY K W, WU G, YANG L, POETHIG R S. Developmental functions of miR156-regulated Squamosa promoter binding protein-like (spl) genes in Arabidopsis thaliana. PLoS Genetics, 2016, 12(8): e1006263.
[19]
YUAN J, WANG X, QU S T, SHEN T, LI M J, ZHU L C. The roles of miR156 in abiotic and biotic stresses in plants. Plant Physiology and Biochemistry, 2023, 204: 108150.
[20]
MATTHEWS C, ARSHAD M, HANNOUFA A. Alfalfa response to heat stress is modulated by microRNA156. Physiologia Plantarum, 2019, 165(4): 830-842.
[21]
XIE Y R, ZHOU Q, ZHAO Y P, LI Q Q, LIU Y, MA M D, WANG B B, SHEN R X, ZHENG Z G, WANG H Y. FHY3 and FAR1 integrate light signals with the miR156-SPL module-mediated aging pathway to regulate Arabidopsis Flowering. Molecular Plant, 2020, 13(3): 483-498.
[22]
WANG H, ZHU S Y, YANG C, ZENG D Y, LUO C F, DAI C H, CHENG D Y, LV X H. Expression and functional identification of SPL6/7/9 genes under drought stress in sugarbeet seedlings. International Journal of Molecular Sciences, 2024, 25(16): 8989.
[23]
LUO H Y, YANG J W, LIU S Y, LI S G, SI H J, ZHANG N. Control of plant height and lateral root development via stu-miR156 regulation of SPL9 transcription factor in potato. Plants, 2024, 13(5): 723.
[24]
CHAO L M, LIU Y Q, CHEN D Y, XUE X Y, MAO Y B, CHEN X Y. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage. Molecular Plant, 2017, 10(5): 735-748.
[25]
GREER S, WEN M, BIRD D, WU X M, SAMUELS L, KUNST L, JETTER R. The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiology, 2007, 145(3): 653-667.
[26]
NEGIN B, HEN-AVIVI S, ALMEKIAS-SIEGL E, SHACHAR L, JANDER G, AHARONI A. Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering. New Phytologist, 2023, 237(5): 1574-1589.
[27]
HE X J, HSU Y F, PONTES O, ZHU J H, LU J, BRESSAN R A, PIKAARD C, WANG C S, ZHU J K. NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes & Development, 2009, 23(3): 318-330.
[28]
DUTTA M, RATURI V, GAHLAUT V, KUMAR A, SHARMA P, VERMA V, GUPTA V K, SOOD S, ZINTA G. The interplay of DNA methyltransferases and demethylases with tuberization genes in potato (Solanum tuberosum L.) genotypes under high temperature. Frontiers in Plant Science, 2022, 13: 933740.
[29]
任茂, 李博, 徐延浩, 张文英. 高温胁迫诱导棉花甲基化变化分析. 分子植物育种, 2017, 15(3): 1069-1076.
REN M, LI B, XU Y H, ZHANG W Y. Methylation-sensitive amplified polymorphism analysis of epigenetic changes in cotton (Gossypium hirsutum L.) under heat stress. Molecular Plant Breeding, 2017, 15(3): 1069-1076. (in Chinese)
[30]
宋爽, 刘宇, 高琪, 赵爽, 王守现, 宋庆港. 高温胁迫下香菇基因组甲基化差异分析. 中国食用菌, 2019, 38(10): 9-11, 16.
SONG S, LIU Y, GAO Q, ZHAO S, WANG S X, SONG Q G. Analysis of genomic DNA methylation of Lentinula edodes under heat stress. Edible Fungi of China, 2019, 38(10): 9-11, 16. (in Chinese)
[1] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[2] MENG Hui, LUO BingYu, LU ZhengYu, WANG Peng, KANG DongRu, ZHENG ChengShu, WANG WenLi. Cloning of CmASMT and Its Role in Thermotolerance of Chrysanthemum [J]. Scientia Agricultura Sinica, 2025, 58(8): 1617-1626.
[3] TANG Yu, LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(6): 1083-1101.
[4] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[5] ZHANG TianYu, LI Bai, ZANG JinPing, CAO HongZhe, DONG JinGao, XING JiHong, ZHANG Kang. Genome-Wide Identification and Expression Analysis of HMG Family Genes in Botrytis cinerea [J]. Scientia Agricultura Sinica, 2025, 58(4): 704-718.
[6] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[7] ZHANG LinLin, GONG Rui, CUI YanLing, ZHONG XiongHui, LI Ye, LI RanHong, QIAN ZongWei. Effect Analysis of SmWRKY30 in Eggplant Resistance to Ralstonia solanacearum by Virus Induced Gene Silencing (VIGS) [J]. Scientia Agricultura Sinica, 2025, 58(3): 548-563.
[8] DU TaiFeng, ZHOU YuanYuan, QIN Zhen, LI AiXian, WANG QingMei, ZHANG LiMing, HOU FuYun. Exogenous Brassinolide Alleviates the Inhibitory Effect of SPVD on Sweet Potato Storage Roots Germination [J]. Scientia Agricultura Sinica, 2025, 58(22): 4628-4637.
[9] CHEN YongXian, CHEN RuiJiang, DU YiZhi, ZHU JunJie, CHEN WanXia, ZHAO ZiHan, WANG JiChun, DU Kang, ZHANG Kai. Screening and Identification of Drought-Tolerant Sweet Potato Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(2): 214-237.
[10] LEI BiXin, YU YongBo, ZHANG MingTong, CUI GuoJi, HONG JiaWen, HU Tao, YOU AiXin, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Impact of Post-Anthesis Heat Stress on Nitrogen Use Efficiency and Yield Components in Wheat [J]. Scientia Agricultura Sinica, 2025, 58(19): 3837-3856.
[11] ZHANG Jie, HU ChenXi, QI JianBo, ZHANG YongTai, CHEN YiBo, ZHANG YongJi. Effects of Exogenous Zeatin on Photosynthetic Parameter, Antioxidant System and Expression of Genes Related to Zeatin Synthesis in Pepper Under Low-Temperature Combined with Low-Light Stress [J]. Scientia Agricultura Sinica, 2025, 58(19): 3959-3969.
[12] ZHAO DongLan, MA JuKui, XIAO ShiZhuo, ZHOU ZhiLin, ZHAO LingXiao, WANG Jie, DAI XiBin, SUN HouJun, CAO QingHe. QTL Analysis for Resistance to Stem Nematode Disease in Sweetpotato [J]. Scientia Agricultura Sinica, 2025, 58(17): 3389-3399.
[13] XIE HuiHui, YANG QiuHua, LI WenLi, ZHU JinCheng, LI HuiXia, ZHANG Feng. Identification of Wild Potato Introgression Lines Resistant to Southern Root-Knot Nematode [J]. Scientia Agricultura Sinica, 2025, 58(14): 2924-2932.
[14] ZHAO TianTian, YUAN JianLong, ZHUO FengQi, TANG ZhenSan, XU Jie, ZHANG Feng. Comprehensive Evaluation of Potato Flour Quality and Variety Screening [J]. Scientia Agricultura Sinica, 2025, 58(13): 2522-2537.
[15] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!