Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (8): 1430-1443.doi: 10.3864/j.issn.0578-1752.2024.08.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China

WU YuZhen1,2(), HUANG LongYu1,2, ZHOU DaYun1,2, HUANG YiWen1,2, FU ShouYang1,2, PENG Jun1,2(), KUANG Meng1,2()   

  1. 1 Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 450001, Henan
    2 National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan
  • Received:2023-11-09 Accepted:2024-01-08 Online:2024-04-16 Published:2024-04-24
  • Contact: PENG Jun, KUANG Meng

Abstract:

【Objective】Cotton, a heterotetraploid crop with a complex genome structure, faces challenges in achieving high homozygosity due to frequent cross-pollination. The absence of effective technical supervision in the cotton seed market and the persistence of disordered varieties have a negative impact on the consistency of fiber quality. The objectives of this study are threefold: to establish a DNA fingerprint database for approved cotton varieties in China over the past 20 years, to explore a high-throughput SSR identification model for cotton varieties, and to provide a basis for the authentication of existing varieties and the specific identification of new cotton varieties. Additionally, we aim to analyze the genetic diversity and population differentiation among approved varieties. Ultimately, our goal is to provide a theoretical framework for identifying cotton varieties that are well-suited to different ecological regions and for developing varieties that can adapt to new environments. 【Method】Based on multiplex PCR technology and capillary electrophoresis detection method, using 60 SSR markers screened to construct a DNA fingerprint library of 1 015 standard samples of cotton approved varieties. Through the plant variety DNA fingerprint library management system, the SSR fingerprints of approved varieties were compared pairwise to analyze the genetic differences of approved varieties and screen the core SSR loci for variety identification. Cluster analysis and population structure analysis were used to analyze the genetic diversity of 1 015 cotton approved varieties and calculate the genetic differentiation index between populations. 【Result】60 SSR markers amplified 216 allelic variations in 1 015 approved varieties, with an average of 3.6 allelic variations and a mean PIC value of 0.37. When the SSR fingerprints of the 1 015 approved varieties were compared, a total of 513 591 pairwise results were generated, with a maximum of 58 different loci between samples. The percentage of different loci was mainly concentrated at 41%-70%, involving 428 115 groups, accounting for 83.36%. Among them, when the percentage of different loci was at 51%-60%, the largest number of groups was involved, accounting for 197 829 groups, accounting for 38.52%. When the percentage of different loci between varieties was greater than 20%, it accounted for more than 99% of all pairwise comparison groups, and the pairwise comparison results with a percentage of different loci lower than 20% only accounted for 0.58%. Based on the combination identification method, a set of cores SSR loci containing 10 SSR loci was selected, and the discrimination ability among the 1 015 varieties reached 99%. Clustering results and population structure analysis showed that the 1 015 varieties were clearly divided into five subpopulations. G1 (n=240) was an early-maturing cotton subpopulation, mainly distributed in northern and inland regions of China. This subpopulation had the most abundant genetic diversity among varieties, with an average genetic distance of 0.419 between varieties. G2 (n=277) was a medium-maturing cotton subpopulation, distributed in the Yangtze River Basin. This subpopulation had more hybrids, with an average genetic distance of 0.309 within the subpopulation. G3 (n=109) belonged to early-maturing and medium-maturing cotton subpopulations, distributed in Hebei'sHeilonggang region. This subpopulation had relatively simple genetic components, with the smallest average genetic distance among upland cotton subpopulations at only 0.150. G4 (n=254) belonged to a medium-early maturing cotton subpopulation, mainly distributed in the Yellow River Basin. The average genetic distance within this subpopulation was 0.307. G5 (n=37) consisted of 37 sea island cotton samples, with the smallest average genetic distance within the population at only 0.149. The genetic differentiation level between sea island cotton and upland cotton was the highest, with an average FST value of 0.503. Among upland cotton populations, the genetic differentiation level between G3 and other subpopulations was the highest, with FST values ranging from 0.193 to 0.242. The genetic differentiation level between the Yangtze River Basin and the Yellow River Basin was the lowest, with an FST value of 0.112. 【Conclusion】A DNA fingerprint library of standard samples of 1 015 approved varieties in China over the past 20 years was constructed. A set of cores SSR loci containing 10 SSR loci was selected to clearly identify more than 99% of the varieties. A high-throughput cotton identification model of "core loci + extended loci" was created. The 1 015 varieties were divided into five subpopulations, and upland cotton had obvious geographical distribution characteristics.

Key words: cotton, standard samples, SSR markers, DNA fingerprint database, comprehensive evaluation

Table 1

Multiple primers combination information"

组合
Group
PET荧光标记(红)
PET (Red)
FAM荧光标记(蓝)
FAM (Blue)
VIC荧光标记(绿)
VIC (Green)
NED荧光标记(黑)
NED (Black)
1 PC05、PC06、PC24 PC30、PC12 PC04、PC15、PC03 PC25、PC16
2 PC10、PC22、PC29 PC11、PC18、PC23 PC14、PC21 PC07、PC09
3 PC17、PC20、PC28 PC02、PC26、PC27 PC08、PC19 PC01、PC13
4 PC36、PC49、PC59 PC39、PC41、PC42 PC43、PC45 PC31、PC35
5 PC51、PC52、PC53 PC32、PC50、PC55 PC38、PC47 PC57、PC60
6 PC48、PC54 PC34、PC44、PC58 PC37、PC46 PC33、PC40、PC56

Table 2

Results of amplification with 60 SSR primers"

引物编号
Marker No.
等位基因数目
Allele No.
基因型数目
Genotype No.
遗传多样性
Gene diversity
杂合率
Heterozygosity
PIC 主要等位变异及频率
Major allele, frquency
PC01 5 11 0.59 0.33 0.53 313, 0.56
PC02 4 8 0.27 0.10 0.25 290, 0.85
PC03 5 12 0.62 0.51 0.55 182, 0.46
PC04 3 4 0.49 0.50 0.37 367, 0.59
PC05 3 5 0.52 0.48 0.41 268, 0.57
PC06 4 9 0.56 0.57 0.48 341, 0.53
PC07 9 17 0.55 0.45 0.47 264, 0.57
PC08 6 12 0.39 0.32 0.36 153, 0.76
PC09 3 5 0.29 0.36 0.26 216, 0.84
PC10 3 5 0.25 0.16 0.23 369, 0.86
PC11 4 9 0.48 0.46 0.40 392, 0.65
PC12 6 16 0.65 0.49 0.60 307, 0.50
PC13 5 13 0.64 0.52 0.58 217, 0.50
PC14 4 8 0.42 0.33 0.35 343, 0.71
PC15 5 15 0.65 0.56 0.60 239, 0.52
PC16 5 11 0.42 0.27 0.39 190, 0.74
PC17 7 15 0.61 0.51 0.54 196, 0.50
PC18 5 11 0.54 0.44 0.47 238, 0.61
PC19 3 6 0.46 0.37 0.38 235 0.67
PC20 3 5 0.54 0.38 0.43 306, 0.51
PC21 4 7 0.62 0.60 0.54 189, 0.44
PC22 3 5 0.40 0.36 0.32 218, 0.72
PC23 2 3 0.50 0.57 0.37 184, 0.54
PC24 3 6 0.52 0.52 0.43 199, 0.57
PC25 2 3 0.45 0.46 0.35 240, 0.66
PC26 3 4 0.42 0.28 0.33 172, 0.70
PC27 3 6 0.53 0.40 0.43 340, 0.52
PC28 4 6 0.47 0.42 0.38 258, 0.65
PC29 10 27 0.68 0.50 0.63 177, 0.45
PC30 3 6 0.46 0.41 0.39 224, 0.67
PC31 2 3 0.50 0.53 0.37 220, 0.52
PC32 2 3 0.49 0.49 0.37 218, 0.55
PC33 2 3 0.23 0.17 0.20 335, 0.87
PC34 2 3 0.28 0.17 0.24 307, 0.84
PC35 3 4 0.26 0.11 0.24 342, 0.85
PC36 6 11 0.39 0.40 0.36 271, 0.76
PC37 2 3 0.27 0.22 0.24 305, 0.84
PC38 3 5 0.49 0.40 0.40 297, 0.63
PC39 2 3 0.10 0.06 0.09 255, 0.95
PC40 2 3 0.23 0.23 0.20 226, 0.87
PC41 2 3 0.39 0.31 0.32 301, 0.73
PC42 2 3 0.50 0.50 0.37 172, 0.51
PC43 6 9 0.30 0.22 0.27 323, 0.83
PC44 2 3 0.31 0.22 0.26 384, 0.81
PC45 2 3 0.47 0.47 0.36 232, 0.62
PC46 2 3 0.30 0.26 0.25 192, 0.82
PC47 2 3 0.41 0.22 0.33 219, 0.71
PC48 3 6 0.39 0.36 0.32 324, 0.73
PC49 2 3 0.41 0.32 0.33 214, 0.71
PC50 4 8 0.37 0.15 0.33 331, 0.77
PC51 2 3 0.49 0.42 0.37 319, 0.57
PC52 3 6 0.45 0.37 0.37 255, 0.69
PC53 2 3 0.43 0.38 0.34 173, 0.68
PC54 7 12 0.22 0.03 0.21 240, 0.88
PC55 4 8 0.36 0.23 0.32 267, 0.77
PC56 2 3 0.40 0.40 0.32 266, 0.72
PC57 2 3 0.47 0.49 0.36 304, 0.62
PC58 4 9 0.42 0.33 0.39 223, 0.74
PC59 5 11 0.29 0.14 0.28 308, 0.84
PC60 3 6 0.34 0.14 0.30 230, 0.79
平均Mean 3.6 7 0.43 0.36 0.37 -

Table 3

Genetic differentiation analysis of approved cotton varieties"

差异位点百分比
Percentage of different loci (%)
差异位点数
<BOLD>D</BOLD>ifferent loci No.
涉及组数
Group No.
所占比例
<BOLD>P</BOLD>roportion (%)
累计百分比
<BOLD>C</BOLD>umulative percentage (%)
91-100 55-60 772 0.15 0.15
81-90 49-54 16879 3.29 3.44
71-80 43-48 31906 6.21 9.65
61-70 37-42 117749 22.93 32.58
51-60 31-36 197829 38.52 71.10
41-50 25-30 112537 21.91 93.01
31-40 19-24 28200 5.49 98.50
21-30 13-18 4734 0.92 99.42
11-20 7-12 2367 0.46 99.88
6-10 4-6 412 0.08 99.96
0-5 0-3 206 0.04 100.00

Fig. 1

Identification ability of SSR loci combination to 1 015 materials"

Fig. 2

Population structure and phylogenetic tree of 1 015 cultivated cotton a: Ln(P(D)) for K ranging from 1 to 10; b: Estimating number of subpopulations using ΔK; c: Model-based clustering analysis of all accessions (when K=5); d: Phylogenetic tree of 1 015 cultivated cotton"

Table 4

Subgroup information in population structure analysis of 1 015 materials"

亚群名称
Subgroup name
分布地区
Area of distribution
材料数目
No. of materials
杂交种数目
No. of hybrids
群体内平均遗传距离
Average genetic distance within a subgroup
G1 中国北部和西北内陆North China and Northwest China 240 19 0.419
G2 长江流域Yangtze River region 277 191 0.309
G3 河北省黑龙港地区Heilonggang region, Hebei 109 35 0.150
G4 黄河流域Yellow River region 254 110 0.307
G5 新疆(海岛棉)Xinjiang (Island cotton) 37 0 0.149
H / 98 43 /

Fig. 3

Pairwise comparisons of fixation index (FST) between subgroups"

[1]
赵久然, 王凤格, 易红梅, 田红丽, 杨扬. 我国玉米品种标准DNA指纹库构建研究及应用进展. 作物杂志, 2015(2): 1-6, 170.
ZHAO J R, WANG F G, YI H M, TIAN H L, YANG Y. Progress of construction of Chinese maize varieties standard DNA fingerprint database. Crops, 2015(2): 1-6, 170. (in Chinese)
[2]
王凤格, 杨扬, 易红梅, 赵久然, 任洁, 王璐, 葛建镕, 江彬, 张宪晨, 田红丽, 侯振华. 中国玉米审定品种标准SSR指纹库的构建. 中国农业科学, 2017, 50(1): 1-14. doi:10.3864/j.issn.0578-1752.2017.01.001.
WANG F G, YANG Y, YI H M, ZHAO J R, REN J, WANG L, GE J R, JIANG B, ZHANG X C, TIAN H L, HOU Z H. Construction of an SSR-based standard fingerprint database for corn variety authorized in China. Scientia Agricultura Sinica, 2017, 50(1): 1-14. doi: 10.3864/j.issn.0578-1752.2017.01.001. (in Chinese)
[3]
王凤格, 易红梅, 赵久然, 刘平, 张新明, 田红丽, 堵苑苑. 玉米品种鉴定技术规程SSR标记法: NY/T 1432-2014. 北京: 中国农业出版社, 2014.
WANG F G, YI H M, ZHAO J R, LIU P, ZHANG X M, TIAN H L, DU Y Y. Protocol for the Identification of Maize Varieties-SSR Marker Method: NY/T 1432-2014. Beijing: China Agriculture Press, 2014. (in Chinese)
[4]
刘丽华, 刘阳娜, 张明明, 李宏博, 庞斌双, 赵昌平. 我国75份小麦品种SNP和SSR指纹图谱构建与比较分析. 中国农业科技导报, 2020, 22(5): 15-23.

doi: 10.13304/j.nykjdb.2019.1023
LIU L H, LIU Y N, ZHANG M M, LI H B, PANG B S, ZHAO C P. Construction and comparative analysis of SNP and SSR fingerprints of 75 wheat cultivars in China. Journal of Agricultural Science and Technology, 2020, 22(5): 15-23. (in Chinese)

doi: 10.13304/j.nykjdb.2019.1023
[5]
刘丽华, 庞斌双, 刘阳娜, 邱军, 李宏博, 张欣, 王娜, 赵昌平. 2009-2014年国家冬小麦区域试验品系的遗传多样性及群体结构分析. 麦类作物学报, 2016, 36(2): 165-171.
LIU L H, PANG B S, LIU Y N, QIU J, LI H B, ZHANG X, WANG N, ZHAO C P. Genetic diversity and population structure analysis of winter wheat lines from recent national regional trials in China. Journal of Triticeae Crops, 2016, 36(2): 165-171. (in Chinese)
[6]
刘丽华, 庞斌双, 李宏博, 刘阳娜, 福德平, 王娜, 赵昌平. 2009-2015年北京市冬小麦区域试验品系的DNA指纹分析. 作物杂志, 2016(5): 13-18.
LIU L H, PANG B S, LI H B, LIU Y N, FU D P, WANG N, ZHAO C P. DNA fingerprint analysis of winter wheat lines of Beijing regional trials from 2009 to 2015. Crops, 2016(5): 13-18. (in Chinese)
[7]
赵昌平, 支巨振, 邱军, 庞斌双, 刘丽华, 王立新. 主要农作物品种真实性SSR分子标记检测普通小麦: NY/T 2859-2015. 北京: 中国农业出版社, 2015.
ZHAO C P, ZHI J Z, QIU J, PANG BS, LIU LH, WANG LX. Variety genuineness testing of main crops with SSR markers-Wheat (Triticum aestivum L.): NY/T 2859-2015. Beijing: China Agriculture Press, 2015. (in Chinese)
[8]
林亦霞, 王梓辛, 刘欢, 王征, 梁满中, 戴小军, 陈良碧. 基于NYT 1433-2014中48对SSR引物的94份杂交稻亲本DNA分子数字指纹库研究. 中国水稻科学, 2016, 30(6): 593-602.

doi: 10.16819/j.1001-7216.2016.6028
LIN Y X, WANG Z X, LIU H, WANG Z, LIANG M Z, DAI X J, CHEN L B. Research on DNA molecular digital fingerprint database based on 48 pairs of SSR primers for 94 hybrid rice parents in NYT 1433-2014. Chinese Journal of Rice Science, 2016, 30(6): 593-602. (in Chinese)

doi: 10.16819/j.1001-7216.2016.6028
[9]
徐群, 魏兴华, 庄杰云, 吕波, 袁筱萍, 刘平, 张新明, 余汉勇, 堵苑苑. 水稻品种鉴定技术规程SSR标记法: NY/T 1433-2014. 北京: 中国农业出版社, 2014.
XU Q, WEI X H, ZHUANG J Y, B, YUAN X P, LIU P, ZHANG X M, YU H Y, DU Y Y. Protocol for the Identification of Rice Varieties-SSR Marker Method: NY/T 1433-2014. Beijing: China Agriculture Press, 2014. (in Chinese)
[10]
程本义, 吴伟, 夏俊辉, 刘鑫, 庄杰云, 杨仕华. 浙江省水稻品种DNA指纹数据库的初步构建及其应用. 浙江农业学报, 2009, 21(6): 555-560.
CHENG B Y, WU W, XIA J H, LIU X, ZHUANG J Y, YANG S H. Construction and application of DNA fingerprint database of rice varieties in Zhejiang Province. Acta Agriculturae Zhejiangensis, 2009, 21(6): 555-560. (in Chinese)
[11]
GHISLAIN M, NÚÑEZ J, DEL ROSARIO HERRERA M, PIGNATARO J, GUZMAN F, BONIERBALE M, SPOONER D M. Robust and highly informative microsatellite-based genetic identity kit for potato. Molecular Breeding, 2009, 23(3): 377-388.

doi: 10.1007/s11032-008-9240-0
[12]
ZHANG J, YANG J J, ZHANG L K, LUO J, ZHAO H, ZHANG J N, WEN C L. A new SNP genotyping technology Target SNP-seq and its application in genetic analysis of cucumber varieties. Scientific Reports, 2020, 10: 5623.

doi: 10.1038/s41598-020-62518-6 pmid: 32221398
[13]
WEI Z Y, LI H H, LI J, YASIR A G, QIU L J. Accurate identification of varieties by nucleotide polymorphisms and establishment of scannable variety IDs for soybean germplasm. Acta Agronomica Sinica, 2018, 44(3): 315.

doi: 10.3724/SP.J.1006.2018.00315
[14]
LIU W L, QIAN Z W, ZHANG J, YANG J J, WU M S, BARCHI L, ZHAO H Y, SUN H H, CUI Y L, WEN C L. Impact of fruit shape selection on genetic structure and diversity uncovered from genome- wide perfect SNPs genotyping in eggplant. Molecular Breeding, 2019, 39(10): 140.

doi: 10.1007/s11032-019-1051-y
[15]
DU H H, YANG J J, CHEN B, ZHANG X F, ZHANG J, YANG K, GENG S S, WEN C L. Target sequencing reveals genetic diversity, population structure, core-SNP markers, and fruit shape-associated loci in pepper varieties. BMC Plant Biology, 2019, 19(1): 578.

doi: 10.1186/s12870-019-2122-2 pmid: 31870303
[16]
JUNG J K, PARK S W, LIU W Y, KANG B C. Discovery of single nucleotide polymorphism in Capsicum and SNP markers for cultivar identification. Euphytica, 2010, 175(1): 91-107.

doi: 10.1007/s10681-010-0191-2
[17]
YANG Y Y, LYU M J, LIU J, WU J J, WANG Q, XIE T Y, LI H C, CHEN R, SUN D L, YANG Y X, YAO X W. Construction of an SNP fingerprinting database and population genetic analysis of 329 cauliflower cultivars. BMC Plant Biology, 2022, 22(1): 522.
[18]
WANG K B, WANG Z W, LI F G, LI F G, YE W W, WANG J Y, SONG G L, YUE Z, CONG L, SHANG H H, ZHU S L, ZHOU C S, LI Q, YUAN Y L, LU C R, WEI L L, GUANG C Y, ZHENG Z Q, YIN Y, ZHANG X Y. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 2012, 44(10): 1098-1103.

doi: 10.1038/ng.2371
[19]
LI F G, FAN G Y, WANG K B, SUN F M, YUAN Y L, SONG G L, LI Q, MA Z Y, LU C R, ZHOU C S, CHEN W B, LIANG X M, SHANG H H, LIU W Q, SHI C C, XIAO G H, GOU C Y, YE WW, XU X, ZHANG X Y, WEI H L, LI Z F, ZHANG G Y, WANG J Y, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J, YU S X, LIU K. Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 2014, 46(6): 567-572.

doi: 10.1038/ng.2987
[20]
ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI CA, SCHEFFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG D W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS, J L, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y, XIANG D, LI X H, DING J, ZUO Q Y, TAO L N, LIU Y C, LI J, LIN Y, HUI Y Y, CAO Z S, CAI C P, ZHU X F, JIANG Z, ZHOU B L, GUO W Z, LI R Q, CHEN Z J, ZHANG H. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5): 531-537.

doi: 10.1038/nbt.3207
[21]
匡猛, 杨伟华, 许红霞, 王延琴, 周大云, 冯新爱. 中国棉花主栽品种DNA指纹图谱构建及SSR标记遗传多样性分析. 中国农业科学, 2011, 44(1): 20-27. doi: 10.3864/j.issn.0578-1752.2011.01.003.
KUANG M, YANG W H, XU H X, WANG Y Q, ZHOU D Y, FENG X A. Construction of DNA fingerprinting and analysis of genetic diversity with SSR markers for cotton major cultivars in China. Scientia Agricultura Sinica, 2011, 44(1): 20-27. doi: 10.3864/j.issn.0578-1752.2011.01.003. (in Chinese)
[22]
WANG L Y, ZHENG Y S, ZHANG H, WANG D J, WANG M M, WANG H, DUAN L L, LI H, WANG W, GENG H J, CHENG H M, AN C C, HAN R X, LI R Y. Genetic characterization of cotton varieties and genetic threshold value determination for similar variety selection in cotton DUS testing. Genetic Resources and Crop Evolution, 2023, 70(8): 2463-2477.

doi: 10.1007/s10722-023-01575-y
[23]
CHEN G, DU X M. Genetic diversity of source germplasm of Upland cotton in China as determined by SSR marker analysis. Acta Genetica Sinica, 2006, 33(8):733-745.

pmid: 16939008
[24]
贾子昉, 王清连, 董娜. 陆地棉种质资源的表型及SSR遗传多样性分析. 生物技术通讯, 2019, 30(5): 653-661.
JIA Z F, WANG Q L, DONG N. Phenotype and SSR genetic diversity of upland cotton germplasm resources. Letters in Biotechnology, 2019, 30(5): 653-661. (in Chinese)
[25]
郭志军, 赵云雷, 陈伟, 李运海, 王红梅, 龚海燕, 桑晓慧. 陆地棉SSR标记遗传多样性及其与农艺性状的关联分析. 棉花学报, 2014, 26(5): 420-430.

doi: 10.11963/cs140506
GUO Z J, ZHAO Y L, CHEN W, LI Y H, WANG H M, GONG H Y, SANG X H. Genetic diversity and association analysis of upland cotton based on SSR markers. Cotton Science, 2014, 26(5): 420-430. (in Chinese)
[26]
HE S P, SUN G F, HUANG L Y, YANG D G, DAI P H, ZHOU D Y, WU Y Z, MA X F, DU X M, WEI S J, PENG J, KUANG M. Genomic divergence in cotton germplasm related to maturity and heterosis. Journal of Integrative Plant Biology, 2019, 61(8): 929-942.

doi: 10.1111/jipb.12723
[27]
HINZE L L, HULSE-KEMP A M, WILSON I W, ZHU Q H, LLEWELLYN D J, TAYLOR J M, SPRIGGS A, FANG D D, ULLOA M, BURKE J J, GIBAND M, LACAPE J M, VAN DEYNZE A, UDALL J A, SCHEFFLER J A, HAGUE S, WENDEL J F, PEPPER A E, FRELICHOWSKI J, LAWLEY C T, JONES D C, PERCY R G, STELLY D M. Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array. BMC Plant Biology, 2017, 17(1): 37.

doi: 10.1186/s12870-017-0981-y
[28]
CAMPBELL B T, SAHA S, PERCY R, FRELICHOWSKI J, JENKINS J N, PARK W, MAYEE C D, GOTMARE V, DESSAUW D, GIBAND M, DU X, JIA Y, CONSTABLE G, DILLON S, ABDURAKHMONOV I Y, ABDUKARIMOV A, RIZAEVA S M, ABDULLAEV A, BARROSO P A V, PÁDUA J G, HOFFMANN L V, PODOLNAYA L. Status of the global cotton germplasm resources. Crop Science, 2010, 50(4): 1161-1179.

doi: 10.2135/cropsci2009.09.0551
[29]
FANG L, WANG Q, HU Y, JIA Y H, CHEN J D, LIU B L, ZHANG Z Y, GUAN X Y, CHEN S Q, ZHOU B L, MEI G F, SUN J L, PAN Z E, HE S P, XIAO S H, SHI W J, GONG W F, LIU J G, MA J, CAI C P, ZHU X F, GUO W Z, DU X M, ZHANG T Z. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 2017, 49(1): 1089-1098.

doi: 10.1038/ng.3887
[30]
HE S P, SUN G F, GENG X L, GONG W F, DAI P H, JIAY H, SHI W J, PAN Z E, WANG J D, WANG L Y, XIAO S H, CHEN B J, CUI S F, YOU C Y, XIE Z M, WANG F, SUN J, FU G Y, PENG Z, HU D W, WANG L R, PANG B Y, DU X M. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nature Genetics, 2021, 53(1): 916-924.

doi: 10.1038/s41588-021-00844-9
[31]
匡猛, 晋芳, 吴玉珍, 金石桥, 彭军, 黄龙雨, 何团结, 魏守军, 周大云, 王延琴, 黄义文, 郑曙峰. 棉花品种真实性鉴定SSR分子标记法: NY/T 2634-2022. 北京: 中国农业出版社, 2023.
KUANG M, JIN F, WU Y Z, JIN S Q, PENG J, HUANG L Y, HE T J, WEI S J, ZHOU D Y, WANG Y Q, HUANG Y W, ZHENG S F. Cotton (Gossypium spp. L.) Variety Genuineness Identification-SSR Based Methods: NY/T 2634-2022. Beijing: China Agriculture Press, 2023. (in Chinese)
[32]
匡猛, 杨伟华, 许红霞, 王延琴, 周大云, 冯新爱. 单粒棉花种子DNA快速提取方法. 分子植物育种, 2010, 8(4): 827-831.
KUANG M, YANG W H, XU H X, WANG Y Q, ZHOU D Y, FENG X A. A rapid method of DNA extraction from single cotton seed. Molecular Plant Breeding, 2010, 8(4): 827-831. (in Chinese)
[33]
LIU K J, MUSE S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21(9): 2128-2129.

doi: 10.1093/bioinformatics/bti282 pmid: 15705655
[34]
PRITCHARD J K, WEN X, FALUSH D. Documentation for structure software: version 2.3. Chicago: University of Chicago, 2010.
[35]
EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620.

doi: 10.1111/j.1365-294X.2005.02553.x pmid: 15969739
[36]
DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R, GENOMES PROJECT ANALYSIS GROUP 1000. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.

doi: 10.1093/bioinformatics/btr330 pmid: 21653522
[37]
WU Y Z, HUANG L Y, ZHOU D Y, FU X Q, LI C, WEI S J, PENG J, KUANG M. Development and application of perfect SSR markers in cotton. Journal of Cotton Research, 2020, 3(1): 21.

doi: 10.1186/s42397-020-00066-0
[38]
TIAN H L, WANG F G, ZHAO J R, YI H M, WANG L, WANG R, YANG Y, SONG W. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Molecular Breeding, 2015, 35(6): 136.

doi: 10.1007/s11032-015-0335-0
[39]
刘丽华, 庞斌双, 刘阳娜, 李宏博, 王娜, 王拯, 赵昌平. 基于SNP标记的小麦高通量身份鉴定模式. 麦类作物学报, 2018, 38(5): 529-534.
LIU L H, PANG B S, LIU Y N, LI H B, WANG N, WANG Z, ZHAO C P. High-throughput identification mode for wheat varieties based on SNP markers. Journal of Triticeae Crops, 2018, 38(5): 529-534. (in Chinese)
[40]
GREWAL S, HUBBART-EDWARDS S, YANG C Y, DEVI U, BAKER L, HEATH J, ASHLING S, SCHOLEFIELD D, HOWELLS C, YARDE J, ISAAC P, KING I P, KING J. Rapid identification of homozygosity and site of wild relative introgressions in wheat through chromosome-specific KASP genotyping assays. Plant Biotechnology Journal, 2020, 18(3): 743-755.

doi: 10.1111/pbi.13241 pmid: 31465620
[41]
KUANG M, WEI S J, WANG Y Q, ZHOU D Y, MA L, FANG D, YANG W H, MA Z Y. Development of a core set of SNP markers for the identifcation of upland cotton cultivars in China. Journal of Integrative Agriculture, 2016, 15(5): 954-962.

doi: 10.1016/S2095-3119(15)61226-6
[42]
UPOV I V F T. Guidelines for DNA- profiling: Molecular Marker Selection and Database Construction ("BMT guidelines"). Geneva: Switzerland: UPOV, 2010.
[43]
张曼, 支巨振, 牛庆杰, 赵建忠, 晋芳, 刘丰泽, 孙墨可, 李慧英, 任雪贞, 田娟, 董玉迪, 张雷, 于学鹏, 王祉诺, 谭丽萍, 黄绪堂, 于海峰, 刘胜利. 向日葵品种真实性鉴定SSR分子标记法: NY/T 3752-2020. 北京: 中国农业出版社, 2020.
ZHANG M, ZHI J Z, NIU Q J, ZHAO J Z, JIN F, LIU F Z, SUN M K, LI H Y, REN X Z, TIAN J, DONG Y D, ZHANG L, YU X P, WANG Z N, TAN L P, HUANG X T, YU H F, LIU S L. Sunflower (Helianthus annuus L.) Variety Genuineness Identification-SSR- Based Methods: NY/T 3752-2020. Beijing: China Agriculture Press, 2020. (in Chinese)
[44]
MA Z Y, HE S P, WANG X F, SUN J L, ZHANG Y, ZHANG G Y, WU L Q, LI Z K, LIU Z H, SUN G F, YAN Y Y, JIA Y H, YANG J, PAN Z E, GU Q H, LI X Y, SUN Z W, DAI P H, LIU Z W, GONG W F, WU J H, WANG M, LIU H W, FENG K Y, KE H F, WANG J D, LAN H Y, WANG G N, PENG J, WANG N, WANG L R, PANG B Y, PENG Z, LI R Q, TIAN S L, DU X M. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nature Genetics, 2018, 50(6): 803-813.

doi: 10.1038/s41588-018-0119-7 pmid: 29736016
[45]
刘峰, 冯雪梅, 钟文, 刘玉栋, 阴祖军, 韩秀兰, 徐子初, 沈法富. 适合棉花品种鉴定的SSR核心引物的筛选. 分子植物育种, 2009, 7(6): 1160-1168.
LIU F, FENG X M, ZHONG W, LIU Y D, YING Z J, HAN X L, XU Z C, SHEN F F. Screening of SSR Core Primer Pairs for Identificating Cotton Cultivar. Molecular Plant Breeding, 2009, 7(6): 1160-1168. (in Chinese)
[46]
匡猛, 杨伟华, 许红霞, 王延琴, 周大云, 冯新爱, 张玉翠, 王飞, 苏畅. 中国棉花主栽品种DNA指纹数据库初步构建研究. 棉花学报, 2012, 24(3): 229-237.

doi: 10.11963/cs120306
KUANG M, YANG W H, XU H X, WANG Y Q, ZHOU D Y, FENG X A, ZHANG Y C, WANG F, SU C. Primary construction of a DNA fingerprint database of leading cotton varieties in China. Cotton Science, 2012, 24(3): 229-237. (in Chinese)
[47]
王欣怡, 艾先涛, 王俊铎, 梁亚军, 龚照龙, 郑巨云, 郭江平, 买买提·莫明, 李雪源. 利用SSR快速鉴定棉花品种真实性和纯度. 作物学报, 2017, 43(10): 1565-1572.
WANG X Y, AI X T, WANG J D, LIANG Y J, GONG Z L, ZHENG J Y, GUO J P, MAIMAITI M M, LI X Y. Rapid identification system of purity and authenticity in cotton varieties by SSR markers. Acta Agronomica Sinica, 2017, 43(10): 1565-1572. (in Chinese)

doi: 10.3724/SP.J.1006.2017.01565
[48]
别墅, 孔繁玲, 周有耀, 张光梅, 张群远, 王孝纲. 中国3大主产棉区棉花品种遗传多样性的RAPD及其与农艺性状关系的研究. 中国农业科学, 2001, 34(6): 597-603. doi:10.3321/j.issn:0578-1752.2001.06.004.
BIE S, KONG F L, ZHOU Y Y, ZHANG G M, ZHANG Q Y, WANG X G. Genetic diversity analysis of representative elite cotton varieties in three main cotton regions in China by RAPD and its relation with agronomic characteristics. Scientia Agricultura Sinica, 2001, 34(6): 597-603. doi: 10.3321/j.issn:0578-1752.2001.06.004. (in Chinese)
[49]
刘文欣, 孔繁玲, 郭志丽, 张群远, 彭惠茹, 付小琼, 杨付新. 建国以来我国棉花品种遗传基础的分子标记分析. 遗传学报, 2003, 30(6): 560-570.
LIU W X, KONG F L, GUO Z L, ZHANG Q Y, PENG H R, FU X Q, YANG F X. An analysis about genetic basis of cotton cultivars in China since 1949 with molecular markers. Acta Genetica Sinica, 2003, 30(6): 560-570. (in Chinese)
[1] LEI JianFeng, YOU YangZi, ZHANG JinEn, DAI PeiHong, YU Li, DU ZhengYang, LI Yue, LIU XiaoDong. Screening of High-Efficient sgRNA for Targeted Knockout of GhAGL16 Gene in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(6): 1023-1033.
[2] LI KaiLi, WEI YunXiao, CHONG ZhiLi, MENG ZhiGang, WANG Yuan, LIANG ChengZhen, CHEN QuanJia, ZHANG Rui. Red and Blue Light Promotes Cotton Callus Induction and Proliferation [J]. Scientia Agricultura Sinica, 2024, 57(4): 638-649.
[3] HE Jing, WANG ZhenHua, LIU Jian, MA ZhanLi, WEN Yue. Effects of Irrigation Water Temperature and Nitrogen Application Rate on Soil Hydrothermal Environment and Cotton Growth and Yield Under Mulched Drip Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(2): 319-335.
[4] SONG Xiang, WANG ZhongMan, ZHANG QiuLing, WEI YuanYuan, ZHAO XiaoGang, LIU Bo, DAI SiLan. Comprehensive Evaluation and Selection of Hybrid Offsprings of Early Flowering Spray Outdoor Chrysanthemum [J]. Scientia Agricultura Sinica, 2024, 57(1): 173-189.
[5] SHI HaoLei, CAO HongXia, ZHANG WeiJie, ZHU Shan, HE ZiJian, ZHANG Ze. Leaf Area Index Inversion of Cotton Based on Drone Multi-Spectral and Multiple Growth Stages [J]. Scientia Agricultura Sinica, 2024, 57(1): 80-95.
[6] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[7] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[8] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[9] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[10] DANG YuanYue, MA JianJiang, YANG ShuXian, SONG JiKun, JIA Bing, FENG Pan, CHEN QuanJia, YU JiWen. Genome-Wide Identification and Expression Analysis of β-tubulin Family in Cotton Fiber Development [J]. Scientia Agricultura Sinica, 2023, 56(23): 4585-4601.
[11] TANG LiYuan, CAI Xiao, WANG HaiTao, LI XingHe, ZHANG SuJun, LIU CunJing, ZHANG JianHong. Genome-Wide Identification of Cotton FLA Gene Family and Functional Analysis of GhFLA05 in Cotton Fiber Development [J]. Scientia Agricultura Sinica, 2023, 56(23): 4602-4620.
[12] ZANG XinShan, WANG KangWen, ZHANG XianLiang, WANG XuePing, WANG Jun, LIANG Yu, PEI XiaoYu, REN Xiang, LÜ YuLong, GAO Yu, WANG XingXing, PENG YunLing, MA XiongFeng. Research Advances of Map-Based Cloning Genes in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(23): 4635-4647.
[13] ZHANG YaLin, JIANG Yan, ZHAO LiHong, FENG ZiLi, FENG HongJie, WEI Feng, ZHOU JingLong, ZHU HeQin, MA ZhiYing. Effect of Temperature on the Occurrence of Cotton Verticillium Wilt and Host Defense Response [J]. Scientia Agricultura Sinica, 2023, 56(23): 4671-4683.
[14] HOU ZhaoYu, GONG YiZhao, QIAN Yi, CHENG ZhuoYa, TAO Jun, ZHAO DaQiu. Evaluation of Heat Tolerance of Herbaceous Peony and Screening of Its Identification Indices [J]. Scientia Agricultura Sinica, 2023, 56(23): 4742-4756.
[15] KAYOUMU MiReZhaTiJiang, WUMAIERJIANG XiErAiLi, LI XiaoTong, WANG XiangRu, GUI HuiPing, ZHANG HengHeng, ZHANG XiLing, DONG Qiang, SONG MeiZhen. Screening of Low Phosphorus Tolerant Germplasm in Cotton at Seedling Stage and Comprehensive Evaluation of Low Phosphorus Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(21): 4150-4162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!