Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (4): 638-649.doi: 10.3864/j.issn.0578-1752.2024.04.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Red and Blue Light Promotes Cotton Callus Induction and Proliferation

LI KaiLi1,2(), WEI YunXiao2, CHONG ZhiLi2, MENG ZhiGang2, WANG Yuan2, LIANG ChengZhen2, CHEN QuanJia1(), ZHANG Rui2()   

  1. 1 College of Agronomy, Xinjiang Agricultural University/Engineering Research Center for Cotton, Ministry of Education/Emphasis Laboratory of Agricultural Biotechnology, Urumqi 830052
    2 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2023-08-04 Accepted:2023-09-26 Online:2024-02-16 Published:2024-02-20
  • Contact: CHEN QuanJia, ZHANG Rui

Abstract:

【Objective】Upland cotton (Gossypium hirsutum) genetic transformation faces series of challenges such as a prolonged cycle and low efficiency, with the relatively slow proliferation rate of callus tissue being a critical factor contributing to the extended transformation period. This study aims to investigate the optimal light conditions for upland cotton callus growing. The establishment of this research endeavor is poised to accelerate callus proliferation and ultimately provide a technical foundation for shortening the period of cotton genetic transformation. 【Method】The hypocotyls of the upland cotton line WC were used as explants to induce callus tissues under four different lights: red, blue, red-blue (1:1), and white light (CK). The study aimed to investigate the varied effects of the different lights on callus induction and proliferation, determine the optimal light condition by comparing with the callus proliferation rate, morphological characteristics et al. under different light treatments. 【Result】Different light treatments had a significant impact on the callus induction and growth. The red-blue light treatment exhibited a most positive effect on both callus inducing and proliferation, which observed on the 7th and 15th day. The fresh weight of callus at 7 d under the red-blue light (0.39 g) was the heaviest, followed by the blue light (0.34 g), then the white light (0.24 g) and the red light (0.23 g). The same fresh weight order of the callus was observed at 15 d, with the treatment of the red-blue light (1.15 g) > blue light (0.98 g) > white light (0.69 g) > red light (0.51 g). The callus weight under red-blue light was 1.65 times heavier than the control, increased by 16.5% and 125.5% compared to the treatment of only blue or red light, respectively. In line with this, the callus proliferation rate in the second week under red-blue light was as high as 14.67%, which is twice to that of the red-light treatment (7.17%). The expression level of those genes promoted to cell proliferation and somatic embryo regeneration was consistent with the phenotype, the highest level was under the red-blue light treatment. Furthermore, the activity of the catalase (CAT) was significantly increased under the red-blue light treatment, while the content of reactive oxygen species (ROS) was lower than control. 【Conclusion】Employing different light conditions could result in the varied proliferation rate of cotton callus. The optimal light treatment is by red-blue light in a 1﹕1 ratio, followed by blue light and then white light. However, employing red light only does not favor the callus growth. The treatment of red-blue light (1﹕1) induces the expression of phytochromes and cryptochromes in the callus, increases the expression level of those genes promoted to callus growth. It also enhances the activity of catalase, reduces the content of ROS, and finally promotes the callus proliferation.

Key words: Upland cotton, red light, blue light, callus proliferation rate, active oxygen species

Table 1

Pirmer sequences for RT-qPCR"

基因Gene 引物序列Sequence (5′-3′)
GhCRY1 (Gh_D05G286000) CAGGAGGCAATGTTGGCAGTG
GCTTTGATAGGGTCGGCATTCA
GhCRY2 (Gh_A02G046200) AGACTTATGCTCGACGGCTGAA
AGGTCTGCCATTGGATGAGGAG
GhPHYA (Gh_D11G331900) GCGATGGATGCAGATGAGGCTA
ATTCAAGTCGGAAGGCGGGTTT
GhPHYB (Gh_D10G217500) CGAACCGATTCGACCGACAGTT
ACCCACCAAATACCGCCCTTTC
GhPIF1 (Gh_A07G093600) TCCTGTTCCCATTCCCGCTTTC
ATGCTTCTCTGGGTTCGGTCAG
GhPIF1 (Gh_D07G243100) CACCTGGCTCTTGTCAAACTCA
CCAACACACCCTTCATCTTCCC
GhPIF3 (Gh_A11G310400) TGTGCTTGCTGCTTCTGTTTGC
GCTGCTCGGCTTCTCTTGAACC
GhPIF3 (Gh_D07G152900) TCGCATCTGACACTGGCTGTT
TGGCACACGAACAATCTGAAGG
GhTCE1 (Gh_D06G030700) TGGGACACAGTTCCAACACAA
TCATCACCAAACGGGCAGTA
GhRCD1 (Gh_A08G228700) TTCACCAGCGTCATCGGCATAA
CGGCAGCGAAGCACTTGATT
GhRCD1 (Gh_D08G189100) GGTAGGAAGAGCAGTCGTAGCA
CAGCCGATGGTGACCGTGAA
GhMYB-44 (Gh_D06G024900) GGTGAGAACGTCGCATCAAGTG
ACCCTCCCAGTCACATCAACCA
GhMYB-44 (Gh_A06G027000) TTGCCTCCTCCTCCTTGTTTGT
TCTTCCTGCTTATTGCCGTTGT
GhLEC2 (Gh_A09G089400) GCCTGCAATTCCCATACAACCA
GCACTACTTGTGTTGAAGCCCC
Actin GAAGGCATTCCACCTGACCAAC
CTTGACCTTCTTCTTCTTGTGCTTG

Fig. 1

The dynamic change of callus induced from hypocotyl under varied lights A: 7 d and 15 d hypocotyl; B: Weight change of 0 d, 7 d and 15 d hypocotyl; C: Callus enhancement rate of 7-25 d callus; D: Cell morphological observationz. Different letters represent a significant difference at P=0.05"

Fig. 2

Gene expression level of light signaling system in calluses under four light conditions *P<0.05, **P<0.01, ***P<0.0005. The same as below"

Fig. 3

The expression level of related regeneration genes in calluses under four light conditions"

Fig. 4

Comparison of CAT enzyme activity and ROS content of calluses in 7 d and 15 d A: CAT enzyme activity on day 7; B: ROS content on day 7; C: CAT enzyme activity on day 15; D: ROS content on day 15"

Fig. 5

Red and blue light promotes cotton callus induction and proliferation"

[1]
ZHANG G Y, LIU L F, MA Z Y. Study on heterosis utilization of insect-resistant transgenic Bt (Bacillus thuringiensis) cotton. Acta Gossypii Sinica, 2001, 13(5): 264-267.
[2]
SINGH D P, SINGH I P, TYAGI A P. Association analysis for yeild components in upland cotton. Madras Agricultural Journal, 2015, 1 (52): 37-40.
[3]
ZHENG W, ZHANG X Y, YANG Z R, WU J H, LI F L, DUAN L L, LIU C L, LU L L, ZHANG C J, LI F G. Atwuschel promotes formation of the embryogenic callus in Gossypium hirsutum. PLoS ONE, 2014, 9(1): e87502.

doi: 10.1371/journal.pone.0087502
[4]
APPELGREN M. Effects of light quality on stem elongation of Pelargonium in vitro. Scientia Horticulturae, 1991, 45(3/4): 345-351.

doi: 10.1016/0304-4238(91)90081-9
[5]
SÆBØ A, KREKLING T, APPELGREN M. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell, Tissue and Organ Culture, 1995, 41(2): 177-185.

doi: 10.1007/BF00051588
[6]
INOUE S I, KINOSHITA T, MATSUMOTO M, NAKAYAMA K I, DOI M, SHIMAZAKI K I. Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(14): 5626-5631.
[7]
WANG H, GU M, CUI J X, SHI K, ZHOU Y H, YU J Q. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Photochemistry and Photobiology B, Biology, 2009, 96(1): 30-37.

doi: 10.1016/j.jphotobiol.2009.03.010
[8]
WANG X Y, XU X M, CUI J. The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica, 2015, 53(2): 213-222.

doi: 10.1007/s11099-015-0083-8
[9]
LI H M, TANG C M, XU Z G. The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Scientia Horticulturae, 2013, 150(2): 117-124.

doi: 10.1016/j.scienta.2012.10.009
[10]
HERNÁNDEZ R, KUBOTA C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 2016, 121(1): 66-74.

doi: 10.1016/j.envexpbot.2015.04.001
[11]
HORVATH D. Common mechanisms regulate flowering and dormancy. Plant Science, 2009, 177(6): 523-531.

doi: 10.1016/j.plantsci.2009.09.002
[12]
CHEN M. Phytochrome nuclear body: An emerging model to study interphase nuclear dynamics and signaling. Current Opinion in Plant Biology, 2008, 11(5): 503-508.

doi: 10.1016/j.pbi.2008.06.012 pmid: 18691930
[13]
AHMAD M, CASHMORE A R. HY4gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature, 1993, 366(6451): 162-166.

doi: 10.1038/366162a0
[14]
HOFFMAN P D, BATSCHAUER A, HAYS J B. PHH1, a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue-light photoreceptors and microbial photolyases. Molecular & General Genetics, 1996, 253(1/2): 259-265.
[15]
CASHMORE A R, JARILLO J A, WU Y J, LIU D. Cryptochromes: blue light receptors for plants and animals. Science, 1999, 284(5415): 760-765.

doi: 10.1126/science.284.5415.760 pmid: 10221900
[16]
GUO H, YANG H, MOCKLER T C, LIN C. Regulation of flowering time by Arabidopsis photoreceptors. Science, 1998, 279(5355): 1360-1363.

doi: 10.1126/science.279.5355.1360
[17]
岳玲琦, 邢巧娟, 张晓兰, 梁雪, 王乾, 齐红岩. 光敏色素互作因子在植物抵御逆境胁迫中的作用研究进展. 园艺学报, 2021, 48(4): 632-646.

doi: 10.16420/j.issn.0513-353x.2020-0506
YUE L Q, XING Q J, ZHANG X L, LIANG X, WANG Q, QI H Y. Research progress on the effect of phytochrome interacting factors in plant resistance to abiotic stress. Acta Horticulturae Sinica, 2021, 48(4): 632-646. (in Chinese)
[18]
CORDEIRO A M, FIGUEIREDO D D, TEPPERMAN J, BORBA A R, LOURENÇO T, ABREU I A, OUWERKERK P B F, QUAIL P H, MARGARIDA OLIVEIRA M, SAIBO N J M.Rice phytochrome- interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B. Biochimica et Biophysica Acta, 2016, 1859(2): 393-404.
[19]
KUMAR I, SWAMINATHAN K, HUDSON K, HUDSON M E.Evolutionary divergence of phytochrome protein function in Zea mays PIF3 signaling. Journal of Experimental Botany, 2016, 67(14): 4231-4240.
[20]
ROSADO D, GRAMEGNA G, CRUZ A, LIRA B S, FRESCHI L, DE SETTA N D, ROSSI M. Phytochrome interacting factors (PIFs) in Solanum lycopersicum: Diversity, evolutionary history and expression profiling during different developmental processes. PLoS ONE, 2016, 11(11): e0165929.

doi: 10.1371/journal.pone.0165929
[21]
ZHOU L J, MAO K, QIAO Y, JIANG H, LI Y Y, HAO Y J. Functional identification of MdPIF1 as a phytochrome interacting factor in apple. Plant Physiology and Biochemistry, 2017, 119: 178-188.

doi: 10.1016/j.plaphy.2017.08.027
[22]
李瑞玲, 叶云天, 江雷雨, 叶宇芸, 肖婕, 李亚丽, 李欣, 汤浩茹. 草莓PIF3基因的克隆及表达分析. 分子植物育种, 2018, 16(19): 6220-6227.
LI R L, YE Y T, JIANG L Y, YE Y Y, XIAO J, LI Y L, LI X, TANG H R. Cloning and expression analysis of PIF3 gene in Fragaria× ananassa. Molecular Plant Breeding, 2018, 16(19): 6220-6227. (in Chinese)
[23]
徐向东, 任逸秋, 张利, 李煜, 王丽娟, 卢孟柱. 杨树PIF基因家族成员表达模式研究. 林业科学研究, 2018, 31(2): 19-25.
XU X D, REN Y Q, ZHANG L, LI Y, WANG L J, LU M Z. Analysis of expression pattern of PIF family members in Populus. Forest Research, 2018, 31(2): 19-25. (in Chinese)
[24]
刘畅畅, 黄敏. 玉米LEC1基因家族的鉴定与生物信息学分析. 甘肃农业科技, 2022, 53(1): 31-37.
LIU C C, HUANG M. Identification and bioinformatics analysis of LEC1 gene family in maize. Gansu Agricultural Science and Technology, 2022, 53(1): 31-37. (in Chinese)
[25]
BRAYBROOK S A, HARADA J J. LECs go crazy in embryo development. Trends in Plant Science, 2008, 13(12): 624-630.

doi: 10.1016/j.tplants.2008.09.008 pmid: 19010711
[26]
LE B H, CHENG C, BUI A Q, WAGMAISTER J A, HENRY K F, PELLETIER J, KWONG L, BELMONTE M, KIRKBRIDE R, HORVATH S, DREWS G N, FISCHER R L, OKAMURO J K, HARADA J J, GOLDBERG R B.Global analysis of gene activity during Arabidopsis seed development and identification of seed- specific transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8063-8070.
[27]
YANG X Y, ZHANG X L. Regulation of somatic embryogenesis in higher plants. Critical Reviews in Plant Sciences, 2010, 29(1): 36-57.

doi: 10.1080/07352680903436291
[28]
DENG J W, SUN W N, ZHANG B Y, SUN S M, XIA L J, MIAO Y H, HE L R, LINDSEY K, YANG X Y, ZHANG X L. GhTCE1-GhTCEE 1 dimers regulate transcriptional reprogramming during wound-induced callus formation in cotton. The Plant Cell, 2022, 34(11): 4554-4568.

doi: 10.1093/plcell/koac252
[29]
YUAN J C, LIU X X, ZHAO H, WANG Y, WEI X, WANG P, ZHAN J J, LIU L S, LI F G, GE X Y. GhRCD 1 regulates cotton somatic embryogenesis by modulating the GhMYC3-GhMYB44-GhLBD18 transcriptional cascade. The New Phytologist, 2023, 240(1): 207-293.
[30]
YANG X Y, ZHANG X L, YUAN D J, JIN F Y, ZHANG Y C, XU J. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biology, 2012, 12: 110.

doi: 10.1186/1471-2229-12-110 pmid: 22817809
[31]
JASPERS P, OVERMYER K, WRZACZEK M, VAINONEN J P, BLOMSTER T, SALOJÄRVI J, REDDY R A, KANGASJÄRVI J. The RST and PARP-like domain containing SRO protein family: Analysis of protein structure, function and conservation in land plants. BMC Genomics, 2010, 11: 170.

doi: 10.1186/1471-2164-11-170 pmid: 20226034
[32]
BROSCHÉ M, BLOMSTER T, SALOJÄRVI J, CUI F Q, SIPARI N, LEPPÄLÄ J, LAMMINMÄKI A, TOMAI G, NARAYANASAMY S, REDDY R A, KEINÄNEN M, OVERMYER K, KANGASJÄRVI J. Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1. PLoS Genetics, 2014, 10(2): e1004112.

doi: 10.1371/journal.pgen.1004112
[33]
WIRTHMUELLER L, ASAI S T, RALLAPALLI G, SKLENAR J, FABRO G, KIM D S, LINTERMANN R, JASPERS P, WRZACZEK M, KANGASJÄRVI J, MACLEAN D, MENKE F L H, BANFIELD M J, JONES J D G. Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL-INDUCED CELL DEATH1. The New Phytologist, 2018, 220(1): 232-248.

doi: 10.1111/nph.2018.220.issue-1
[34]
SHAPIGUZOV A, VAINONEN J P, HUNTER K, TOSSAVAINEN H, TIWARI A, JÄRVI S, HELLMAN M, AARABI F, ALSEEKH S, WYBOUW B, VAN DER KELEN K, NIKKANEN L, KRASENSKY- WRZACZEK J, SIPARI N, KEINÄNEN M, TYYSTJÄRVI E, RINTAMÄKI E, DE RYBEL B, SALOJÄRVI J, VAN BREUSEGEM F, FERNIE A R, BROSCHÉ M, PERMI P, ARO E M, WRZACZEK M, KANGASJÄRVI J. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. eLife, 2019, 8: 4328.
[35]
许文杰, 黄远浩, 韩蓉蓉, 刘燕琴, 曹敏, 宋经元. 基于全基因组的栀子苷生物合成相关MYB转录因子系统分析. 药学学报, 2023, 58(8): 2522-2531.
XU W J, HUANG Y H, HAN R R, LIU Y Q, CAO M, SONG J Y. systematic analysis of MYB transcription factors related to the geniposide biosynthesis in Gardenia jasminoides Ellis based on whole genome. Acta Pharmaceutica Sinica, 2023, 58(8): 2522-2531. (in Chinese)
[36]
WANG X C, NIU Q W, TENG C, LI C, MU J Y, CHUA N H, ZUO J R. Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis. Cell Research, 2009, 19(2): 224-235.

doi: 10.1038/cr.2008.276
[37]
魏喜, 王倩华, 葛晓阳, 陈艳丽, 丁颜朋, 赵明哲, 李付广. 不同红蓝配比的光质对棉花体细胞胚胎发生和植株再生的影响. 中国农业科学, 2019, 52(6): 968-980. DOI:10.3864/j.issn.0578-1752.2019. 06.002.
WEI X, WANG Q H, GE X Y, CHEN Y L, DING Y P, ZHAO M Z, LI F G. Effects of different red and blue ratios on the somatic embryogenesis and plant regeneration of cotton. Scientia Agricultura Sinica, 2019, 52(6): 968-980. DOI:10.3864/j.issn.0578-1752.2019.06. 002. (in Chinese)
[38]
倪德祥. 光在植物组织培养中的调控作用. 自然杂志, 1986, 8(3): 193-198.
NI D X. Regulatory of light in plant tissue culture. Nature Magazine, 1986, 8(3): 193-198. (in Chinese)
[39]
张真, 李胜, 李唯, 刘媛, 吴兵, 张青松, 李婷. 不同光质光对葡萄愈伤组织增殖和白黎芦醇含量的影响. 植物生理学通讯, 2008, 44(1): 106-108.
ZHANG Z, LI S, LI W, LIU Y, WU B, ZHANG Q S, LI T. Effects of different light qualities on the callus from Vitis vinifera L.and resveratrol content. Plant Physiology Communications, 2008, 44(1): 106-108. (in Chinese)
[40]
刘浩, 李胜, 马绍英, 罗丽媛, 薛冲, 方艳, 张真, 刘媛. LED不同光质对萝卜愈伤组织诱导、增殖和萝卜硫素含量的影响. 植物生理学通讯, 2010, 46(4): 347-350.
LIU H, LI S, MA S Y, LUO L Y, XUE C, FANG Y, ZHANG Z, LIU Y. Effects of different LED light qualities on callus induction, proliferation and sulforaphane content of Raphanus sativus L.. Plant Physiology Communications, 2010, 46(4): 347-350. (in Chinese)
[41]
顾梦云, 曾伟达, 宿庆连, 黄明翅, 冯肖梅, 刘艳艳, 张雪莲, 周晓云. 不同LED光质配比和光照强度对红掌新品种‘福星’组织培养的影响. 广东农业科学, 2023, 50(5): 46-55.
GU M Y, ZENG W D, SU Q L, HUANG M C, FENG X M, LIU Y Y, ZHANG X L, ZHOU X Y. Effects of different LED light quality ratio and light intensity on tissue culture of a new Anthurium andraeanum cultivar Fuxing. Guangdong Agricultural Sciences, 2023, 50(5): 46-55. (in Chinese)
[42]
吴鹏飞. 激素与光质处理对施草莓组培快繁的影响研究[D]. 天津: 天津农学院, 2017.
WU P F. Effects of hormone and light treatment on rapid propagation of tissue culture of strawberry[D]. Tianjin: Tianjin Agricultural University, 2017. (in Chinese)
[43]
谷艾素. 光调控对花烛组织培养及试管苗光合特性的影响[D]. 南京: 南京农业大学, 2011.
GU A S. Effects of light control on tissue culture and photosynthesis characteristics of Anthurium andraeanumlind[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[44]
MCCULLY M. The Development of Lateral Roots in the Development and Function of Roots. New York: AcademicPress, 1975.
[45]
FRY S C. Oxidative scission of plant cell wall polysaccharides by ascorbate induced hydroxyl radicals. The Biochemical Journal, 1998, 332(2): 507-515.

doi: 10.1042/bj3320507
[46]
罗丽. 甜橙NADPH氧化酶基因家族的鉴定及抗寒性分析[D]. 扬州: 扬州大学, 2019.
LUO L. Identification and cold resistance analysis of NADPH oxidase gene family in sweet orange[D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
[47]
ASADA K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 2006, 141(2): 391-396.

doi: 10.1104/pp.106.082040 pmid: 16760493
[48]
许大全, 高伟, 阮军. 光质对植物生长发育的影响. 植物生理学报, 2015, 51(8): 1217-1234.
XU D Q, GAO W, RUAN J. Effects of light quality on plant growth and development. Plant Physiology Journal, 2015, 51(8): 1217-1234. (in Chinese)
[49]
BUKHOV N, MAKAROVA V, BONDAR V, DROZDOVA I, EGOROVA E, KOTOVA L, KOTOV A, KRENDELEVA T. Photosynthetic apparatus in primary leaves of barley seedlings grown under blue or red light of very low photon flux densities. Photosynthesis Research, 1999, 60(2): 179-190.

doi: 10.1023/A:1006281321925
[50]
MATSUDA R, OHASHI-KANEKO K, FUJIWARA K, GOTO E, KURATA K. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. Plant and Cell Physiology, 2004, 45(12): 1870-1874.

pmid: 15653806
[51]
刘文科, 杨其长, 邱志平, 赵姣姣. LED光质对豌豆苗生长、光合色素和营养品质的影响. 中国农业气象, 2012, 33(4): 500-504.
LIU W K, YANG Q C, QIU Z P, ZHAO J J. Effects of LED light quality on growth, photosynthetic pigments and nutritional quality of pea seedlings. Chinese Journal of Agrometeorology, 2012, 33(4): 500-504. (in Chinese)
[1] ZHAO FengYun, CHENG ZhiHong, TAN QiangFei, ZHU JiaNing, SUN WanHe, ZHANG WenWei, YUN JianMin. Effects of Mannitol on Production Characteristics and ROS Scavenging Ability of Volvariella volvacea Subcultured Strains [J]. Scientia Agricultura Sinica, 2024, 57(1): 190-203.
[2] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[3] LIU PeiPei, DING ShiJie, SONG WenJuan, TANG ChangBo, LI HuiXia, TANG Hong. NAC Affects Proliferation and Differentiation of Adipose-Derived Mesenchymal Stem Cells by Regulating Reactive Oxygen Species [J]. Scientia Agricultura Sinica, 2023, 56(21): 4330-4343.
[4] HA DanDan, ZHENG HongXia, ZHANG ZhenHao, ZHU LiHong, LIU Hao, WANG JiaoYu, ZHOU Lei. Fluorescent Labeling and Observation of Infection Structure of Fusarium verticillioides [J]. Scientia Agricultura Sinica, 2023, 56(18): 3556-3573.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[7] HE Lei,LU Kai,ZHAO ChunFang,YAO Shu,ZHOU LiHui,ZHAO Ling,CHEN Tao,ZHU Zhen,ZHAO QingYong,LIANG WenHua,WANG CaiLin,ZHU Li,ZHANG YaDong. Phenotypic Analysis and Gene Cloning of Rice Panicle Apical Abortion Mutant paa21 [J]. Scientia Agricultura Sinica, 2022, 55(24): 4781-4792.
[8] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[9] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[10] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[11] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[12] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[13] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[14] WEI Xin, WANG HanTao, WEI HengLing, FU XiaoKang, MA Liang, LU JianHua, WANG XingFen, YU ShuXun. Cloning and Drought Resistance Analysis of GhWRKY33 in Upland Cotton [J]. Scientia Agricultura Sinica, 2020, 53(22): 4537-4549.
[15] LIU Qi,MEI YanHao,LI Qi,MA HongXiu,WU YongJun,YANG ZhenChao. Effects of End of Day Far-Red Light on Growth, Histiocyte Morphology and Phytohormones Content of Pumpkin Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(20): 4248-4258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!