Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (22): 4537-4549.doi: 10.3864/j.issn.0578-1752.2020.22.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Drought Resistance Analysis of GhWRKY33 in Upland Cotton

WEI Xin1,WANG HanTao2,WEI HengLing2,FU XiaoKang2,MA Liang2,LU JianHua2,WANG XingFen1(),YU ShuXun2()   

  1. 1 Hebei Agricultural University/State key Laboratory of Cotton Biology Hebei Base, Baoding 071001, Hebei
    2 Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
  • Received:2020-06-10 Accepted:2020-06-28 Online:2020-11-16 Published:2020-11-28
  • Contact: XingFen WANG,ShuXun YU E-mail:cotton@hebau.edu.cn;yu@cricaas.com.cn

Abstract:

【Objective】In this study, GhWRKY33 gene in upland cotton was cloned, and its function was analyzed in the drought resistance, which will lay a foundation for the mechanism dissection of drought resistance and molecular breeding in cotton.【Method】The ORF of GhWRKY33 was cloned from Upland cotton CCRI10 by homologous cloning method. Bioinformatics analysis was carried out to analyze the secondary structure and hydrophobicity, and to predict the phosphorylation sites and cis-acting elements in the promoter region. In the NCBI website, the protein sequences with high homology were searched by BLASTP for sequence alignment, and the phylogenetic tree was constructed. The expression vector of 35S::GhWRKY33-GFP fusion protein was constructed and injected into tobacco leaves mediated by Agrobacterium tumefaciens to observe the fluorescence signal. qRT-PCR was conducted to detect the tissue-specific expression of the gene and the expression pattern under drought, ABA, JA and ET treatments. Plant overexpression vector was constructed and transformed into Arabidopsis thaliana. T3 transgenic lines were performed to observe the phenotype after drought treatment and to determine the physiological and biochemical indexes such as the content of proline and malondialdehyde. The expression levels of drought response genes AtP5CS, AtRD29A and AtCOR15A were identified in the wild type and transgenic lines before and after PEG treatment. 【Result】The open reading frame (ORF) of GhWRKY33 gene was 1533 bp, which encoded 510 amino acid residues. GhWRKY33 protein included two WRKY conserved domains and two C2H2 zinc finger structures, and belonged to the family of type I WRKY transcription factors. Secondary structure prediction showed that GhWRKY33 was mainly composed of random curl and contained 26 threonine phosphorylation sites, which was closely related to phosphorylation. The hydrophobicity prediction showed that the protein belonged to a hydrophilic protein. Phylogenetic tree analysis displayed that the gene had the highest homology with GrWRKY33. The GhWRKY33 protein was located in the nucleus. qRT-PCR showed that the expression of the gene possessed tissue specificity and was the highest in the apical bud tissue, and significantly increased after drought, JA and ET treatments. Compared to the wild type, the transgenic lines displayed stronger drought resistance, and the wilting degree of the plants was weaker. Under drought treatment, the content of proline was significantly higher than that of wild type, while the content of MDA was lower than that of wild type. The expression levels of GhWRKY33 and drought response genes AtP5CS, AtRD29A and AtCOR15A were significantly increased. It was speculated that PEG could induce the expression of GhWRKY33, and then regulated the up-regulation expression of the drought response genes, thus, transgenic Arabidopsis thaliana showed higher resistance to drought stress. 【Conclusion】GhWRKY33 responded to drought stress and improved the drought resistance of transgenic Arabidopsis thaliana.

Key words: upland cotton, GhWRKY33, stress, drought resistance analysis

Table 1

Primers used in this study"

引物名称 Primer name 引物序列 Primer sequence(5′-3′)
GhWRKY33-F CACGGGGGACTCTAGAATGGCTGCTTCATCATCATCT
GhWRKY33-R GACGGCCAGTGAATTCTCAAGACAGGAATCCGTCCAA
qRT-GhWRKY33-F GGGAAACCCCAATCCAAGGAGC
qRT-GhWRKY33-R AATCATGGGATGCTCGCTCCAC
qRT-GhActin-F ATCCTCCGTCTTGACCTTG
qRT-GhActin-R TGTCCGTCAGGCAACTCAT
GhWRKY33-GFP-F CACGGGGGACTCTAGAATGGCTGCTTCATCATCATCT
GhWRKY33-GFP-R CTTTACTCATACTAGTAGACAGGAATCCGTCCAAAAATG
qRT-AtRD29A-F ATCACTTGGCTCCACTGTTGTTC
qRT-AtRD29A-R AAAACACACATAAACATCCAAAGT
qRT-AtCOR15A-F ACTCAGTTCGTCGTCGTTTCT
qRT-AtCOR15A-R CTTCTTTTCCTTTCTCCTCCAC
qRT-AtP5CS-F GAGGGGGTATGACTGCAAAA
qRT-AtP5CS-R AACAGGAACGCCACCATAAG
qRT-AtUBQ1-F TGAGCCTTCCTTGATGATGCT
qRT-AtUBQ1-R GCACTTGCGGCAAATCATCT

Fig. 1

PCR amplification of GhWRKY33"

Fig. 2

Bioinformatic analysis of GhWRKY33 A: Secondary structure prediction; B: Phosphorylation site prediction; C: Hydrophobicity analysis (positive peak value represents hydrophobicity, negative peak value represents hydrophilicity)"

Table 2

Sequence analysis of GhWRKY33 gene promoter"

基序
Motif
位置
Position (bp)
序列
Sequence
功能
Function
ABRE 1252 ACGTG 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abscisic acid responsiveness
ARE 960 AAACCA 厌氧诱导所必需的顺式作用元件Cis-acting regulatory element essential for the anaerobic induction
1858 AAACCA
CAT-box 1446 GCCACT 与分生组织表达相关的顺式作用元件Cis-acting regulatory element related to meristem expression
G-Box 910 CACGAC 参与光响应的顺式作用元件Cis-acting regulatory element involved in light responsiveness
GCN4_motif 222 TGAGTCA 胚乳表达中的顺式作用元件
Cis-regulatory element involved in endosperm expression
1344 TGAGTCA
497 TGAGTCA
MBS 154 CAACTG 与干旱诱导相关的MYB结合位点MYB binding site involved in drought-inducibility

Fig. 3

Sequence alignment of GhWRKY33 and WRKY proteins of other species The box indicates the WRKY domain, and the star indicates the zinc finger structure. Arabidopsis thaliana AtWRKY33 (NP_181381), Gossypium raimondii GrWRKY33 (XP_012460140), Gossypium arboretum GaWRKY33 (XP_017615740), Theobroma cacao TcWRKY33 (XP_017977471), Herrania umbratica HuWRKY33 (XP_021290063), Durio zibethinus DzWRKY33 (XP_022767833), Corchorus capsularis CcWRKY33 (OMO85052), Carica papaya CpWRKY33 (XP_021908634), Hevea brasiliensis HbWRKY33 (XP_021664002), Populus alba PaWRKY17 (TKS07377), Manihot esculenta MeWRKY33 (XP_021623467), Jatropha curcas JcWRKY33 (XP_012089749), Dimocarpus longan DlWRKY17 (AEO31478), Canarium album CaWRKY33 (AXY96406), Lindera glauca LgWRKY33 (ALE71299), Vigna unguiculata VuWRKY33 (QCE01025), Morella rubra MrWRKY33 (KAB1225722), Vitis vinifera VvWRKY33 (XP_002272040), Glycine max GmWRKY49 (NP_001304523), Glycine max GmWRKY39 (NP_001348302), Gossypium hirsutum GhWRKY33 (XP_016680843). The same as below"

Fig. 4

Phylogenetic analysis of different WRKY proteins"

Fig. 5

Tissue specific expression analysis of GhWRKY33"

Fig. 6

Expression patterns of GhWRKY33 under different treatments * and **: Significant differences and significant differences at 0.05 level and 0.01 level. The same as below"

Fig. 7

Subcellular localization of 35S::GhWRKY33-GFP fusion protein"

Fig. 8

Quantitative expression level of GhWRKY33 gene in transgenic Arabidopsis"

Fig. 9

Growth of wild-type and transgenic Arabidopsis thaliana treated with PEG6000 for 12 h"

Fig. 10

Proline contents of wild-type and transgenic lines under drought treatment for 12 h A: Standard curve; B: The proline contents of wild type and of transgenic lines"

Fig. 11

MDA content of wild-type and transgenic lines under drought treatment for 12 h"

Fig. 12

Expression analyses of the genes related to drought stress in the wild-type and transgenic lines"

[1] SHINOZAKI K, YAMAGUCHI-SHINOZAKI K . Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2007,58(2):221.
doi: 10.1093/jxb/erl164 pmid: 17075077
[2] SEKI M, UMEZAWA T, URANO K, SHINOZAKI K . Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 2007,10(3):296-302.
doi: 10.1016/j.pbi.2007.04.014
[3] 张秋平, 杨宇红, 谢丙炎, 刘志敏 . 植物转录因子的超表达及其在分子育种中的应用. 分子植物育种, 2006,4(3):115-122.
ZHANG Q P, YANG Y H, XIE B Y, LIU Z M . Overexpression of plant transcription factors and its application in molecular breeding. Molecular Plant Breeding, 2006,4(3):115-122. (in Chinese)
[4] CIOLKOWSKI I, WANKE D, BIRKENBIHL R P, SOMSSICH I E . Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology, 2008,68(1/2):81-92.
doi: 10.1007/s11103-008-9353-1
[5] CAI M, QIU D Y, YUAN T, DING X H, LI H J, DUAN L, XU C G, LI X G, WANG S P . Identification of novel pathogen‐responsive cis‐elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant, Cell & Environment, 2008,31(1):86-96.
[6] 孙淑豪, 余迪求 . WRKY转录因子家族调控植物逆境胁迫响应. 生物技术通报, 2016,32(10):66-76.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.009
SUN S H, YU D Q . WRKY transcription factor family regulates plant stress response. Biotechnology Bulletin, 2016,32(10):66-76. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.009
[7] CHEN H, LAI Z, SHI J, XIAO Y, CHEN Z X, XU X . Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology, 2010,10(1):281-290.
doi: 10.1186/1471-2229-10-281
[8] PARK C Y, LEE J H, YOO J H, MOON B C, CHOI M S, KANG Y H, LEE S M, KIM H S, KANG K Y, CHUNG W S, LIM C O, CHO M J . WRKY group IId transcription factors interact with calmodulin. FEBS Letters, 2005,579(6):1545-1550.
doi: 10.1016/j.febslet.2005.01.057 pmid: 15733871
[9] ZHANG C Q, XU Y, LU Y, YU H X, GU M H, LIU Q Q . The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta, 2011,234(3):541-554.
doi: 10.1007/s00425-011-1423-y
[10] SAHIN-CEVIK M . A WRKY transcription factor gene isolated from Poncirus trifoliata shows differential responses to cold and drought stresses. Plant Omics, 2012,5(5):438-445.
[11] ULLAH A, SUN H, HAKIM X, ZHANG X L . A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiologia Plantarum, 2018,162(4):439-454.
doi: 10.1111/ppl.12651 pmid: 29027659
[12] HUH S U, CHOI L M, LEE G J, KIM Y J, PEAK K H . Capsicum annuum WRKY transcription factor d( CaWRKYd) regulates hypersensitive response and defense response upon tobacco mosaic virus infection. Plant Science, 2012,197:50-58.
doi: 10.1016/j.plantsci.2012.08.013
[13] CHU X, WANG C, CHEN X, LU W J, LI H, WANG X L, HAO L L, GUO X Q . The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE, 2015,10(11):e0143002.
doi: 10.1371/journal.pone.0143002
[14] LIU X, SONG Y, XING F, WANG N, WEN F, ZHU C . GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma, 2016,253(5):1265-1281.
doi: 10.1007/s00709-015-0885-3 pmid: 26410829
[15] ASAI T, TENA G, PLOTNIKOVA J, WILLMANN M R, CHIU W L, GOMEZ-GOMEZ L, BOLLER T, AUSUBEL F M, SHEEN J . MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002,415(6875):977-983.
doi: 10.1038/415977a pmid: 11875555
[16] JIANG Y J, QIU Y P, HU Y R, YU D Q . Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Frontiers in Plant Science, 2016,7:145-152.
doi: 10.3389/fpls.2016.00145 pmid: 26904091
[17] DING Z J, YAN J Y, XU X Y, YU D Q, LI G X, ZHANG S Q, ZHENG S J . Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently i. Arabidopsis. The Plant Journal, 2014,79(1):13-27.
doi: 10.1111/tpj.12538 pmid: 24773321
[18] LIU L, ZHANG Z, DONG J, WANG T . Overexpression of MtWRKY76 increases both salt and drought tolerance in Medicago truncatula. Environmental and Experimental Botany, 2016,123:50-58.
[19] ZHAO J, ZHANG X, GUO R, WANG Y Q, GUO C L, LI Z, CHEN Z P, GAO H, WANG X P . Over-expression of a grape WRKY transcription factor gene, VlWRKY48, i. Arabidopsis thaliana increases disease resistance and drought stress tolerance. Plant Cell, Tissue and Organ Culture, 2017,132(11):359-370.
doi: 10.1007/s11240-017-1335-z
[20] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2002,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[21] ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLER B E, STELLY D M . Sequencing of allotetraploid cotton ( Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015,33(5):531-537.
doi: 10.1038/nbt.3207 pmid: 25893781
[22] TUNNACLIFFE A, WISE M J . The continuing conundrum of the LEA proteins. Naturwissenschaften, 2007,94(10):791-812.
doi: 10.1007/s00114-007-0254-y pmid: 17479232
[23] XUE R, LIU Y, ZHENG Y, WU Y J, LI X J, PEI F K, NI J Z . Three-dimensional structure and mimetic-membrane association of consensus 11-amino-acid motif from soybean lea3 protein. Peptide Science, 2012,98(1):59-66.
doi: 10.1002/bip.21693 pmid: 23325560
[24] YAN H, JIA H, CHEN X, HAO L, AN H L, GUO X Q . The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgeni. Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant & Cell Physiology, 2014,55(12):2060-2076.
doi: 10.1093/pcp/pcu133 pmid: 25261532
[25] DING W W, FANG W B, SHI S Y, ZHAO Y Y, LI X J, XIAO K . Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway. Plant Molecular Biology Reporter, 2016,34(6):1111-1126.
doi: 10.1007/s11105-016-0991-1
[26] FAN Q Q, SONG A P, JIANG J F, ZHANG T, SUN H N, WANG Y J, CHEN S M, CHEN F D . CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS ONE, 2016,11(3):e0150572.
doi: 10.1371/journal.pone.0150572 pmid: 26938878
[27] LUO X, BAI X, SUN X, ZHU D, LIU B H, JI W, CAI H, CAO L, WU J, HU M R, LIU X, TANG L, ZHU Y M . Expression of wild soybean WRKY20 i. Arabidopsis enhances drought tolerance and regulates ABA signalling. Journal of Experimental Botany, 2013,64(8):2155-2169.
doi: 10.1093/jxb/ert073 pmid: 23606412
[28] ASHRAF M, FOOLAD M R . Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007,59(2):206-216.
doi: 10.1016/j.envexpbot.2005.12.006
[29] HU C A, DELAUNEY A J, VERMA D P . A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proceedings of the National Academy of Sciences of the USA, 1992,89(19):9354-9358.
doi: 10.1073/pnas.89.19.9354 pmid: 1384052
[30] MSANNE J, LIN J S, STONE J M, AWADA T . Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A an. RD29B genes and evaluation of transgenes. Planta, 2011,234(1):97-107.
doi: 10.1007/s00425-011-1387-y
[31] MENG L S, WANG Z B, YAO S Q, LIU A Z . The ARF2-ANT- COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought i. Arabidopsis. Journal of Cell Science, 2015,128(21):3922-3932.
doi: 10.1242/jcs.171207 pmid: 26395398
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[4] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[5] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[6] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[7] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[8] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[9] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[10] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[11] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[12] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[13] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[14] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[15] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!