Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (24): 4793-4807.doi: 10.3864/j.issn.0578-1752.2022.24.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L.

XIE LingLi1,2(),WEI DingYi1,2(),ZHANG ZiShuang1,2,XU JinSong1,3,ZHANG XueKun1,3(),XU BenBo1,2()   

  1. 1Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, Hubei
    2College of Life Science, Yangtze University, Jingzhou 434025, Hubei
    3College of Agriculture, Yangtze University, Jingzhou 434025, Hubei
  • Received:2022-07-31 Accepted:2022-09-05 Online:2022-12-16 Published:2023-01-04
  • Contact: XueKun ZHANG,BenBo XU E-mail:linglixie@yangtzeu.edu.cn;253232710@qq.com;benboxu@yangtzeu.edu.cn;zhangxuekun@yangtzeu.edu.cn

Abstract:

【Objective】It was found that there were significant genetic differences between Chinese and European Brassica napus lines, and the yield advantage of hybrid F1 was obvious. To explore the effect of gibberellin (GA) on the growth and development of B. napus, the dynamic changes of GA during the developmental process of B. napus from different lines were measured. For explaining the role of GA in the formation of yield, the transcriptional levels of key enzyme genes involved in GA synthesis were analyzed, and the relationship between GA content and yield in parents and F1 was clarified. 【Method】The dynamic changes of GA content in B. napus lines (15 Chinese lines and 15 European lines) with different sources from November 2020 to May 2021were determined using high performance liquid chromatography. Two F1hybrid lines (YG2009×YC4, ZS11×YC4) with strong heterosis and their parents were used as materials to investigate the changes of GA content in different periods (D1, 15 January 2022; D2, 15 February 2022; D3, 15 March 2022)and measure growth indicators (plant height, root length, fresh weight, etc.), yield and component factors (silique number per plant, seed number per silique and thousand-seed weight), as well as photosynthetic indicators (photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO2 concentration).The change trend of GA content with temperature and the relationship between GA content and agronomic characters, photosynthetic characteristics and yield of parents and F1hybrid from November 2021 to May 2022 were analyzed. Besides, the transcriptional levels of key enzyme genes involved in GA synthesis of the parents and F1 at different stages (D1, D2, D3) also examined by quantitative real-time PCR. 【Result】The content of GA was closely related to the ambient temperature, and the GA content in the tested B. napus lines decreased first and then increased with the change of temperature. However, it was found that the average content of GA in B. napus lines from Europe was higher than that of Chinese lines. F1 showed significant yield heterosis. Compared with the male and female parents, the yield of YG2009×YC4 and ZS11×YC4 increased by 18.06% and 10.35%, and 29.92% and 28.6%, respectively. There were significant differences in agronomic traits between parents and F1, and the yield was correlated with GA content. The results also showed that the transcriptional levels of GA20ox4, GA3ox2 and SLR1 in parents and hybrid F1 varied greatly. 【Conclusion】The GA content of B. napus lines from Europe was more sensitive to temperature changes, but its average content of GA was higher than that from China. The yield of F1 between European rape and Chinese rape lines showed strong heterosis, which was correlated with GA content. The transcriptional levels of GA20ox4 and GA3ox2 regulated the GA content.

Key words: Brassica napus L., heterosis, gibberellins, yield, transcription level

Table 1

Primer sequences for qRT-PCR"

基因名称 Gene names 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′)
BnCPS TCATCCTCGCTTTGTTCGTCTC GCTCCATCTCATTCTCCATTCTC
BnKS1 AAGACAATGGCAGCGAAGAGG CACTCCCTTGGAACCACACTCC
BnKO CGTCTCTTATGGCAGGGATTGC ATCAACATTCTCTTCCTCACCGTC
BnKAO GGAAGGATACATACCAAAGGCA TCCTTTGGTCTTGTGTGAGGCA
BnGA20ox1 ACGGCAACACACCAAGGAGATA TGAGCCAATCTGTGAAAGCCTG
BnGA20ox4 CACTGCGATCCAACATCTCTAACC CACTAAGGCTCGATGCAAGCAACT
BnGA3ox2 CACCTGTCCCTGGCTCACTA GGGTAAAGAGGAGAATGGAGAAG
BnGA2ox6 CTGAGAGGCGTTAGCCAAATAGG CGAGGCTTCCCTGCCGTGTTAG
BnGID1 GAGTCTTGTCGTTGTGGCGG TTAGGCAACAAGTAGAACCCAATG
BnGID2 AACGGTGACGCGAGTAACAAGAAG AGCGAGTGGAGTTGTTTGAAGCCG
BnSLR1 GAAAGAATGTGAGAAGAGGTGCC TTCCGCATATCGTCAAGCCGT
BnD1 CCATCAGCGAGTACGACCAAAC TGATCCAAAGCCGTCGTCCTGTAGA
BnACT CTGGAATTGCTGACCGTATGAG ATCTGTTGGAAAGTGCTGAGGG

Fig. 1

Daily temperature at test site from October 1, 2020 to June 1, 2021"

Fig. 2

Dynamic changes of GA during the whole growth period in B. napus"

Table 2

Analysis of yield and yield components of parents and hybrid F1"

材料
Material
单株角果数
Effective pods per plant
每角粒数
Seeds per pod
千粒重
1000-seed weight (g)
单株产量
Yield per plant (g)
实际产量
Yield (kg·hm-2)
YG2009 268.75±16.39a 19.50±0.65c 3.79±0.01d 19.85±0.22c 2967.30±5.77c
ZS11 174.75±2.39b 20.25±0.48bc 4.66±0.02a 16.85±0.08d 2785.80±8.66d
YC4 164.75±5.54b 20.50±0.29abc 4.52±0.02b 15.30±0.11e 2757.60±2.89e
YG2009×YC4 255.50±11.70a 21.25±0.25ab 4.28±0.01c 22.20±0.19b 3255.60±3.26b
ZS11×YC4 273.25±11.45a 21.50±0.65a 4.32±0.01c 25.35±0.14a 3582.60±6.06a

Fig.3

Daily temperature at test site from October 1, 2021 to June 1, 2022"

Table 3

Analysis of agronomic traits of parents and F1 hybrid"

日期
Date
材料
Material
株高
Plant height (cm)
叶片数
Leaf number
叶长
Leaf length (cm)
叶宽
Leaf width (cm)
根长
Root length (cm)
鲜重
Fresh weight (g)
干重
Dry weight (g)
D1 YG2009 52.0±1.5b 10.3±0.3b 18.7±1.1ab 15.1±0.5a 15.1±0.9a 202.6±5.3b 20.2±0.3b
ZS11 57.2±0.6a 11.7±0.3a 16.5±0.8b 13.7±1.3ab 14.4±0.7a 196.5±21.3b 18.6±2.3b
YC4 40.5±1.5c 10.7±0.7ab 13.9±0.7c 12.6±0.6b 17.0±1.2a 147.7±6.4c 19.5±0.5b
YG2009×YC4 57.5±0.6a 11.7±0.3a 20.2±0.5a 15.5±0.2a 18.6±1.6a 264.3±8.6a 31.1±0.4a
ZS11×YC4 59.4±0.3a 10.0±0.0b 21.0±0.3a 15.9±0.2a 17.3±2.1a 192.8±11.8b 18.4±1.2b
D2 YG2009 57.5±1.3b 10.0±0.6bc 20.2±0.7b 16.7±0.4b 18.0±0.6b 254.1±3.0b 30.0±0.6b
ZS11 69.5±0.9a 12.0±0.6a 22.2±1.3ab 14.3±0.4c 18.1±0.3b 415.9±8.5a 53.0±2.6a
YC4 45.3±1.5c 9.0±0.6c 16.6±1.0c 13.93±1.0c 20.0±0.6a 112.3±6.2d 18.4±0.4c
YG2009×YC4 60.3±1.5b 12.0±0.6a 24.3±0.7a 19.7±0.7a 20.2±0.4a 254.9±3.2b 32.3±0.4b
ZS11×YC4 69.3±0.9a 11.0±0.6ab 21.2±0.6b 16.5±0.3b 19.2±0.4ab 233.9±4.1c 28.8±0.6b
D3 YG2009 83.3±3.8b 17.0±0.6c 21.0±0.6d 19.2±0.4b 19.0±0.6d 390.9±5.0d 66.8±2.3d
ZS11 111.3±1.9a 28.7±0.9a 24.0±0.6c 19.5±0.3ab 21.3±0.3cd 1234.9±4.0a 159.6±2.4a
YC4 47.3±1.8c 14.3±0.3d 17.0±0.6e 15.0±0.6c 22.7±0.9bc 163.6±4.5e 24.4±2.8e
YG2009×YC4 89.0±0.6b 17.3±0.9c 26.7±0.9b 21.5±1.0a 26.0±0.6a 536.8±2.7c 121.3±1.9c
ZS11×YC4 118.0±1.15a 21.7±0.3b 30.0±0.6a 21.0±0.6ab 24.3±1.2ab 881.9±5.8b 142.4±3.3b
方差分析Variance analysis
D1
YG2009×YC4 ** ** * NS NS ** NS * NS NS ** ** ** **
ZS11×YC4 NS ** ↓* NS ** ** NS * NS NS NS * NS NS
D2 YG2009×YC4 NS ** * ** ** ** ** ** * NS NS ** NS **
ZS11×YC4 NS ** NS * NS ** * * NS NS ↓** ** ↓** **
D3 YG2009×YC4 NS ** NS ** ** ** * ** ** * ** ** ** **
ZS11×YC4 NS ** ↓** ** ** ** NS ** * NS ↓** ** ↓** **

Fig. 4

Analysis of photosynthetic characteristics of parents and F1 hybrid Different lowercase letters indicated a difference of 0.05 levels. The same as below"

Fig. 5

Analysis of GA dynamic changes in parents and hybrid F1"

Fig. 6

Relative transcriptional levels of key enzyme genes in GA synthesis pathway at different stages"

Fig. 7

Relative expression levels of GA metabolic key genes in parents and hybrid F1 at different developmental stages a: Change of relative transcriptional levels=Relative transcriptional levels on February 15, 2022 - relative transcriptional levels on January 15, 2022; b: Change of transcriptional levels =Relative transcriptional levels on March 15, 2022 - relative transcriptional levels on February 15, 2022"

Fig. 8

GAcontent in parents and hybrids F1seedlingsin plant growth room"

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40(5): 613-617.
WANG H Z. New-demand oriented oilseed rape industry developing strategy. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 613-617. (in Chinese)
[2] 姚琳, 孙璇, 咸栓狮, 杜春芳. 甘蓝型油菜籽粒油酸、亚油酸、亚麻酸和蛋白质含量变异及相关性分析. 中国粮油学报, 2021, 36(5): 82-87.
YAO L, SUN X, XIAN S S, DU C F. Variation and correlation analysis of oleic acid, linoleic acid, linolenic acid and protein content in Brassica napus seeds. Journal of the Chinese Cereals and Oils Association, 2021, 36(5): 82-87. (in Chinese)
[3] 李利霞, 陈碧云, 闫贵欣, 高桂珍, 许鲲, 谢婷, 张付贵, 伍晓明. 中国油菜种质资源研究利用策略与进展. 植物遗传资源学报, 2020, 21(1): 1-19.
LI L X, CHEN B Y, YAN G X, GAO G Z, XU K, XIE T, ZHANG F G, WU X M. Proposed strategies and current progress of research and utilization of oilseed rape germplasm in China. Journal of Plant Genetic Resources, 2020, 21(1): 1-19. (in Chinese)
[4] 胡鸣, 姚圣黎, 程晓晖, 刘越英, 马立新, 向阳, 黄军艳, 童超波, 刘胜毅. 基于高深度重测序的春性、半冬性和冬性甘蓝型油菜基因组遗传变异分析. 中国油料作物学报, 2018, 40(4): 469-478.
HU M, YAO S L, CHENG X H, LIU Y Y, MA L X, XIANG Y, HUANG J Y, TONG C B, LIU S Y. Genomic variation of spring, semi-winter and winter Brassica napus by high-depth DNA re-sequencing. Chinese Journal of Oil Crop Science, 2018, 40(4): 469-478. (in Chinese)
[5] 姚艳梅, 柳海东, 徐亮, 杜德志. 以半冬性甘蓝型油菜为亲本增强春性甘蓝型油菜杂种优势. 作物学报, 2013, 39(1): 118-125.
doi: 10.3724/SP.J.1006.2013.00118
YAO Y M, LIU H D, XU L, DU D Z. Enhancing the heterosis of spring rapeseed varieties (Brassica napus L.) by using semi-winter rapeseed varieties as parents. Acta Agronomica Sinica, 2013, 39(1): 118-125. (in Chinese)
doi: 10.3724/SP.J.1006.2013.00118
[6] CARRERA E, BOU J, GARCIA-MARTINE J L, PRAT S. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. The Plant Journal, 2000, 22(3): 247-256.
doi: 10.1046/j.1365-313x.2000.00736.x
[7] SAKAMOTO T, MIURA K, ITOH H, TATSUMI T, UEGUCHI- TANAKA M, ISHIYAMA K, KOBAYASHI M, AGRAWAL G K, TAKEDA S, ABE K, MIYAO A, HIROCHIKA H, KITANO H, ASHIKARI M, MATSUOKA M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiology, 2004, 134(4): 1642-1653.
pmid: 15075394
[8] VERA-SIRERA F, GOMEZ M D, PEREZ-AMADOR M A. Chapter 20-DELLA proteins, a group of GRAS transcription regulators that mediate gibberellin signaling. Plant Transcription Factors, 2016: 313-328.
[9] SHEN G, HE W, ZHANG B, XING Y Z. The regulatory network mediated by circadian clock genes is related to heterosis in rice. Journal of Integrative Plant Biology, 2015, 57(3): 300-312.
doi: 10.1111/jipb.12240
[10] SHENG J Y, LI X, ZHANG D. Gibberellins, brassinolide, and ethylene signaling were involved in flower differentiation and development in Nelumbo nucifera. Horticultural Plant Journal, 2022, 8(2): 243-250.
doi: 10.1016/j.hpj.2021.06.002
[11] ZANEWICH K P, ROOD S B. Gibberellins and heterosis in crops and trees: An integrative review and preliminary study with Brassica. Plants, 2020, 9(2): 139.
doi: 10.3390/plants9020139
[12] MA Q, HEDDEN P, ZHANG Q F. Heterosis in rice seedlings: Its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. Plant Physiology, 2011, 156(4): 1905-1920.
doi: 10.1104/pp.111.178046 pmid: 21693671
[13] NICKERSON H. Sustained treatment with gibberellic acid of five different kinds of maize. Annals of the Missouri Botanical Garden, 1959, 46(1/2): 19-37.
doi: 10.2307/2394566
[14] ZHANG Y, NI Z F, YAO Y Y, NIE X L, SUN Q X. Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genetics, 2007, 8(1): 40.
doi: 10.1186/1471-2156-8-40
[15] 石建斌, 王宁, 周红, 许庆华, 乔文青, 严根土. 不同生态条件下棉花赤霉素合成代谢途径关键酶基因差异表达分析. 中国农业大学学报, 2019, 24(1): 6-13.
SHI J B, WANG N, ZHOU H, XU Q H, QIAO W Q, YAN G T. Differential expression of the key enzyme of gibberellins biosynthesis pathway in cotton under different ecological conditions. Journal of China Agricultural University, 2019, 24(1): 6-13. (in Chinese)
[16] 高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展. 生物技术通报, 2018, 34(7): 1-13.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0447
GAO X H, FU X D. Research progress for the gibberellin signaling and action on plant growth and development. Biotechnology Bulletin, 2018, 34(7): 1-13. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0447
[17] SU S, HONG J, CHEN X F, ZHANG C Q, CHEN M J, LUO Z J, CHANG S W, BAI S X, LIANG W Q, LIU Q Q, ZHANG D B. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. Plant Biotechnology Journal, 2021, 19(11): 2304-2318.
doi: 10.1111/pbi.13661 pmid: 34245650
[18] 徐爱军, 高桂枝, 汤莉莉. 梯度洗脱测定植物源调节剂中内源激素方法探讨. 分析试验室, 2007, 26(9): 51-55.
XU A J, GAO G Z, TANG L L. Study on the determination of intrinsic hormones in plant growth regulator from plants by HPLC with gradient elution. Chinese Journal of Analysis Laboratory, 2007, 26(9): 51-55. (in Chinese)
[19] 胡巍, 侯喜林, 史公军. 植物春化特性及春化作用机理. 植物学通报, 2004, 21(1): 26-36.
HU W, HOU X L, SHI G J. Characteristics and mechanism of plant vernalization. Chinese Bulletin of Botany, 2004, 21(1): 26-36. (in Chinese)
[20] FINNEGAN E J, GENGER R K, KOVAC K, PEACOCK W J, DENNIS E S. DNA methylation and the promotion of flowering by vernalization. Proceedings of the National Academy of Sciences of the USA, 1998, 95(10): 5824-5829.
[21] BAO S J, HUA C M, SHEN L S, YU H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(1): 118-131.
doi: 10.1111/jipb.12892
[22] LIU W W, ZHANG Y L, HE H, HE G M, DENG X W. From hybrid genomes to heterotic trait output: Challenges and opportunities. Current Opinion in Plant Biology, 2022, 66: 102193-102214.
doi: 10.1016/j.pbi.2022.102193
[23] 刘增兵, 姜景彬, 杨欢欢, 姜秀明, 李景富. 植物杂种优势的研究进展. 分子植物育种, 2019, 17(12): 4127-4134.
LIU Z B, JIANG J B, YANG H H, JIANG X M, LI J F. Research advance of plant heterosis. Molecular Plant Breeding, 2019, 17(12): 4127-4134. (in Chinese)
[24] 卢晶, 张金文, 刘海卿, 宋展树, 乔岩, 王志伟, 王克婧. 北方白菜型冬油菜越冬率、产量及相关性状杂种优势分析. 西南农业学报, 2016, 29(9): 2020-2026.
LU J, ZHANG J W, LIU H Q, SONG Z S, QIAO Y, WANG Z W, WANG K J. Heterosis analysis of overwintering rate,yield and related traits of Brassica rape winter rape in the North China. Southwest China Journal of Agricultural Sciences, 2016, 29(9): 2020-2026. (in Chinese)
[25] 张书芬, 马朝芝, 朱家成, 王建平, 文雁成, 傅廷栋. 甘蓝型油菜主要农艺和产量性状的杂种优势及其分离世代的分析. 中国油料作物学报, 2007, 29(2): 15-19.
ZHANG S F, MA C Z, ZHU J C, WANG J P, WEN Y C, FU T D. Heterosis and segregation on agronomic and yield traits in Brassica napus L.. Chinese Journal of Oil Crop Sciences, 2007, 29(2): 15-19. (in Chinese)
[26] IWAMOTO M, KIYOTA S, HANADA A, YAMAGUCHI S, TAKANO M. The multiple contributions of phytochromes to the control of internode elongation in rice. Plant Physiology, 2011, 157(3): 1187-1195.
doi: 10.1104/pp.111.184861 pmid: 21911595
[27] LI J, JIANG J F, QIAN Q, XU Y Y, ZHANG C, XIAO J, DU C, LUO W, ZOU G X, CHEN M L, HUANG Y Q, FENG Y Q, CHENG Z K, YUAN M, CHONG K. Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. The Plant Cell, 2011, 23(2): 628-640.
doi: 10.1105/tpc.110.081901
[28] DING L H, WANG Y W, YU H. Overexpression of DOSOC1, an ortholog of ArabidopsisSOC1, promotes flowering in the orchid dendrobium chao parya smile. Plant & Cell Physiology, 2013, 54(4): 595-608.
[29] HYUN Y, RICHTER R, VINCENT C, MARTINEZ-GALLEGOS R, PORRI A, COUPLAND G. Multi-layered regulation of SPL15and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Developmental Cell, 2016, 37(3): 254-266.
doi: 10.1016/j.devcel.2016.04.001
[30] QIN F, KODAIRA K S, MARUYAMA K, MIZOI J, TRAN L P, FUJITA Y, MORIMOTO K, SHINOZAKI K, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response. Plant Physiology, 2011, 157(4): 1900-1913.
doi: 10.1104/pp.111.187302 pmid: 22013217
[31] HAMAYUN M, HUSSAIN A, KHAN S A, KIM H, KHAN A, WAQAS M, IRSHAD M, IQBAL A, REHMAN G, JAN S, LEE I. Gibberellins producing endophytic fungus porostereumspadiceumAGH786 rescues growth of salt affected soybean. Frontiers in Microbiology, 2017, 8: 686.
doi: 10.3389/fmicb.2017.00686
[32] URANO K, MARUYAMA K, JIKUMARU Y, KAMIYA Y, YAMAGUCHI-SHINOZAKI Y, SHINOZAKI K. Analysis of plant hormone profiles in response to moderate dehydration stress. The Plant Journal, 2017, 90(1): 17-36.
doi: 10.1111/tpj.13460 pmid: 27995695
[33] WANG B L, WEI H F, XUE Z, ZHANG W H. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa). Annals of Botany, 2017, 119(6): 945-956.
[34] SHU K, ZHOU W G, CHEN F, LUO X F, YANG W Y. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Frontiers in Plant Science, 2018, 9: 416.
doi: 10.3389/fpls.2018.00416 pmid: 29636768
[35] PENG J R, CAROL P, RICHARDS D E, KING K E, COWLING R J, MURPHY G P, HARBERD N P. The ArabidopsisGA1 gene defines a signaling pathway that negatively regulates gibberellin. Genes & Development, 1997, 11(23): 3194-3205.
doi: 10.1101/gad.11.23.3194
[36] MCGINNIS K M, THOMAS S G, SOULE J D, STRADER L C, ZALE J M, SUN T P, STEBER C M. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. The Plant Cell, 2003, 15(5): 1120-1130.
doi: 10.1105/tpc.010827
[37] MILLER J, GORDON C. The regulation of proteasome degradation by multi-ubiquitin chain binding proteins. FEBS Letters, 2005, 579(15): 3224-3230.
pmid: 15943965
[38] YAN B Q, YANG Z J, HE G H, JING Y X, DONG H X, JU L, ZHANG Y W, ZHU Y F, ZHOU Y, SUN J Q. The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress gibberellin signaling and plant growth. Plant Communications, 2021, 2(6): 100245.
doi: 10.1016/j.xplc.2021.100245
[39] ACHARD P, VRIEZEN W H, STRAETEN D V D, HARBERD N P. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. The Plant Cell, 2003, 15(12): 2816-2825.
doi: 10.1105/tpc.015685
[40] SUN J P, QI LL, LI Y N, CHU J F, LI C Y. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genetics, 2012, 8(3): e1002594.
[41] STAVANG J A, GALLEGO-BARTOLOMÉ J, GÓMEZ M D, YOSHIDA S, ASAMI T, OLSEN J E, GARCÍA-MARTÍNEZ J L, ALABADÍ D, BLÁZQUEZ M A. Hormonal regulation of temperature induced growth in Arabidopsis. The Plant Journal, 2009, 60(4): 589-601.
doi: 10.1111/j.1365-313X.2009.03983.x
[42] LUCAS M D, DAVIÈRE J M, RODRÍGUEZ-FALCÓN M, PONTIN M, IGLESIAS-PEDRAZ J M, LORRAIN S, FANKHAUSER C, BLÁZQUEZ M A, TITARENKO E, PRAT S. A molecular framework for light and gibberellin control of cell elongation. Nature, 2008, 451(7177): 480-484.
doi: 10.1038/nature06520
[43] STAVANG J A, GALLEGE-BARTOLOMÉ J, GÓMEZ M D, YOSHIDA S, ASAMI T, OLSEN J E, GARCÍAMARTÍNEZ J L, ALABADÍ D, BLÁZQUEZ M A. Hormonal regulation of temperature induced growth in Arabidopsis. The Plant Journal, 2009, 60: 589-601.
doi: 10.1111/j.1365-313X.2009.03983.x
[44] GANGAPPA S N, BERRIRI S, KUMAR S V. PIF4 coordinates thermosensory growth and immunity in Arabidopsis. Current Biology, 2017, 27(2): 243-249.
doi: 10.1016/j.cub.2016.11.012
[45] PAIK I, KATHARE P K, KIM J I, HUQ E. Expanding roles of PIFs in signal integration from multiple processes. Molecular Plant, 2017, 10(8): 1035-1046.
doi: S1674-2052(17)30198-3 pmid: 28711729
[46] OH E, ZHU J Y, WANG Z Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology, 2012, 14(8): 802-809.
doi: 10.1038/ncb2545
[47] FERREROL V, VIOLAI L, ARIEL F D, GONZALEZ D H. Class I TCP transcription factors target the gibberellin biosynthesis gene GA20ox1 and the growth-promoting genes HBI1 and PRE6 during thermomorphogenic growth in Arabidopsis. Plant and Cell Physiology, 2019, 60(8): 1633-1645.
doi: 10.1093/pcp/pcz137
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!