Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (24): 4808-4822.doi: 10.3864/j.issn.0578-1752.2022.24.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates

FANG MengYing1(),LU Lin1,WANG QingYan2,DONG XueRui1,YAN Peng1(),DONG ZhiQiang1()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Eco-physiology and Cultivation, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang
  • Received:2022-01-17 Accepted:2022-08-02 Online:2022-12-16 Published:2023-01-04
  • Contact: Peng YAN,ZhiQiang DONG E-mail:fangmengying166@163.com;yanpeng01@caas.cn;dongzhiqiang@caas.cn

Abstract:

【Objective】 Root is an important organ for maize to obtain water and nutrients, and a developed root structure is the key to maximum maize yield potential, which is currently an important issue to be solved in maize cultivation research. Ethylene- chlormequat-potassium and nitrogen application can affect the development of the maize root system. The aim of this study was clarify the effects of ethylene-chlormequat-potassium on the construction of summer maize root morphology and yield under different nitrogen application rates, so as to provide the theoretical and technical basis for the improvement of high yield and efficient cultivation management and rational fertilization of maize. 【Method】In 2019 and 2020, the field experiments were carried out in Daliudian village, Yanjiao town, Langfang city, Hebei province, and Shunyi Experimental Base, Chinese Academy of Agricultural Sciences, Shunyi district, Beijing, respectively, using maize single cross Yudan 9953 as experimental material. A split-zone experimental design was used, with the ethylene-chlormequat-potassium treatment (ECK) and the clear water control (CK) as the main zones, and the six nitrogen levels of 0 (N0), 96 (N96), 132 (N132), 168 (N168), 204 (N204) and 240 kg·hm-2 (N240) as the secondary zones, aiming to analyze the effects of ECK on root morphology and yield of summer maize at different nitrogen application rates. 【Result】The nitrogen application significantly increased root dry weight, number of aerial roots, root length, root surface area and root volume. Compared with no nitrogen application, root dry weight, the number of aerial roots, root length, root surface area and root volume increased by 15.0%-25.2%, 31.7%-71.7%, 15.5%-30.8%, 19.0%-40.9% and 28.8%-54.0% on average with different nitrogen application rates, respectively. Compared with CK, ECK treatment increased root dry weight, number of root layers, number of roots in 1 to 2 layers and the number of aerial roots in summer maize with different nitrogen application rates by 10.4%-17.0%, 5.8%-12.6%, 10.8%-33.9% and 12.5%-79.6%, respectively; On the construction of root morphology, compared with CK, ECK treatment significantly increased the total root length, root surface area and root volume of summer maize with different nitrogen application rates by 7.5%-21.0%, 8.4%-29.3% and 14.3%-38.8%, respectively, and the root length with root diameter > 1.0 mm was significantly increased at medium and high nitrogen levels (N≥N204). Compared with CK, ECK treatment had no significant effect on summer maize yield per unit area in 2019 and 2020 under N0-N168, but significantly increased summer maize yield in 2019 and 2020 under N204 and N240, which increased by an average of 6.3% with N204 and 3.2% with N240. Correlation analysis showed that kernel number, 1000-kernel weight, root length, root surface area and root volume were positively correlated with summer maize yield, and the correlation coefficient between yield and root length was the highest. 【Conclusion】ECK and nitrogen could synergistically promote maize root development and increase summer maize yield under high nitrogen conditions. In the current study, spraying ECK at the V6 growth stage combined with 204 kg·hm-2 N fertilizer was a suitable cultivation technique and N fertilizer management practice for high-yielding summer maize in the Beijing-Tianjin area.

Key words: ethylene-chlormequat-potassium, nitrogen, summer maize, root morphology construction, Beijing-Tianjin area

Fig. 1

Cumulative daily rainfall (bar) and daily mean temperature (line) during the summer maize growing season in 2019 and 2020"

Table 1

Basic soil fertility of topsoil in the test sites in 2019 and 2020"

试验年份
Experiment year
试验地点
Experiment site
有机质
Organic content
(g·kg-1)
全氮
Total N
(g·kg-1)
碱解氮
Available N
(mg·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
2019 燕郊 Yanjiao 15.2 1.1 90.0 40.3 139.3
2020 顺义 Shunyi 14.5 1.0 108.1 43.2 102.6

Fig. 2

Diagram of summer maize root morphology at flowering stage CK: Control, spraying the same amount of water treatment; ECK: Ethylene-chlormequat-potassium treatment; N0, N96, N132, N168, N204 and N240 denote nitrogen application rates of 0, 96, 132, 168, 204 and 240 kg·hm-2, respectively"

Fig. 3

Effect of ethylene-chlormequat-potassium on root dry weight in summer maize with different nitrogen application rates A: Root dry weight at flowering stage in 2019; B: Root dry weight at harvesting stage in 2019; C: Root dry weight at flowering stage in 2020; D: Root dry weight at harvesting stage in 2020; Different lowercase letters in the figure indicate significant differences at 0.05 level between different treatments in the same year; *, ** and *** mean significant difference at 0.05, 0.01 and 0.001 levels, respectively. The same below"

Fig. 4

Effect of Ethylene-chlormequat-potassium on number of root layers in summer maize with different nitrogen application rates"

Table 2

Effect of ethylene-chlormequat-potassium on the number of roots per root layer of summer maize with different nitrogen application rates"

年份
Year
施氮量
Nitrogen application rate (kg·hm-2)
处理
Treatment
第1-2层根条数
Number of roots in the first to second layers
第3层根条数
Number of roots
of the third layer
第4层根条数
Number of roots
of the fourth layer
第5层根条数
Number of roots
of the fifth layer
气生根条数
Number of aerial roots
2019 N0 CK 11.1d 8.1bcd 6.7c 6.8f 9.3d
ECK 12.7bc 7.4cd 7.9bc 8.4e 10.3d
N96 CK 11.5cd 8.7abc 9.3ab 8.9de 10.7d
ECK 14.0ab 10.3a 9.9a 11.0abc 14.7c
N132 CK 12.1cd 9.1abc 7.7bc 8.2e 10.3d
ECK 13.9ab 9.3abc 8.9ab 10.4abcd 13.8c
N168 CK 11.7cd 9.8ab 10.1a 10.0cd 10.0d
ECK 14.9a 9.0abc 10.5a 10.1bcd 22.9ab
N204 CK 11.3cd 8.7abc 8.9ab 10.1bcd 10.3d
ECK 15.2a 8.7abc 8.2bc 11.8a 24.0a
N240 CK 12.7bcd 7.0d 7.8bc 9.3de 10.0d
ECK 14.2ab 9.6ab 9.0ab 11.6ab 22.5b
2020 N0 CK 10.3f 7.3abc 7.8ab 10.0bcd 9.4f
ECK 13.2bcd 6.7abc 7.8ab 10.8bcd 12.2e
N96 CK 13.8abc 6.9abc 7.7ab 10.0bcd 15.5c
ECK 15.6a 8.5a 7.2b 9.1d 14.8cd
N132 CK 11.7def 7.0abc 8.0ab 10.7bcd 14.3cd
ECK 12.6bcde 8.3abc 8.4ab 11.5b 16.1c
N168 CK 12.0def 7.5abc 7.6ab 11.0bc 15.5cd
ECK 11.8def 7.3abc 8.8ab 10.4bcd 22.5a
N204 CK 11.4ef 8.2ab 8.5ab 9.6cd 10.7f
ECK 15.2a 6.4c 8.9a 13.3a 13.7de
N240 CK 12.0cde 6.6bc 8.4ab 10.8bcd 16.0c
ECK 14.1ab 6.7abc 8.7ab 11.2bc 20.0b
F-value 年份Year 0.3ns 43.4*** 8.2** 21.5*** 20.1***
施氮量Nitrogen application 94.7*** 1.0** 5.4*** 32.0*** 558.1***
乙矮合剂ECK 6.0*** 3.4ns 4.7* 9.2*** 89.8***

Table 3

Effect of Ethylene-chlormequat-potassium on root morphology and configuration in summer maize with different nitrogen application rates at flowering stage"

年份
Year
施氮量
Nitrogen rate
(kg?hm-2)
处理
Treatment
根长
Root length
(cm/plant)
根表面积
Root surface
area (cm2/plant)
根体积
Root volume
(cm3/plant)
根长 Root length (cm)
0 < D 0.5 mm 0.5 <D ≤1.0 mm 1.0 <D 2.0 mm D >2.0 mm
2019 N0 CK 2552.4de 463.2ef 8.0de 1779.0de 301.4c 303.3de 180.6ef
ECK 2257.3e 387.5f 6.3e 1576.0e 228.8d 298.4de 128.7f
N96 CK 2745.2d 531.8de 9.5d 2118.5cd 343.7bc 298.7de 184.2ef
ECK 3535.1ab 706.2b 13.9b 2388.2abc 371.2ab 409.1a 283.5ab
N132 CK 2751.0d 530.8de 9.8d 2097.8cd 354.1bc 322.9de 202.9de
ECK 3657.1ab 703.4b 12.5b 2740.8ab 424.3a 390.5ab 261.1bc
N168 CK 2547.3de 450.6ef 8.0de 1962.5cde 324.4bc 287.0e 175.8ef
ECK 3338.0abc 649.8bc 13.2b 2195.1cd 333.4bc 348.9bcd 241.9bcd
N204 CK 3255.3bc 603.1cd 10.0cd 2346.9bc 344.2bc 331.9cde 211.2cde
ECK 3717.2a 789.3a 14.2b 2789.6a 420.5a 416.5a 271.6ab
N240 CK 2919.0cd 669.5bc 12.1bc 2220.8cd 329.7bc 326.6cde 264.7abc
ECK 3791.2a 861.5a 17.3a 2687.1ab 369.8ab 379.5abc 317.8a
2020 N0 CK 4162.9d 712.8g 10.9de 3258.8c 441.4d 333.1d 253.4d
ECK 4979.4c 965.8cd 15.6c 3564.9bc 521.9cd 407.2abc 362.4bc
N96 CK 5206.8c 987.2cd 15.6c 3767.6bc 561.4bcd 375.8cd 364.4bc
ECK 5002.1c 999.7cd 16.5bc 3621.1bc 521.3cd 401.5bc 380.1ab
N132 CK 4710.2c 757.9fg 11.8de 3466.1bc 451.6cd 372.9cd 291.8cd
ECK 6233.0ab 1257.3a 20.0a 4792.2a 707.9a 453.3ab 452.4a
N168 CK 5064.9c 875.2de 13.8cd 3685.9bc 511.0cd 368.0cd 330.0bcd
ECK 5266.0c 995.0c 16.1bc 4068.9b 525.9bcd 444.8ab 345.2bc
N204 CK 4915.6c 805.8efg 9.9e 3393.6bc 507.9cd 355.7cd 260.0d
ECK 6024.5b 1130.3b 19.5ab 4866.8a 573.4bc 445.1ab 444.2a
N240 CK 5144.8c 835.0ef 13.1cde 3605.1bc 563.5bc 410.7abc 330.7bcd
ECK 6607.0a 1224.6ab 20.4a 4799.9a 641.3ab 469.9a 453.7a
F-value 年份Year 1051.7*** 666.5*** 96.0*** 518.2*** 264.0*** 58.2*** 206.3***
施氮量Nitrogen application 23.5*** 29.9*** 12.9*** 12.0*** 7.5*** 5.2*** 11.2***
乙矮合剂ECK 108.5*** 226.4*** 116.8*** 52.9*** 17.0*** 67.1*** 69.0***

Table 4

Effect of ethylene-chlormequat-potassium on root morphology and configuration in summer maize with different nitrogen application rates at harvesting stage"

年份
Year
施氮量
Nitrogen rate
(kg·hm-2)
处理
Treatment
根长
Root length
(cm/plant)
根表面积
Root Surface area
(cm2/plant)
根体积
Root volume
(cm3/plant)
根长 Root length (cm)
0 < D 0.5 mm 0.5 <D ≤1.0 mm 1.0 <D 2.0 mm D >2.0 mm
2019 N0 CK 3691.0e 683.1d 11.0e 2328.4e 447.5de 413.4e 214.7d
ECK 3878.0de 829.0c 14.2d 2609.6cde 531.0c 535.0bcd 299.2c
N96 CK 4464.7bcd 897.5bc 15.5d 2833.9bcd 517.5cd 520.8cd 313.8bc
ECK 4077.6cde 861.7bc 15.7d 2579.6cde 562.3bc 588.3ab 301.7c
N132 CK 3575.1e 792.4cd 15.5d 2413.2de 397.0e 501.2cd 321.1bc
ECK 3674.0e 837.2bc 15.3d 2447.9de 484.0cd 509.2cd 303.4c
N168 CK 3883.6cde 858.3bc 15.0d 2746.8bcde 480.0cd 492.1d 320.1bc
ECK 4533.5bc 999.6b 19.3bc 2863.5bc 550.8bc 565.6abc 390.8ab
N204 CK 4771.6bc 881.4bc 15.2d 3149.6b 555.4c 539.7bcd 340.3bc
ECK 4411.6bcd 902.9bc 16.3cd 2996.4bc 564.2bc 566.2abc 324.4bc
N240 CK 5620.1a 1144.1a 20.0b 3533.8a 702.3a 610.4a 417.2a
ECK 4946.4b 1185.0a 23.7a 3152.2ab 634.1ab 591.8ab 420.7a
2020 N0 CK 2709.0c 756.5a 13.9b 2314.4a 438.7a 405.4abc 301.7c
ECK 3939.8ab 832.1a 15.6ab 2532.6a 469.1a 404.7abc 347.6abc
N96 CK 3488.9b 876.2a 17.2ab 2436.1a 517.2a 399.6abc 357.1abc
ECK 3972.4ab 907.9a 18.0ab 2651.4a 485.6a 419.2abc 378.8abc
N132 CK 3567.5ab 835.0a 15.1ab 2632.7a 528.8a 371.1c 331.4bc
ECK 4142.8a 945.5a 19.1ab 2540.0a 449.8a 482.6a 426.2a
N168 CK 3522.9b 828.7a 15.5ab 2515.8a 512.6a 418.2abc 316.8bc
ECK 4143.5a 942.8a 18.9ab 2575.8a 521.6a 467.6ab 423.8a
N204 CK 3658.8ab 841.2a 15.6ab 2631.8a 461.1a 407.3abc 348.2abc
ECK 3876.6ab 868.9a 16.9ab 2491.9a 471.0a 426.4abc 373.4abc
N240 CK 3790.5ab 793.4a 13.9b 2638.2a 493.9a 394.3bc 309.2c
ECK 3898.7ab 885.0a 17.8ab 2387.7a 470.8a 424.5abc 394.7ab
F-value 年份Year 53.9*** 4.4* 0ns 13.8*** 10.3** 152.2*** 8.2**
施氮量Nitrogen application 13.5*** 7.2*** 8.0*** 4.0** 4.2** 3.6** 6.6***
乙矮合剂ECK 8.8** 9.2** 21.9*** 0.2ns 0.6ns 19.7*** 17.2***

Table 5

Effect of ethylene-chlormequat-potassium on yield and yield components of summer maize with different nitrogen application rates"

年份
Year
施氮量
Nitrogen rate (kg·hm-2)
处理
Treatment
粒数
Kernel number (m-2)
千粒重
1000-kernel weight (g)
产量
Yield (kg·hm-2)
2019 N0 CK 3722.6a 273.1cd 9576.8bc
ECK 3033.4a 262.6cd 7614.7d
N96 CK 3707.4a 278.7abcd 10123.2abc
ECK 3309.3a 261.7d 9427.4c
N132 CK 3663.1a 278.7abcd 10683.5abc
ECK 3553.8a 280.9abc 10141.1abc
N168 CK 3521.8a 278.6abcd 11766.8a
ECK 3785.7a 279.5abcd 10241.9abc
N204 CK 3856.1a 274.4bcd 10999.3abc
ECK 3500.9a 294.7bc 11572.7ab
N240 CK 3647.7a 276.9abcd 11121.8abc
ECK 3500.8a 295.3a 11625.5a
2020 N0 CK 3932.7ab 284.2cde 9533.4e
ECK 3652b 298.6abc 9318.6e
N96 CK 3817.6ab 273.5e 11143.7bcd
ECK 3862.6ab 297.6abcd 11155.8bcd
N132 CK 4226.8a 282.8cde 11848.5a
ECK 3832.7ab 302.2ab 11834.4a
N168 CK 3965.1ab 293.5bcd 11239.3bcd
ECK 4009.4ab 302.4ab 10974cd
N204 CK 4227.8a 288.9bcde 10795.3d
ECK 3915.2ab 306.2a 11593.8ab
N240 CK 3943.3ab 291.2de 11491.3abc
ECK 3947.7ab 299.2ab 11699.6ab
(F-value) 年份Year 17.6*** 52.6*** 12.6**
施氮量Nitrogen application 1.1ns 4.7** 18.1***
乙矮合剂ECK 2.9ns 23.1*** 2.1ns

Table 6

Correlation analysis between root morphology index, root dry weight and yield"

相关性
Correlation
产量
Yield
粒数
Kernel number
千粒重
1000-kernel weight
根干重
Root dry weight
根层数
Number of
root layers
根长
Root length
表面积
Root surface
area
体积
Root volume
产量 Yield 1
粒数 Kernel number 0.546** 1
千粒重 1000-kernel weight 0.573** 0.193 1
根干重 Root dry weight 0.363 -0.321 0.270 1
根层数 Number of root layers -0.288 -0.562** -0.139 0.361 1
根长 Root length 0.599** 0.145 0.772** 0.381 -0.158 1
表面积 Root surface area 0.579** 0.047 0.751** 0.551** -0.058 0.942** 1
体积 Root volume 0.538** -0.042 0.675** 0.682** 0.082 0.840** 0.960** 1
[1] 陈印军, 王琦琪, 向雁. 我国玉米生产地位、优势与自给率分析. 中国农业资源与区划, 2019, 40(1): 7-16.
CHEN Y J, WANG Q Q, XIANG Y. Analysis on the status, superiority and self-sufficiency ratio of maize in China. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(1): 7-16. (in Chinese)
[2] 李玉英, 胡汉升, 程序, 孙建好, 李隆. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. 生态学报, 2011, 31(6): 1617-1630.
LI Y Y, HU H S, CHENG X, SUN J H, LI L. Effects of interspecific interactions and nitrogen fertilization rates on above-and below- growth in faba bean/maize intercropping system. Acta Ecologica Sinica, 2011, 31(6): 1617-1630. (in Chinese)
[3] 漆栋良, 吴雪, 胡田田. 施氮方式对玉米根系生长、产量和氮素利用的影响. 中国农业科学, 2014, 47(14): 2804-2813.
QI D L, WU X, HU T T. Effects of nitrogen supply methods on root growth, yield and nitrogen use of maize. Scientia Agricultura Sinica, 2014, 47(14): 2804-2813. (in Chinese)
[4] 段留生, 田晓莉. 作物化学控制原理与技术. 北京: 中国农业大学出版社, 2005: 1-3.
DUAN L S, TIAN X L. Principles and Techniques of Crop Chemical Control. Beijing: China Agricultural University Press, 2005: 1-3. (in Chinese)
[5] 毛景英, 闫振领. 植物生长调节剂调控原理与实用技术. 北京: 中国农业出版社, 2005.
MAO J Y, YAN Z L. Regulation Principle and practical Technology of Plant Growth Regulator. Beijing: China Agriculture Press, 2005. (in Chinese)
[6] MUHAMMAD K. 多效唑和缩节胺对玉米根系生长、光合特性、抗倒伏性和产量的影响[D]. 杨凌: 西北农林科技大学, 2018.
MUHAMMAD K. Effects of paclobutrazol and mepiquat chloride on root growth, photosynthetic characteristics, lodging resistance and yield responses of maize (Zea mays L.)[D]. Yangling: Northwest Agriculture & Forestry University, 2018. (in Chinese)
[7] GHUMAN L, RAM H. Enhancing wheat grain yield and quality by managing lodging with growth regulators under different nutrition levels. Journal of Plant Nutrition, 2021, 44(13): 1916-1929.
doi: 10.1080/01904167.2021.1884698
[8] 张春宇, 金喜军, 张明聪, 王孟雪, 曹亮, 任春元, 胡国华, 张玉先. 烯效唑与矮壮素复配微量元素拌种对大豆光合生理及产量的影响. 大豆科学, 2020, 39(4): 587-594.
ZHANG C Y, JIN X J, ZHANG M C, WANG M X, CAO L, REN C Y, HU G H, ZHANG Y X. Effects of S3307 and CCC mixed trace element dressing on the photosynthetic physiology and yield of soybean. Soybean Science, 2020, 39(4): 587-594. (in Chinese)
[9] 贺笑, 庞春花, 张永清, 华艳宏, 杨世芳, 王璐媛. 多效唑和矮壮素浸种对藜麦幼苗生长的影响. 河南农业科学, 2018, 47(1): 26-31.
HE X, PANG C H, ZHANG Y Q, HUA Y H, YANG S F, WANG L Y. Effects of soaking seeds with paclobutrazol and chlorocholine chloride on the growth of quinoa seedlings. Journal of Henan Agricultural Sciences, 2018, 47(1): 26-31. (in Chinese)
[10] 李少昆, 王崇桃. 乙烯利对玉米根系影响的研究. 耕作与栽培, 1990, (4): 64-65, 56.
LI S K, WANG C T. Study on the effect of ethephon on maize root system. Tillage and Cultivation, 1990, (4): 64-65, 56. (in Chinese)
[11] 王海永, 陈小文, 牛晓雪, 苏贺, 申婷婷, 董学会. 乙烯利对夏玉米果穗生长发育影响及生理机制探究. 玉米科学, 2014, 22(5): 64-70.
WANG H Y, CHEN X W, NIU X X, SU H, SHEN T T, DONG X H. Influence of ethephon on maize cluster growth and development and the physiological mechanism. Journal of Maize Sciences, 2014, 22(5): 64-70. (in Chinese)
[12] SPITZER T, MÍŠA P, BÍLOVSKÝ J, BÍLOVSKÝ J, KAZDA J. Management of maize stand height using growth regulators. Plant Protection Science, 2015, 51(4): 223-230.
doi: 10.17221/105/2014-PPS
[13] 葛敏, 王元琮, 宁丽华, 胡梦梅, 石习, 赵涵. 氮响应转录因子Zm NLP5影响玉米根系生长的功能研究. 作物学报, 2021, 47(5): 796-802.
GE M, WANG Y Z, NING L H, HU M M, SHI X, ZHAO H. Function analysis of nitrogen-responsive transcription factor ZmNLP5 affecting root growth in maize. Acta Agronomica Sinica, 2021, 47(5): 796-802. (in Chinese)
[14] 程建峰, 戴廷波, 荆奇, 姜东, 潘晓云, 曹卫星. 不同水稻基因型的根系形态生理特性与高效氮素吸收. 土壤学报, 2007, 44(2): 266-272.
CHENG J F, DAI T B, JING Q, JIANG D, PAN X Y, CAO W X. Root morphological and physiological characteristics in relation to nitrogen absorption efficiency in different rice genotypes. Acta Pedologica Sinica, 2007, 44(2): 266-272. (in Chinese)
[15] 宋海星, 李生秀. 玉米生长空间对根系吸收特性的影响. 中国农业科学, 2003, 36(8): 899-904.
SONG H X, LI S X. Effects of root growing space of on maize its absorbing characteristics. Scientia Agricultura Sinica, 2003, 36(8): 899-904. (in Chinese)
[16] 王启现, 王璞, 杨相勇, 翟志席, 王秀玲, 申丽霞. 不同施氮时期对玉米根系分布及其活性的影响. 中国农业科学, 2003, 36(12): 1469-1475.
WANG Q X, WANG P, YANG X Y, ZHAI Z X, WANG X L, SHEN L X. Effects of nitrogen application time on root distribution and its activity in maize (Zea mays L.). Scientia Agricultura Sinica, 2003, 36(12): 1469-1475. (in Chinese)
[17] 楚光红, 章建新, 高阳, 傅积海, 唐长青, 王娜. 施氮量对滴灌超高产春玉米根系时空分布及产量的影响. 干旱地区农业研究, 2018, 36(3): 156-160.
CHU G H, ZHANG J X, GAO Y, FU J H, TANG C Q, WANG N. Effects of nitrogen application rate on temporal and spatial distribution characteristics of super-high yield spring maize root and yield under drip irrigation. Agricultural Research in the Arid Areas, 2018, 36(3): 156-160. (in Chinese)
[18] 宋启龙, 岳善超, 蔡立群. 地膜覆盖栽培玉米根系形态对施氮量的响应. 水土保持研究, 2020, 27(2): 23-29.
SONG Q L, YUE S C, CAI L Q. Response of maize root morphology to nitrogen application under film mulch. Research of Soil and Water Conservation, 2020, 27(2): 23-29. (in Chinese)
[19] 卢霖. 乙矮合剂对不同密度夏玉米抗倒防衰的调控效应[D]. 北京: 中国农业科学院, 2015.
LU L. Effects of ethylene-chlormequat-potassium on the stem lodging-resistance and antisenescence of summer maize under different sowing densities[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[20] 薛金涛. 化学调控对高产性状的调控效应研究[D]. 北京: 中国农业科学院, 2008.
XUE J T. Effect of chemical regulation on high yield properties of maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)
[21] 兰宏亮. 东北春玉米密度对根系质量的影响与化学调控机理研究[D]. 北京: 中国农业科学院, 2011.
LAN H L. Effects of planting density on root quality of high-yield spring mazie and chemical regulation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[22] LAL R. Effects of constant and fluctuating soil temperature on growth, development and nutrient uptake of maize seedlings. Plant Soil, 1974, 40(3):589-606.
doi: 10.1007/BF00010516
[23] 王宁, 李继光, 娄翼来, 王义东, 李忠芳, 宋吉青, 张晓军. 作物根系形态对施肥措施的响应. 中国农学通报, 2020, 36(3): 53-58.
WANG N, LI J G, LOU Y L, WANG Y D, LI Z F, SONG J Q, ZHANG X J. Response of crop root morphology to fertilization measures. Chinese Agricultural Science Bulletin, 2020, 36(3): 53-58. (in Chinese)
[24] 杜红霞, 冯浩, 吴普特, 王百群. 水、氮调控对夏玉米根系特性的影响. 干旱地区农业研究, 2013, 31(1): 89-94, 100.
DU H X, FENG H, WU P T, WANG B Q. Influence of water and N fertilizer regulation on root growth characteristics of summer maize. Agricultural Research in the Arid Areas, 2013, 31(1): 89-94, 100. (in Chinese)
[25] 袁园, 张怡明, 赵江, 郭丽, 张凤路. 喷施生长调节剂对夏玉米生长发育的影响. 玉米科学, 2011, 19(3): 110-112, 117.
YUAN Y, ZHANG Y M, ZHAO J, GUO L, ZHANG F L. Effects of plant growth regulator on the growth and development of summer maize. Journal of Maize Sciences, 2011, 19(3): 110-112, 117. (in Chinese)
[26] 张帅, 宁芳芳, 黄收兵, 王璞, 廖树华. 化控处理时期对玉米植株-根系形态及产量的影响. 中国农业大学学报, 2020, 25(2): 1-11.
ZHANG S, NING F F, HUANG S B, WANG P, LIAO S H. Effects of chemical regulation on timing on maize plant-root morphology and yield. Journal of China Agricultural University, 2020, 25(2): 1-11. (in Chinese)
[27] 叶德练, 管大海, 张钰石, 张明才, 李召虎. 雨养条件下植物生长调节剂对冬小麦根系生长和产量形成的调控研究. 华北农学报, 2016, 31(2): 125-130.
doi: 10.7668/hbnxb.2016.02.021
YE D L, GUAN D H, ZHANG Y S, ZHANG M C, LI Z H. Effect of plant growth regulator on the root growth and yield of winter wheat under rain-fed condition. Acta Agriculturae Boreali-Sinica, 2016, 31(2): 125-130. (in Chinese)
doi: 10.7668/hbnxb.2016.02.021
[28] KUNDU S, DEY A, BANDYOPADHYAY A. Chlorocholine chloride mediated resistance mechanism and protection against leaf spot disease of Stevia rebaudiana Bertoni. European Journal of Plant Pathology, 2014, 139(3): 511-524.
doi: 10.1007/s10658-014-0407-8
[29] 潘瑞炽. 植物生理学. 北京: 高等教育出版社, 2008: 176-179.
PAN R C. Plant Physiology. Beijing: Higer Education Press, 2008: 176-179. (in Chinese)
[30] 杨钧贺, 刘畅, 钮世辉, 李伟. 茎部形成层赤霉素在植物生长发育中的调控作用. 北京林业大学学报, 2019, 41(7): 68-74.
YANG J H, LIU C, NIU S H, LI W. Regulatory effect of stem cambium gibberellin on plant growth and development. Journal of Beijing Forestry University, 2019, 41(7): 68-74. (in Chinese)
[31] KNIPFER T, FRICKE W. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.). Journal of Experimental Botany, 2011, 62(2): 717-733.
doi: 10.1093/jxb/erq312
[32] ZHAO Y, XING L, WANG X G, HOU Y J, GAO J H, WANG P C, DUAN C G, ZHU X H, ZHU J K. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin- responsive genes. Science Signaling, 2014, 7(328): ra53-ra53.
[33] 张旭东, 王智威, 韩清芳, 王子煜, 闵安成, 贾志宽, 聂俊峰. 玉米早期根系构型及其生理特性对土壤水分的响应. 生态学报, 2016, 36(10): 2969-2977.
ZHANG X D, WANG Z W, HAN Q F, WANG Z Y, MIN A C, JIA Z K, NIE J F. Effects of water stress on the root structure and physiological characteristics of early-stage maize. Acta Ecologica Sinica, 2016, 36(10): 2969-2977. (in Chinese)
[34] MAIZLISH N A, FRITTON D D, KENDALL W A. Root morphology and early development of maize at varying levels of nitrogen. Agronomy Journal, 1980, 72(1): 25-31.
doi: 10.2134/agronj1980.00021962007200010006x
[35] 李秧秧, 刘文兆. 土壤水分与氮肥对玉米根系生长的影响. 中国生态农业学报, 2001, 9(1): 23-25.
LI Y Y, LIU W Z. Effects of soil moisture and nitrogen fertilizer on root growth of corn. Chinese Journal of Eco-Agriculture, 2001, 9(1): 23-25. (in Chinese)
[36] NANAGARA T, PHILLIPS R E, LEGGETT J E. Diffusion and mass flow of nitrate-nitrogen into corn roots grown under field conditions. Agronomy Journal, 1976, 68(1): 67-72.
doi: 10.2134/agronj1976.00021962006800010018x
[37] 苏黎, 董笛, 柴琦, 张健全, 岑飞冀, 余群, 马红梅, 魏佳宁, 杨梅. 乙烯利浸种对不同土壤水分条件下多年生黑麦草幼苗生长的影响. 草业科学, 2015, 32(8): 1260-1267.
SU L, DONG D, CHAI Q, ZHANG J Q, CEN F J, YU Q, MA H M, WEI J N, YANG M. Effects of ethephon soaking seeds on growth of Lolium perenne seedlings at different soil moistures. Pratacultural Science, 2015, 32(8): 1260-1267. (in Chinese)
[38] 李少昆, 涂华玉, 张旺峰. 乙烯利对玉米生理效应的研究. 石河子农学院学报, 1991, (1): 40-46.
LI S K, TU H Y, ZHANG W F. A study on effects of ethephon on physiology in maize. Journal of Shihezi University (Natural Science), 1991, (1): 40-46. (in Chinese)
[39] LEWIS D R, NEGI S, SUKUMAR P, MUDAY G K. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development, 2011, 138(16): 3485-3495.
doi: 10.1242/dev.065102 pmid: 21771812
[40] RAJALA A, PELTONEN-SAINIO P. Plant growth regulator effects on spring cereal root and shoot growth. Agronomy Journal, 2001, 93(4): 936-943.
doi: 10.2134/agronj2001.934936x
[41] SUN X C, CHEN F J, YUAN L X, MI G H. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta, 2020, 251(4): 1-14.
doi: 10.1007/s00425-019-03297-x
[42] LU Y L, XU Y C, SHEN Q R, DONG C X. Effects of different nitrogen forms on the growth and cytokinin content in xylem sap of tomato (Lycopersicon esculentum Mill.) seedlings. Plant and Soil, 2009, 315(1): 67-77.
doi: 10.1007/s11104-008-9733-y
[43] 王俊忠, 黄高宝, 张超男, 杨亚军, 赵会杰, 朱晓燕, 马培芳. 施氮量对不同肥力水平下夏玉米碳氮代谢及氮素利用率的影响. 生态学报, 2009, 29(4): 2045-2052.
WANG J Z, HUANG G B, ZHANG C N, YANG Y J, ZHAO H J, ZHU X Y, MA P F. Influence of nitrogen fertilizer rate on carbon-nitrogen metabolism and nitrogen use efficiency of summer maize under high and medium yield levels. Acta Ecologica Sinica, 2009, 29(4): 2045-2052. (in Chinese)
[44] 王立刚, 李虎, 杨黎, 翟振, 邱建军. 冬小麦/夏玉米轮作系统不同施氮量的长期环境效应及区域氮调控模拟. 中国农业科学, 2013, 46(14): 2932-2941.
WANG L G, LI H, YANG L, ZHAI Z, QIU J J. Simulation of long-term and regional environmental effects of different N applications in the winter wheat/summer maize system. Scientia Agricultura Sinica, 2013, 46(14): 2932-2941. (in Chinese)
[45] 赵亚南, 徐霞, 黄玉芳, 孙笑梅, 叶优良. 河南省小麦、玉米氮肥需求及节氮潜力. 中国农业科学, 2018, 51(14): 2747-2757.
ZHAO Y N, XU X, HUANG Y F, SUN X M, YE Y L. Nitrogen requirement and saving potential for wheat and maize in Henan province. Scientia Agricultura Sinica, 2013, 51(14): 2747-2757. (in Chinese)
[46] 王宜伦, 李潮海, 谭金芳, 张许, 刘天学. 氮肥后移对超高产夏玉米产量及氮素吸收和利用的影响. 作物学报, 2011, 37(2): 339-347.
doi: 10.3724/SP.J.1006.2011.00339
WANG Y L, LI C H, TAN J F, ZHANG X, LIU T X. Effect of postponing N application on yield, nitrogen absorption and utilization in super-high-yield summer maize. Acta Agronomica Sinica, 2011, 37(2): 339-347. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00339
[47] 兰宇. 施氮量和覆膜对滴灌玉米根层养分、根系形态及产量的影响[D]. 银川: 宁夏大学, 2021.
LAN Y. Effects of nitrogen application rate and plastic film mulching on maize root nutrients, root morphology and yield under drip irrigation[D]. Yinchuan: Ningxia University, 2021. (in Chinese)
[1] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[4] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[5] GU WenDong, LIU ChunJuan, LI Bang, LIU Chang, ZHOU YuFei. Effects of Exogenous Tryptophan on C/N Balance and Senescence Characteristics of Sorghum Seedlings Under Low Nitrogen Stress [J]. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310.
[6] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[7] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[8] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[9] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[10] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[11] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[12] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[13] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[14] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[15] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!