Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (20): 3637-3647.doi: 10.3864/j.issn.0578-1752.2019.20.014

• SPECIAL FOCUS: SOIL WATER AND FERTILIZER MANAGEMENT IN GREENHOUSE VEGETABLE FIELDS • Previous Articles     Next Articles

Effect of Applying Chicken Manure and Phosphate Fertilizer on Soil Phosphorus Under Drip Irrigation in Greenhouse

ZhiPing LIU1,2,XuePing WU1(),RuoNan LI3,FengJun ZHENG1,MengNi ZHANG1,ShengPing LI1,XiaoJun SONG1   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 Institute of Agricultural Resource Environment, Shanxi Academy of Agricultural Sciences, Taiyuan 030031
    3 Institute of Agricultural Resource Environment, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051
  • Received:2019-05-30 Accepted:2019-08-21 Online:2019-10-16 Published:2019-10-28
  • Contact: XuePing WU E-mail:wuxueping@caas.cn

Abstract:

【Objective】 Aiming at the problem of phosphorous accumulation in greenhouse soil, the effects of applying chicken manure and phosphorus fertilizer on phosphorus accumulation in soil under drip irrigation were studied.【Method】 The solar greenhouse in North China Plain using drip irrigation was taken as research object. Five treatments were designed, including no fertilizer (CK), single phosphate (P1), single chicken manure (OM), chicken manure and reduced phosphate fertilization (OM+P1), chicken manure and habitual phosphate fertilization (OM+P2), to reveal the enrichment and transformation, migration and distribution in vertical section of soil at different growth stages and availability of inorganic phosphate form in soil.【Result】 The results showed that the combination of chicken manure and phosphate fertilizer significantly increased the accumulation and residue of total phosphorus, available phosphorus (Olsen-P) and inorganic phosphorus in soil. In the soil layer of 0-20 cm, total phosphorus content decreased with the development of cucumber growth period, highest in seeding stage and lowest in late fruiting stage period. Under different fertilization treatments, total phosphorus contents were significantly different, and the sequence of each growth period was OM+P2 treatment>OM+P1 treatment>P1 treatment>OM treatment>CK treatment. The Olsen-P contents at different levels in the soil profile varied greatly. In seedling stage, the range was 44.43-86.08 mg·kg -1 at soil of 0-20 cm, 6.51-10.05 mg·kg -1 at soil of 20-40 cm, and there was very little variability in soil layer lower than 40 cm. The effect of water on the movement of phosphorus was slight under the condition of drip irrigation in greenhouse. So Olsen-P mainly concentrated in the soil layer of 0-20 cm, which accounted for 68.76-87.78% of the available phosphorus in soil profile of 0-100 cm in each growth period. Compared with CK, the other treatments increased the proportion of Olsen-P in total phosphorus by 1.23%-2.47%. The sequence of inorganic phosphorus content of different forms in soil layer of 0-20 cm was Ca10-P>Ca8-P>O-P>Ca2-P>Al-P>Fe-P, among which, the proportion of Ca-P was the highest (79.55%-83.35%). As the amount of phosphorus fertilizer increased, so did the accumulation of phosphorus. The contents of Ca8-P, Ca2-P, Al-P, Fe-P and Ca10-P under fertilization treatments were all significantly higher than that under CK, with Ca8-P increased the most, followed sequentially by Ca2-P, Al-P and Fe-P. Phosphate fertilizer would be converted into Ca8-P through Ca2-P soon after it was applied into the soil, which accumulated in the soil in a slow manner. Among all forms of inorganic phosphorus, Ca8-P accumulated the most, Al-P and Fe-P also accumulated to a certain extent.【Conclusion】 Traditional excessive fertilization caused phosphorus remaining in the soil in the forms of Ca8-P, Al-P and Fe-P, resulting in the accumulation of soil phosphorus and waste of phosphorus fertilizer. On the basis of 30,000 kg·hm -2 chicken manure, adding phosphate fertilizer had no significant effect on increasing yield but obviously increased the residual accumulation of phosphorus. If only chicken manure was applied, the dosage should not exceed 30 000 kg·hm -2. If inorganic phosphate fertilizer was combined, the amount of chicken manure should be reduced, while the inorganic phosphate fertilizer rate should be less than 300 kg·hm -2. The specific amount and proportion of fertilizer application need further study and discussion.

Key words: cucumber, greenhouse, chicken manure, phosphate fertilizer, inorganic phosphate fraction, phosphate accumulation and transformation, available phosphorus

Table 1

Content of basic nutrient in 0-20 cm layer of soil in greenhouse"

pH 有机质
SOM (g·kg-1)
硝态氮
NO-3-N (mg·kg-1)
铵态氮
NH4+-N (mg·kg-1)
速效钾
NH4OAC-K (mg·kg-1)
全磷
TP (g·kg-1)
有效磷
Olsen-P (mg·kg-1)
8.1 15.0 5.5 19.4 60.0 1.0 40.2

Table 2

Bulk densities and field capacity of the original soil"

土壤深度
Soil depth (cm)
土壤容重
Soil bulk density (g·cm-3)
田间持水量
Field capacity (%)
0-20 1.35 19.11
20-40 1.52 16.87
40-60 1.48 22.04
60-80 1.36 23.02
80-100 1.42 20.18

Table 3

Experimental treatments and fertilization schedule"

处理
Treatment
无机肥 Inorganic fertilizer (kg·hm-2) 鸡粪 Chicken manure (kg·hm-2) 总养分 Total nutrient (kg·hm-2)
P2O5 N K2O P2O5 N K2O P2O5 N K2O
CK 0 0 0 0 0 0 0 0 0
P1 300 600 525 0 0 0 300 600 525
OM 0 600 525 906 405 621 906 1005 1146
OM+P1 300 600 525 906 405 621 1206 1005 1146
OM+P2 675 600 525 906 405 621 1581 1005 1146

Table 4

Moisture control at different growth stages of cucumber"

生育时期
Growth period
土壤深度
Soil depth (cm)
田间持水量的百分数
Percentage
of field capacity (%)
苗期Seedling stage 0-20 75-90
产瓜初期 Early fruiting stage 0-40 80-95
产瓜盛期Vigorous fruiting stage 0-60 80-95
产瓜末期Late fruiting stage 0-60 75-90

Fig. 1

Effects of various fertilization treatments on soil pH"

Fig. 2

Effect of various fertilization treatments on the total amount of P in 0-20 cm layer of soil"

Fig. 3

Effect of various fertilization treatments on the amount of Olsen-P in soil"

Fig. 4

Effects of various fertilization treatments on different forms of inorganic P content of the 0-20 cm layer of soil Different letters above the bars indicate a significant difference (P<0.05) among treatments at the same growth stage. The same symbols were used in the following figures"

Fig. 5

Cucumber yields under the various treatments (t·hm-2)"

Table 5

Correlation coefficients (r) between the content of inorganic P in different forms and Olsen-P"

生育时期 Growth period Ca2-P Ca8-P Ca10-P Al-P Fe-P O-P
苗期Seedling stage 0.974** 0.699 0.835 0.991** 0.859 0.319
产瓜初期 Early fruiting stage 0.992** 0.974** 0.691 0.973** 0.862 0.964*
产瓜盛期Vigorous fruiting stage 0.962** 0.911* 0.695 0.929* 0.696 0.696
产瓜末期Late fruiting stage 0.929** 0.919* 0.672 0.945* 0.781 0.845

Table 6

Correlation coefficients (r) between Olsen-P and inorganic P in soil and cucumber yield at different growth stages"

生育时期Growth period Olsen-P Ca2-P Ca8-P Ca10-P Al-P Fe-P O-P
苗期Seedling stage 0.887* 0.906* 0.691 -0.313 0.934* 0.595 0.482
产瓜初 Early fruiting stage 0.933* 0.912* 0.86 0.007 0.918* 0.759 0.989**
产瓜盛期Vigorous fruiting stage 0.963** 0.999** 0.886* -0.03 0.985** 0.695 0.607
产瓜末期Late fruiting stage 0.897* 0.973* 0.774 0.472 0.931* 0.475 0.738
[1] 薛利红, 杨林章, 施卫明, 王慎强 . 农村面源污染治理的“4R”理论与工程实践——源头减量技术. 农业环境科学学报, 2013,32(5):881-888.
XUE L H, YANG L Z, SHI W M, WANG S Q . Reduce- Retain-Reuse-Restore Technology for controlling the agricultural non-point pollution in countryside in China: Source Reduction Technology. Journal of Agro-Environment Science, 2013,32(5):881-888. (in Chinese)
[2] 曾招兵, 曾思坚, 汤建东, 刘一锋, 张满红 . 广东省耕地土壤有效磷时空变化特征及影响因素分析. 生态环境学报, 2014,23(3):444-451.
ZENG Z B, ZENG S J, TANG J D, LIU Y F, ZHANG M H . Space-temporal variation of farmland soil AP in Guangdong province and their causing factors. Ecology and Environmental Sciences, 2014,23(3):444-451. (in Chinese)
[3] 曾艳, 李征, 张静涵, 安树青, 冷欣, 李宁 . 不同施肥类型下设施农业土壤质量的累积特征. 江苏农业科学, 2016,44(6):465-469.
ZENG Y, LI Z, ZHANG J H, AN S Q, LENG X, LI N . Cumulative characteristics of soil quality in facility agriculture under different fertilization types. Journal of Jiangsu Agricultural Science, 2016,44(6):465-469. (in Chinese)
[4] 刘磊 . 蔬菜温室大棚土壤盐渍化成因分析. 山东农业科学, 2012,44(7):69-72.
LIU L . Causes analysis of soil salinization in vegetable greenhouse. Shandong Agricultural Sciences, 2012,44(7):69-72. (in Chinese)
[5] 曹齐卫, 张卫华, 陈伟, 孔素萍, 孙小镭 . 济南地区日光温室养分投入特征和利用状况的分析. 西南农业学报, 2011,24(5):1818-1827.
CAO Q W, ZHANG W H, CHEN W, KONG S P, SUN X L . Analysis of characteristics of fertilizer input and absorption in Jinan greenhouse. Southwest China Journal of Agricultural Sciences, 2011,24(5):1818-1827. (in Chinese)
[6] 余海英, 李廷轩, 张树金, 张锡洲 . 温室栽培条件下土壤无机磷组分的累积、迁移特征. 中国农业科学, 2011,44(5):956-962.
YU H Y, LI Y X, ZHANG S J, ZHANG X Z . The accumulation and migration of inorganic phosphorus fractions in soils under greenhouse cultivation. Scientia Agricultura Sinica, 2011,44(5):956-962. (in Chinese)
[7] 张彦才, 李若楠, 王丽英, 刘猛朝, 武雪萍, 吴会军, 李银坤 . 磷肥对日光温室番茄磷营养和产量及土壤酶活性的影响. 植物营养与肥料学报, 2008,14(6):1193-1199.
doi: 10.11674/zwyf.2008.0626
ZHANG Y C, LI R N, WANG L Y, LIU M C, WU X P, WU H J, LI Y K . Effect of phosphorus fertilization on tomato phosphorus nutrition, yield and soil enzyme activities. Plant Nutrition and Fertilizer Science, 2008,14(6):1193-1199. (in Chinese)
doi: 10.11674/zwyf.2008.0626
[8] 蔡红明 . 陕西日光温室系统养分平衡与土壤养分累积状况研究[D]. 杨凌: 西北农林科技大学, 2015.
CAI H M . Nutrient balance and accumulation in soils of solar greenhouse in Shanxi[D]. Yanglin: Northwest A&F University, 2015. ( in Chinese)
[9] 孙丽 . 巢湖流域减量施肥对番茄产量、品质及后季水稻产量影响研究[D]. 合肥: 安徽农业大学, 2012.
SUN L . Study on effect of reducing fertilizer application on tomato production, quality and the yield of next rice season in Chao Lake Basin[D]. Hefei: Anhui Agricultural University, 2012. ( in Chinese)
[10] 田秋英 . 菜地磷肥转化、影响因素及生物有效性研究[D]. 石家庄: 河北农业大学, 2002.
TIAN Q Y . The studies on transformation、influence factors and availability of phosphorus fertilizer in vegetable soil[D]. Shijiazhuang: Hebei Agricultural University, 2002. ( in Chinese)
[11] 高妍, 姜佰文, 刘大森, 王春宏, 张迪, 刘学生 . 不同种植年限黑土型蔬菜保护地磷素状况的研究. 核农学报, 2011,25(1):121-126.
GAO Y, JIANG B W, LIU D S, WANG C H, ZHANG D, LIU X S . Phosphorus status of black soil in vegetable soil after different planting duration. Journal of Nuclear Agricultural Sciences, 2011,25(1):121-126. (in Chinese)
[12] JALALI M, JALALI M . Relation between various soil phosphorus extraction methods and sorption parameters in calcareous soils with different texture. Science of the Total Environment, 2016, ( 566/567): 1080-1093.
[13] LUO L, MA Y B, SANDERS R L, XU C, LI J M, MYNENI S C B . Phosphorus speciation and transformation in long-term fertilized soil: evidence from chemical fractionation and P K-edge XANES spectroscopy. Nutrient Cycling in Agroecosystems, 2017,107(2):215-226.
[14] ACHAT D, NOÉMIE P, NICOLAS M, FÉLIX B, AUGUSTO L . Soil properties controlling inorganic phosphorus availability: general results from a national forest network and a global compilation of the literature. Biogeochemistry, 2016,127(2/3):255-272.
[15] SÁNCHEZ-ALCALÁ I, DEL CAMPILLO M C, BARRÓN V, TORRENT J . The Olsen P/solution P relationship as affected by soil properties. Soil Use & Management, 2015,30(4):454-462.
[16] YAN Z, LIU P, LI Y, MA L, ALVA A, DOU Z, CHEN Q, ZHANG F . Phosphorus in China’s intensive vegetable production systems: over fertilization, soil enrichment, and environmental implications. Journal of Environmental Quality, 2013,42(4):982-989.
[17] 张福锁, 陈新平, 陈清 . 中国主要作物施肥指南. 北京: 中国农业大学出版社, 2009: 122-129.
ZHANG F S, CHEN X P, CHEN Q. The Fertilization Guide for Main Crop in China. Beijing: China Agricultural University Press, 2009: 122-129. (in Chinese)
[18] 索炎炎, 张翔, 司贤宗, 毛家伟, 李亮, 余琼, 王亚宁, 余晖 . 磷肥与有机肥配施对土壤-花生系统磷素及花生产量的影响. 中国油料作物学报, 2018,40(1):119-126.
SUO Y Y, ZHANG X, SI X Z, MAO J W, LI L, YU Q, WANG Y N, YU H . Effect of combined application of phosphorus and organic fertilizer on phosphorus contents in peanut-soil system and pod yield of peanut. Chinese Journal of Oil Crop Sciences, 2018,40(1):119-126. (in Chinese)
[19] 杜艳玲, 周怀平, 杨振兴, 程曼, 解文艳, 郭晋, 王志伟 . 长期施肥下褐土中不同磷组分对磷素盈余的响应. 华北农学报, 2018,33(3):224-231.
DU Y L, ZHOU H P, YANG Z X, CHENG M, XIE W Y, GUO J, WANG Z W . Response of different P component to P balance in cinnamon soil under long-term fertilization. Acta Agriculturae Boreali-sinica, 2018,33(3):224-231. (in Chinese)
[20] 黄绍文, 唐继伟, 张怀志, 袁硕, 王玉军 . 基于发育阶段的设施黄瓜水肥一体化技术. 中国果菜, 2017,37(5):82-84.
HUANG S W, TANG J W, ZHANG H Z, YUAN S, WANG Y J . Integrated technology of water and fertilizer for facility cucumber based on development stage. China Fruit and Vegetables, 2017,37(5):82-84. (in Chinese)
[21] REINDERS F B, NIEKERK A S V . Technology smart approach to keep drip irrigation systems functional. Irrigation & Drainage, 2018,67(1):82-88.
[22] 鲁如坤 . 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999: 308-311.
LU R K. Methods in Agricultural Soil Chemical Analysis. Beijing: China Agricultural Technique Press, 1999: 308-311. (in Chinese)
[23] 蒋柏藩, 顾益初 . 石灰性土壤无机磷分机磷分级测定方法. 土壤, 1990,22(2):101-102.
JIANG B F, GU Y C . Measurement methods for the grading inorganic phosphorus in calcareous soils. Soils, 1990,22(2):101-102. (in Chinese)
[24] 王海龙, 张民, 刘之广, 于小晶, 赵洪猛, 陈海宁 . 多年定位试验条件下不同施磷水平对土壤无机磷分级的影响. 水土保持学报, 2018,32(5):321-327.
WANG H L, ZHANG M, LIU Z G, YU X J, ZHAO H M, CHEN H N . Effects of different phosphorus application levels on the inorganic phosphorus fraction under multi-year location experiment. Journal of Soil and Water Conservation, 2018,32(5):321-327. (in Chinese)
[25] HALAJNIA A, HAGHNIA G H, FOTOVAT A, KHORASANI R . Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure. Geoderma, 2009,150(1/2):209-213.
[26] 吴曦 . 植物高效利用土壤磷素的机理研究. 产业与科技论坛, 2017,16(9):47-48.
WU X . Study on the mechanism of plant efficient utilization of soil phosphorus. Industrial & Science Tribune, 2017,16(9):47-48. (in Chinese)
[27] 唐晓鹿, 范少辉 . 土壤磷有效性研究进展. 第九届中国林业青年学术年会论文摘要集, 2010.
TANG X L, FAN S H . Advances in phosphorus availability of soil. Abstract collection of 9 th China forestry youth academic annual conference , 2010. ( in Chinese)
[28] 叶会财, 李大明, 黄庆海, 柳开楼, 余喜初, 徐小林, 周利军, 胡惠文, 王赛莲 . 长期不同施肥模式红壤性水稻土磷素变化. 植物营养与肥料学报, 2009,21(6):1521-1528.
YE H C, LI D M, HUANG Q H, LIU K L, YU X C, XU X L, ZHOU L J, HU H W, WANG S L . Variation of soil phosphorus under long-term fertilization in red paddy soil. Journal of Plant Nutrition and Fertilizer, 2009,21(6):1521-1528. (in Chinese)
[29] 张田, 许浩, 茹淑华, 苏德纯 . 不同有机肥中磷在土壤剖面中累积迁移特征与有效性差异. 环境科学, 2017,38(12):5247-5255.
ZHANG T, XU H, RU S H, SU D C . Distribution of phosphorus in soil profiles after continuous application of different fertilizers. Environmental Science, 2017,38(12):5247-5255. (in Chinese)
[30] LOURENZI C R, CERETTA C A, CERINI J B, FERREIRA P A A, LORENSINI F, GIROTTO E, TIECHER T L, SCHAPANSKI D E, BRUNETTO G . Available content, surface runoff and leaching of phosphorus forms in a typic hapludalf treated with organic and mineral nutrient sources. Revista Brasileira de Ciênciado Solo, 2014,38(2):544-556.
[31] SHARPLEY A N, MCDOWELL R W, KLEINMAN P J A . Amounts, forms, and solubility of phosphorus in soils receiving manure. Soil Science Society of America Journal, 2004,68(6):2048-2057.
[32] 赵晓齐, 鲁如坤 . 有机肥对土壤磷素吸附的影响. 土壤学报, 1991,28(1):7-13.
ZHAO X Q, LU R K . Effect of organic fertilizer on phosphorus adsorption in soil. Acta Pedologica Sinica, 1991,28(1):7-13. (in Chinese)
[33] REDDY D D, RAO A S, RUPA T R . Effects of continuous use of cattle manure and fertilizer phosphorus on crop yields and soil organic phosphorus in a vertisol. Bioresource Technology, 2000,75(2):113-118.
[34] 宋付朋 . 长期施磷石灰性土壤无机磷形态特征及其有效性研究[D]. 安: 山东农业大学, 2006.
SONG F P . Characteristics and availability of inorganic phosphate fractions in calcareous soils under long-term fertilization[D]. Taian: Shandong Agricultural University, 2006. ( in Chinese)
[35] 郭智芬, 涂书新, 李晓华, 潘勇, 张宜春 . 石灰性土壤不同形态无机磷对作物磷营养的贡献. 中国农业科学, 1997,30(1):26-32.
GUO Z F, TU S X, LI X H, PAN Y, ZHANG Y C . Contribution of different forms of inorganic phosphates in calcareous soils to phosphorus nutrition of crops. Scientia Agricultura Sinica, 1997,30(1):26-32. (in Chinese)
[36] 姚炳贵, 姚丽竹, 王苹, 张玺, 王德芳 . 津郊潮土磷素组成及其演变规律的定位研究. 土壤学报, 1997,34(3):286-294.
YAO B G, YAO L Z, WANG P, ZHANG X, WANG D F . Long-term experimental study on components and changes of phosphorus in fluvo-aquic soil of Tianjin suburbs. Acta Pedologica Sinica, 1997,34(3):286-294. (in Chinese)
[37] 介晓磊, 杨先明, 黄绍敏, 刘芳, 刘世亮, 宝德俊, 化党领, 李有田 . 石灰性潮土长期定位施肥对小麦根际无机磷组分及其有效性的影响. 中国土壤与肥料, 2007(2):53-58.
JIE X L, YANG X M, HUANG S M, LIU F, LIU S L, BAO D J, HUA D L, LI Y T . Effects of long-term localized fertilization of calcareous tidal soil on the composition and availability of organic phosphorus in rhizosphere of wheat. Soil and Fertilizer Sciences in China, 2007 ( 2):53-58. (in Chinese)
[38] 汤炎, 赵海涛, 封克, 汪晓丽, 盛海君 . 施磷对滨海盐土无机磷组分的动态影响. 土壤通报, 2007,38(1):77-80.
TANG Y, ZHAO H T, FENG K, WANG X L, SHENG H J . Dynamic effects of phosphorus application on inorganic phosphorus components in coastal saline soil in China. Chinese Journal of Soil Science, 2007,38(1):77-80. (in Chinese)
[39] 李新平, 张亚林, 魏玉奎, 魏迎春 . 杨凌地区大棚土壤无机磷形态及有效性研究. 水土保持学报, 2009,23(4):195-199.
LI X P, ZHANG Y L, WEI Y K, WEI Y C . Study on forms of inorganic phosphates and its validity in Yangling area. Journal of Soil and Water Conservation, 2009,23(4):195-199. (in Chinese)
[40] 陈永亮 . 不同氮源对黑松幼苗根-土界面无机磷形态转化及有效性的影响. 林业科学, 2012,48(3):51-57.
doi: 10.11707/j.1001-7488.20120309
CHEN Y L . Effects of different nitrogen sources on transformation and availability of inorganic phosphorus in the root-soil interface of Pinus thunbergii seedlings. Scientia Silvae Sinicae, 2012,48(3):51-57. (in Chinese)
doi: 10.11707/j.1001-7488.20120309
[1] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[2] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[3] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[4] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[5] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[6] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[7] ZHANG XinYao,ZHANG Min,ZHU YuanPeng,HUI XiaoLi,CHAI RuShan,GAO HongJian,LUO LaiChao. Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(19): 3791-3806.
[8] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[9] WANG Cong,SUN HuiFeng,XU ChunHua,WANG ZhanFu,ZHANG JiNing,ZHANG XianXian,CHEN ChunHong,ZHOU Sheng. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(1): 123-133.
[10] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[11] LiYuan ZHANG,JinDong LÜ,XinYue SHI,Na YU,HongTao ZOU,YuLing ZHANG,YuLong ZHANG. Effects of Irrigation Regimes on N2O and NO Emissions from Greenhouse Soil [J]. Scientia Agricultura Sinica, 2021, 54(5): 992-1002.
[12] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
[13] JING JianYuan,YUAN Liang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang. Effects and Mechanism of Humic Acid in Humic Acid Enhanced Phosphate Fertilizer on Fertilizer-Phosphorus Migration [J]. Scientia Agricultura Sinica, 2021, 54(23): 5032-5042.
[14] ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[15] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!