Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (14): 3077-3087.doi: 10.3864/j.issn.0578-1752.2021.14.013

• HORTICULTURE • Previous Articles     Next Articles

Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate

WANG JunZheng(),ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui()   

  1. College of Horticulture, Northwest A&F University/Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
  • Received:2020-08-30 Accepted:2020-11-24 Online:2021-07-16 Published:2021-07-26
  • Contact: XiaoHui HU E-mail:wjz20190915@163.com;hxh1977@163.com

Abstract:

【Objective】A bag-cultivated experiment was conducted to test the potential of two microbial agents (Bacillus methylotrophicus and Lactobacillus plantarum) on the yield, quality and rhizosphere environment of autumn cucumber using organic substrate as a growth medium. The results of the experiment were helpful to develop the new functional type of microbial agents to guide the high quality and high efficiency production of cucumber. 【Method】Cucumber cultivar ‘Bonai 526’ was sown in a bag of organic substrate. There were a total of six treatments, including CK1 (Irrigation of water and non-application of microbial agents), NT1 (Irrigation of water and application of Bacillus methylotrophicusagents), NT2 (Irrigation of water and application of Lactobacillus plantarumagents), CK2 (Irrigation of nutrient solution and non-application of microbial agents), FT1 (Irrigation of nutrient solution and application ofBacillus methylotrophicusagents), and FT2 (Irrigation of nutrient solution and application of Lactobacillus plantarumagents). The microbial agents (Bacillus methylotrophicus as ‘VL-10’ and Lactobacillus plantarum as ‘LYS-1’) were added to the cucumber rhizosphere at the rate of 2.5×1010 CFU/plant on 20th, 35th and 50th day. 【Result】Compared with CK1 and CK2 treatment,Bacillus methylotrophicus inoculation in both of the nutrient levels increased the dry matter content by 13.51% and 15.02%, and yield by 20.83% and 15.63%, respectively; Lactobacillus plantarum increased the dry matter content by 11.43% and 8.42%, and the yield by 17.42% and 14.96%, respectively. The fruit quality under FT1 treatment was the best; compared with CK2 treatment, its content of free amino acid, organic acid, soluble sugar, reducing sugar and vitamin C were significantly increased by 10.61%, 28.93%, 22.92% and 39.88%, respectively,, followed by FT2 treatment. The accumulation of phosphorus and potassium were significantly higher under both NT1 (7.43% and 10.60%) and NT2 (13.50% and 8.19%) compared with CK1 treatment (P<0.05). Compared with CK2 treatment, the accumulation of nitrogen, and potassium were significantly higher under FT2 (24.18% and 26.25%), while the phosphorus concentration in plants were significantly higher under FT1 (17.16%). Compared with CK2 treatment, the nitrogen, phosphorus and potassium fertilizer utilization rates under FT1 treatment were significantly increased by 82.85%, 483.90% and 75.60% (P<0.05), respectively, which under FT2 treatment was significantly increased by 102.42%, 367.98% and 120.46%, respectively (P<0.05). Compared with CK1 treatment, the treatments NT1 and NT2 improved soil enzymatic activities of sucrase (100.66% and 116.60%), catalase (3.39% and 4.10%) and alkaline phosphatase (6.99% and 95.08%) at the full fruiting stage, among which catalase and alkaline phosphatase activities were still higher at the end of the experiment. Compared with CK2 treatment, the FT1 treatment significantly improved soil enzymatic activities of urease (3.75% and 13.13%), sucrase (68.62% and 31.68%) and alkaline phosphatase (18.00% and 109.64%) in the full fruiting period and the seedling pulling period, while the urease (4.95% and 6.12 %), sucrase (24.93% and 63.35%) and alkaline phosphatase activity (26.99% and 84.01%) under FT2 treatment (P<0.05). The effect ofBacillus methylotrophicagent on the urease and alkaline phosphatase activities were better than that ofLactobacillus plantarumagent. Moreover, the substrate incubated with Bacillus methylotrophic showed significantly higher available nitrogen content (63.33% and 72.70%) (P<0.05) compared with their respective controls at the full fruiting stage, and the increase was 25.48% and 86.46% at the end of the experiment, respectively. 【Conclusion】In conclusion, adding 7.5×1010CFU/plant of Bacillus methylotrophic to the substrate could improve the rhizosphere environment of cucumber and promote the absorption, assimilation and accumulation of essential elements by the plant. Moreover, it could effectively improve the yield and fruit quality of cucumber.

Key words: microbial agents, cucumber, substrate cultivation, yield, fruit quality, rhizosphere environment

Fig. 1

Effects of two microbial agents on cucumber yield cultured in organic substrate ** indicate extremely significant effect, NS indicate no significant effect. Different lowercase letters indicate significant difference (P<0.05), and the letters ‘M’ and ‘F’ represented microbial agents and nutrient solution, respectively. The same as below "

Table 1

Effects of two microbial agents on quality of cucumber cultured in organic substrate"

处理
Treatment
游离氨基酸
Free amino acids (μg·g-1)
可溶性蛋白
Soluble protein
(μg·g-1)
有机酸
Organic acid
(%)
可溶性糖
Soluble sugar
(%)
还原糖
Reducing sugar
(%)
维生素C
Vitamin C
(μg·g-1)
硝酸盐
Nitrate content
(μg·g-1)
CK1 609.60±6.13f 296.30±5.86c 1.22±0.013d 8.17±0.17d 1.12±0.004c 55.14±0.58d 273.07±4.72d
NT1 700.93±9.03d 349.11±1.08b 1.29±0.017c 9.26±0.34c 1.43±0.068b 55.14±1.01d 338.89±5.16b
NT2 648.57±6.71e 238.72±4.47d 1.42±0.009b 9.12±0.17c 1.37±0.048b 63.88±1.21cd 309.30±5.16c
CK2 745.72±9.07c 373.36±2.81a 1.44±0.013b 9.54±0.23c 1.44±0.080b 73.29±0.58bc 415.58±12.55a
FT1 824.84±7.63a 387.21±4.22a 1.53±0.004a 12.30±0.38a 1.77±0.078a 102.52±5.61a 359.42±5.23b
FT2 800.41±6.48b 302.36±8.98c 1.50±0.015a 10.47±0.41b 1.45±0.033b 79.33±4.62b 360.02±10.16b
方差分析
ANOVA
营养液 F 489.516** 197.361** 318.604** 61.696** 26.000** 0.244 125.693**
菌剂 M 63.083** 182.428** 33.353** 4.597* 0.153 61.526** 1.797
营养液×菌剂 F×M 1.696 7.256** 44.611** 21.232** 18.003** 25.139** 33.304**

Table 2

Effect of two microbial agents on dry matter accumulation and distribution of cucumber"

处理
Treatment

Root (g/plant)

Stem (g/plant)

Leaf (g/plant)

Fruit (g/plant)
果实干物质分配系数
Distribution index of fruit (%)
CK1 3.52±0.16b 14.00±0.34d 56.81±2.25b 69.30±0.66e 0.48±0.009c
NT1 4.24±0.08a 16.08±0.14c 57.09±3.78b 85.63±1.24c 0.53±0.013ab
NT2 3.57±0.01b 16.61±0.56bc 58.36±2.27b 81.50±1.26d 0.51±0.013bc
CK2 3.38±0.19b 15.75±0.24c 61.99±0.26b 94.34±0.82b 0.54±0.002ab
FT1 4.41±0.24a 20.43±0.71a 70.95±3.81a 106.03±1.10a 0.53±0.011ab
FT2 3.68±0.10b 17.66±0.39b 62.91±1.57ab 105.99±0.43a 0.56±0.006a
方差分析
ANOVA
营养液 F 0.151 44.008** 13.372** 874.705** 17.945**
菌剂 M 17.263** 30.714** 1.647 122.633** 2.838
营养液×菌剂 F×M 0.539 7.813** 1.954 3.456 4.494*

Fig. 2

Effects of two microbial agents on the accumulation of nitrogen, phosphorus and potassium of cucumber"

Table 3

Effects of two microbial agents on substrate enzyme activity"

处理
Treatment
脲酶
Urease activity
(mg·g-1·d-1)
蔗糖酶
Sucrase activity
(mg·g-1·d-1)
过氧化氢酶
Catalase activity
(mL·g-1·d-1)
碱性磷酸酶
Alkaline phosphatase activity (mg·g-1·d-1)
盛果期
Full fruiting stage
拉秧期
Seedling pulling stage
盛果期
Full fruiting stage
拉秧期
Seedling pulling stage
盛果期
Full fruiting stage
拉秧期
Seedling pulling stage
盛果期
Full fruiting stage
拉秧期
Seedling pulling stage
CK1 6.53±0.02b 6.78±0.09c 136.86±9.37e 103.36±1.90c 1.93±0.139d 2.36±0.012bc 5.46±0.31c 3.86±0.71b
NT1 5.81±0.04c 6.36±0.02d 274.62±9.00b 83.81±5.17d 2.34±0.003b 2.44±0.009ab 6.59±0.30b 7.53±0.44a
NT2 5.85±0.01c 6.66±0.03c 296.44±1.22a 63.53±8.88e 2.48±0.021b 2.54±0.039a 5.83±0.12c 4.13±0.45b
CK2 6.67±0.03b 6.70±0.03c 160.30±0.37d 96.57±0.80cd 2.03±0.168cd 2.23±0.015d 5.89±0.03c 3.94±0.37b
FT1 6.92±0.11a 7.58±0.09a 270.29±5.32b 127.16±8.72b 2.85±0.018a 2.31±0.033cd 6.95±0.28ab 8.62±0.43a
FT2 7.00±0.10a 7.11±0.05b 200.27±9.24c 157.75±1.71a 2.26±0.006bc 2.46±0.059ab 7.48±0.09a 7.25±0.11a
方差分析
ANOVA
营养液 F 234.482** 127.569** 20.907** 90.592** 0.827 17.273** 2.55 4.972*
菌剂 M 7.104** 8.047** 182.185** 1.811 23.677** 19.534** 16.378** 1.783
营养液×菌剂 F×M 39.428** 63.632** 41.375** 40.529** 9.634** 0.466 13.287** 51.432**

Table 4

Effects of two microbial agents on the content of available nitrogen in substrate"

处理
Treatment
NH4+-N
(mg·kg-1)
NO3--N
(mg·kg-1)
有效态N总量
Total available nitrogen (mg·kg-1)
盛果期 Full fruiting stage 拉秧期Seedling pulling stage 盛果期 Full fruiting stage 拉秧期 Seedling pulling stage 盛果期 Full fruiting stage 拉秧期 Seedling pulling stage
CK1 21.81±0.67d 24.16±0.72b 405.44±5.17e 271.84±2.54f 427.25±5.45e 296.00±3.16f
NT1 75.63±0.69a 20.37±0.23bc 622.19±3.82c 341.12±2.08d 697.81±3.98c 371.41±2.13d
NT2 62.03±2.47b 30.61±2.64a 612.64±18.31c 283.15±4.38e 674.67±20.77c 313.76±5.91e
CK2 15.47±0.51e 30.29±0.37a 514.72±1.64d 389.23±5.04c 530.19±2.14d 409.60±4.94c
FT1 77.39±0.68a 18.67±0.74c 838.24±8.52a 745.07±1.12a 915.63±9.18a 763.73±0.44a
FT2 41.92±0.65c 22.56±0.67b 704.16±7.09b 437.76±3.15b 746.08±7.28b 460.32±3.75b
方差分析
ANOVA
营养液 F 244.174** 1.517 346.006** 5046.852** 223.717** 3769.324**
菌剂 M 1243.315** 25.307** 467.776** 3411.182** 542.801** 2423.188**
营养液×菌剂 F×M 180.810** 17.469** 27.105** 975.240** 35.165** 714.535**

Fig. 3

Effects of two microbial agents on fertilizer utilization of cucumber"

Table 5

Correlation analysis of rhizosphere environment and fruit quality in fruiting period"

因子
Factor
游离氨基酸
Free amino acids
可溶性蛋白
Soluble protein
有机酸
Organic acid
可溶性糖
Soluble sugar
还原糖
Reducing sugar
维生素C
Vitamin C
硝酸盐
Nitrate content
脲酶 Urease 0.651** 0.410 0.532* 0.540* 0.312 0.686** 0.408
蔗糖酶 Sucrase 0.166 -0.106 0.296 0.349 0.501* 0.192 -0.053
过氧化氢酶 Catalase 0.426 0.128 0.435 0.652** 0.689** 0.563* -0.003
碱性磷酸酶
Alkaline phosphatase
0.762** 0.256 0.547* 0.637** 0.467 0.501* 0.320
铵态氮 Ammonium 0.123 0.127 0.094 0.382 0.501* 0.190 -0.150
硝态氮 Nitrate 0.798** 0.315 0.764** 0.879** 0.844** 0.771** 0.340
有效态氮总量
Total available nitrogen
0.728** 0.301 0.693** 0.845** 0.834** 0.716** 0.276
[1] 孙光闻, 陈日远, 刘厚诚. 设施蔬菜连作障碍原因及防治措施. 农业工程学报, 2005, 21(增刊):184-188.
SUN G W, CHEN R Y, LIU H C. Causes and control measures for continuous cropping obstacles in protected vegetable cultivation. Transactions of the Chinese Society for Agricultural Machinery, 2005, 21(Supp):184-188. (in Chinese)
[2] 徐小莲. 我国蔬菜无土栽培现状与发展趋势. 农业工程, 2019, 10(9):121-123.
XU X L. Current situation and development trend of vegetable soilless cultivation in China. Agricultural Engineering, 2019, 10(9):121-123. (in Chinese)
[3] 祝英, 彭轶楠, 巩晓芳, 张军, 王治业, 郭增祥, 马坤源, 周剑平, 杨晖. 不同微生物菌剂对当归苗生长及根际土微生物和养分的影响. 应用与环境生物学报, 2017, 23(3):511-519.
ZHU Y, PENG Y N, GONG X F, ZHANG J, WANG Z Y, GUO Z X, MA K Y, ZHOU J P, YANG H. Effects of different microbial agents on growth of Angelica sinensis and microorganism population and nutrients of rhizosphere soil. Chinese Journal of Applied & Environmental Biology, 2017, 23(3):511-519. (in Chinese)
[4] 李艳玲. 根际微生物群落对挥发性有机物和作物生长的影响[D]. 北京: 中国农业科学院, 2019.
LI Y L. Effects of rhizosphere microbiomes on volatile organic compounds and crop growth[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[5] 蒋静静, 屈锋, 苏春杰, 杨剑锋, 余剑, 胡晓辉. 不同肥水耦合对黄瓜产量品质及肥料偏生产力的影响. 中国农业科学, 2019, 52(1):86-97.
JIANG J J, QU F, SU C J, YANG J F, YU J, HU X H. Effects of different water and fertilizer coupling on yield and quality of cucumber and partial factor productivity of fertilizer. Scientia Agricultura Sinica, 2019, 52(1):86-97. (in Chinese)
[6] 王鹏勃, 李建明, 丁娟娟, 刘国英, 潘铜华, 杜清洁, 常毅博. 水肥耦合对温室袋培番茄品质、产量及水分利用效率的影响. 中国农业科学, 2015, 48(2):314-323.
WANG P B, LI J M, DING J J, LIU G Y, PAN T H, DU Q J, CHANG Y B. Effect of water and fertilizer coupling on quality, yield and water use efficiency of tomato cultivated by organic substrate in bag. Scientia Agricultura Sinica, 2015, 48(2):314-323. (in Chinese)
[7] 徐刚, 高文瑞, 王欣, 李德翠, 孙艳军, 韩冰, 史珑燕. 水肥耦合对基质栽培辣椒前期产量和光合作用的影响. 中国农学通报, 2018, 34(14):40-47.
XU G, GAO W R, WANG X, LI D C, SUN Y J, HAN B, SHI L Y. Water and fertilizer coupling effect on early yield and photosynthesis of pepper cultivated in organic substrate. Chinese Agricultural Science Bulletin, 2018, 34(14):40-47. (in Chinese)
[8] MADHAIYAN M, POONGUZHALI S, KWON S W, SA T M. Bacillus methylotrophicus sp. nov. a methanol-utilizing, plant-growth promoting bacterium isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 2010(60):2490-2495.
[9] 吕倩, 胡江春, 王楠, 王雪梅, 王书锦. 南海深海甲基营养型芽孢杆菌SHB114抗真菌脂肽活性产物的研究. 中国生物防治学报, 2014, 30(01):113-120.
LÜ Q, HU J C, WANG N, WANG X M, WANG S J. Anti-fungal lipopeptides produced by Bacillus methylotrophicus SHB114 isolated from South China sea . Chinese Journal of Biological Control, 2014, 30(1):113-120. (in Chinese)
[10] 康兴娇, 申红妙, 贾招闪, 杨佳瑶, 冉隆贤, 甄志先. 葡萄霜霉病生防菌甲基营养型芽胞杆菌T3的鉴定及其防治效果. 中国生物防治学报, 2016, 32(6):775-782.
KANG X J, SHEN H M, JIA Z S, YANG J Y, RAN L X, ZHEN Z X. Identification of Bacillus methylotrophicus T3 and its control effect on grape downy mildew . Chinese Journal of Biological Control, 2016, 32(6):775-782. (in Chinese)
[11] 刘晶晶, 高丽娟, 师建芳, 王小芬, 袁旭峰, 崔宗均. 乳酸菌复合系和植物乳杆菌提高柳枝稷青贮效果. 农业工程学报, 2015, 31(9):295-302.
LIU J J, GAO L J, SHI J F, WANG X F, YUAN X F, CUI Z J. Lactic acid bacteria community and Lactobacillus plantarum improving silaging effect of switchgrass . Transactions of the Chinese Society for Agricultural Engineering, 2015, 31(9):295-302. (in Chinese)
[12] 王成, 王益, 周玮, 骈瑞琪, 张庆, 陈晓阳. 植物乳杆菌和含水量对辣木叶青贮品质和单宁含量的影响. 草业学报, 2019, 28(6):109-118.
WANG C, WANG Y, ZHOU W, PIAN R Q, ZHANG Q, CHEN X Y. Effects of Lactobacillus plantarum(LP) and moisture on feed quality and tannin content of Moringa oleifera leaf silage . Acta Prataculturae Sinica, 2019, 28(6):109-118. (in Chinese)
[13] 闫艳华, 王海宽, 肖瑞峰, 宗志友, 沈发迪, 孙瑶, 戚薇. 一株乳酸菌对番茄灰霉病的防效及对几种防御酶活性的影响. 微生物学通报, 2011, 38(12):1801-1806.
YAN Y H, WANG H K, XIAO R F, ZONG Z Y, SHEN F D, SUN Y, QI W. Bio-control effects of a lactic acid bacteria on tomato botrytis blight and its induction on defense-related enzymes. Microbiology, 2011, 38(12):1801-1806. (in Chinese)
[14] 刘聪, 谯江兰, 仝少杰, 张瑞芳, 周大迈, 张爱军, 王红, 王亚芹. 微生物菌剂对设施甜瓜产量和品质的影响. 江苏农业科学, 2019, 47(19):168-171.
LIU C, QIAO J L, TONG S J, ZHANG R F, ZHOU D M, ZHANG A J, WANG H, WANG Y Q. Effects of microbial agents on yield and quality of melon in facilities. Jiangsu Agricultural Sciences, 2019, 47(19):168-171. (in Chinese)
[15] 鲁凯珩, 金清, 曹沁, 李珊珊, 孙舒荣, 蒋秋艳, 金杰人, 凌丽晨, 符歆灏, 杜萱, 肖明. 不同微生物菌剂对田间西红柿品质以及土壤酶活性的影响. 上海师范大学学报(自然科学版), 2019, 48(2):197-206.
LU K H, JING Q, CAO Q, LI S S, SUN S R, JIANG Q Y, JIN J R, LING L C, FU X J, DU X, XIAO M. Effects of different microbial agents on tomato quality and soil enzyme activity. Journal of Shanghai Normal University (Natural Sciences), 2019, 48(2):197-206. (in Chinese)
[16] 高君凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006.
GAO J F. Plant Physiology Experiment Guidance. Beijing: Higher Education Press, 2006. (in Chinese)
[17] 张佼, 屈锋, 朱玉尧, 杨甲甲, 胡晓辉. 增施有机肥和微生物菌剂对春季杨凌设施番茄产量和品质的影响. 西北农业学报, 2019, 28(5):767-773.
ZHANG J, QU F, ZHU Y Y, YANG J J, HU X H. Effects of more organic fertilizer and microbial agents on yield and quality of spring greenhouse tomato in Yangling. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(5):767-773. (in Chinese)
[18] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.
GUAN S Y. Soil Enzyme and Its Research Method. Beijing: Agricultural Publishing House, 1986. (in Chinese)
[19] 鲍士旦. 土壤农化分析第三版. 北京: 中国农业出版社, 2000.
BAO S D. Third Edition of Soil Agrochemical Analysis (3rd edition). Beijing: China Agricultural Publishing House, 2000. (in Chinese)
[20] 李格, 白由路, 杨俐苹, 卢艳丽, 王磊, 张静静, 张银杰. 华北地区夏玉米滴灌施肥的肥料效应. 中国农业科学, 2019, 52(11):1930-1941.
LI G, BAI Y L, YANG L P, LU Y L, WANG L, ZHANG J J, ZHANG Y J. Effect of drip fertigation on summer maize in North China. Scientia Agricultura Sinica, 2019, 52(11):1930-1941. (in Chinese)
[21] BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8):478-486.
doi: 10.1016/j.tplants.2012.04.001
[22] CROWLEY D. Microbial Siderophores in The Plant Rhizosphere. Iron Nutrition in Plants and Rhizospheric Microorganisms: Springer Netherlands, 2006: 169-198.
[23] 陆引罡, 谢永平, 湛方栋, 丁美丽. 植烟黄壤微生物生态特征与氮素的矿化和硝化作用. 中国烟草科学, 2010, 31(2):29-33.
LU Y G, XIE Y P, ZHAN F D, DING M L. Microbial ecological characteristics and nitrogen mineralization and nitrification in tobacco growing yellow soil. Chinese Tobacco Science, 2010, 31(2):29-33. (in Chinese)
[24] ESITKEN A, PIRLAK L, TURAN M, SAHIN F. Effects of floral and foliar application of plant growth promoting rhizobacteria(PGPR) on yield, growth and nutrition of sweet cherry. Scientia Horticulturae, 2006, 110(4):324-327.
doi: 10.1016/j.scienta.2006.07.023
[25] HAN J G, SUN L, DONG X Z, CAI Z Q, SUN X L, YANG H L, WANG Y S, SONG W. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensisHR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Systematic and Applied Microbiology, 2005, 28:66-76.
doi: 10.1016/j.syapm.2004.09.003
[26] PINEDA A, ZHENG S J, VANLOON J J, PIETERSE M J, DICKE M. Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends in Plant Science, 2010, 15(9):507-514.
doi: 10.1016/j.tplants.2010.05.007
[27] MENG Q, JIANG H, HAO J J. Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biological Control, 2016, 98:18-26.
doi: 10.1016/j.biocontrol.2016.03.010
[28] POONGUZHALI S, MADHAIYAN M, SA T M. Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris spp pekinensis and screening of traits for potential plant growth promotion. Plant Soil, 2016, 286:167-180.
doi: 10.1007/s11104-006-9035-1
[29] TORAL L, RODRIGUEZ M, BEJAR V, SAMPEDRO I. Antifungal activity of lipopeptides from Bacillus XT1 CECT8661 against Botrytis cinerea. Front Microbiol, 2018, 9:1315.
doi: 10.3389/fmicb.2018.01315
[30] 康少辉, 苏浴源, 栗淑芳, 申领艳, 闫凤岐, 刘晓婕, 吕丽霞. 不同浓度枯草芽孢杆菌对黄瓜秧苗长势和质量的影响. 河北农业科学, 2014, 18(3):52-53, 56.
KANG S H, SU Y Y, LI S F, SHEN L Y, YAN F Q, LIU X J, LÜ L X. Effects of different concentrations of Bacillus subtilis on the growth and quality of cucumber seedlings . Journal of Hebei Agricultural Sciences, 2014, 18(3):52-53, 56. (in Chinese)
[31] 蒋春良. 解淀粉芽孢杆菌FZB42 sRNA Igr3927的表达和功能研究[D]. 南京: 南京林业大学, 2015.
JIANG C L. Bacillus amyloliquefaciens FZB42 sRNA Igr3927 transcription analysis[D]. Nanjing: Nanjing Forestry University, 2015. (in Chinese)
[32] 杨文香, 张汀, 刘大群. 三株链霉菌对黄瓜白粉病及黄瓜生长的影响. 河北农业大学学报, 2005, 28(4):80-83, 92.
YANG W X, ZHANG D, LIU D Q. Effects of three Streptomycesstrains on the growth of cucumber plant and against cucumber powdery mildew . Journal of Agricultural University of Hebei, 2005, 28(4):80-83, 92. (in Chinese)
[33] 朱金英. 微生物菌剂在设施黄瓜和番茄上的应用效果研究[D]. 泰安: 山东农业大学, 2014.
ZHU J Y. Study on the application of microbial agents in cucumber and tomato cultivated in greenhouse[D]. Tai’an: Shandong Agricultural University, 2014. (in Chinese)
[34] 张翠绵, 李洪涛, 李晓芝, 贾楠, 胡栋, 王占武. 链霉菌S506对设施黄瓜根际生态和生产性状的影响. 中国农业科技导报, 2010, 12(5):98-102.
ZHANG C M, LI H T, LI X Z, JIA N, HU D, WANG Z W. Effect of Streptomyces sp. S06 on rhizosphere ecosystem and production traits of cucumber in facilities . Journal of Agricultural Science and Technology, 2010, 12(5):98-102. (in Chinese)
[35] 陆雅海, 张福锁. 根际微生物研究进展. 土壤, 2006, 38(2):113-121.
LU Y H, ZHANG F S. The advances in rhizosphere microbiology. Soil, 2006, 38(2):113-121. (in Chinese)
[36] 庞强强, 蔡兴来, 周曼, 赵枢纽, 李德明. 微生物菌肥对设施白菜生长、品质和土壤酶活性的影响. 热带农业科学, 2018, 38(4):20-23.
PANG Q Q, CAI X L, ZHOU M, ZHAO S N, LI D M. Effects of microbial fertilizer on the growth, quality and soil enzyme activities of pakchoi in the solar greenhouse. Chinese Journal of Tropical Agriculture, 2018, 38(4):20-23. (in Chinese)
[37] 闫杨, 刘月静, 王帅珂, 曲辉, 范治平, 韩军, 程文静, 陈芳. 生防芽孢杆菌对黄瓜根际土壤酶活性的影响. 江苏农业科学, 2019, 47(7):108-111.
YAN Y, LIU Y J, WANG S K, QÜ H, FAN Z P, HAN J, CHENG W J, CHEN F. Effect of biocontrol bacillus on the enzyme activity of the rhizosphere soil of cucumber. Jiangsu Agricultural Sciences, 2019, 47(7):108-111. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!