Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 123-133.doi: 10.3864/j.issn.0578-1752.2022.01.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation

WANG Cong1,2(),SUN HuiFeng1,2,XU ChunHua3,WANG ZhanFu3,ZHANG JiNing1,2,ZHANG XianXian1,2,CHEN ChunHong4,ZHOU Sheng1,2()   

  1. 1Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403
    2Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai 201403
    3Shanghai Agro-Tech Extension and Service Center, Shanghai 201103
    4Zhuanghang Experimental Station, Shanghai Academy of Agricultural Sciences, Shanghai 201415
  • Received:2020-12-25 Accepted:2021-02-25 Online:2022-01-01 Published:2022-01-07
  • Contact: Sheng ZHOU E-mail:wangcong@saas.sh.cn;zhous@263.net

Abstract:

【Objective】 The massive ammonia (NH3) volatilization from excessive nitrogen (N) fertilization is a common issue in greenhouse cultivated vegetable production in China. To alleviate this problem, a field experiment was conducted to study the effects of different fertilization methods on NH3 volatilization of greenhouse vegetable fields.【Method】 The study was carried out with 6 fertilization treatments via one-time basal fertilization and two-time topdressings, including N fertilizer-blank treatment (Control), conventional fertilization treatment (CF), 20% N-reduced slow-release fertilizer treatment (SF), 20% N-reduced organic fertilizer treatment (OF), 20% N-reduced microbial fertilizer treatment (MF) and integrated management of water and fertilizer treatment (IM). Except for the Control treatment, an identical application ratio of N, P and K fertilizers was employed to each treatment throughout the whole vegetable growing season. The NH3 volatilization fluxes under different fertilization methods were observed by using venting absorption method. The potential influencing factors of NH3 volatilization were also investigated synchronously.【Result】 The dynamics of NH3 volatilization under different fertilization treatments were similar, and the occurrence of the peaks of NH3 flux was highly associated with fertilization time. During basal fertilization period, for the most of treatments, the NH3 fluxes peaks appeared 3-days after the application of basal fertilizer, while it was only 1-day under IM treatment. The maximum fluxes of NH3 ranged from 0.12 to 0.26 kg NH3·hm-2·h-1 during basal fertilization period. The occurrence of the peaks of NH3 fluxes were ahead by 1-2 days during topdressing periods. The maximum fluxes of NH3 volatilization were 0.08-0.19 kg NH3·hm-2·h-1 during the first topdressing period, and 0.13-0.18 kg NH3·hm-2·h-1 during second topdressing period. Significant differences were found among different fertilization treatments in the seasonal cumulative NH3 volatilizations. The seasonal cumulative NH3 volatilizations in the decreasing order of different treatments were CF, MF, OF, SF, IM, Control. Compare with CF treatment, the treatments of SF and IM markedly reduced NH3 volatilization from greenhouse vegetable field by 24.2% and 42.4% (P<0.05), and reduced by 10.1% and 8.3% (P>0.05) under MF and OF treatments, respectively. The NH3 volatilization-induced N losses in the decreasing order of different treatments were MF, OF, CF, SF, IM. Compare with the rest of the applied treatments, the IM treatment consistently showed lower NH3-N loss rate during the whole season. However, the NH3-N loss rates under MF and OF treatments were different during basal fertilization and topdressing periods. In the basal fertilization period, the MF and OF treatments showed lower NH3-N loss rates compare with CF treatment, however, during topdressing period, the NH3-N loss rates under MF and OF treatments were higher than that under CF treatment. 【Conclusion】 Compare with CF treatment, both of the SF and IM treatments could significantly reduce the NH3 volatilization that derived from applied N fertilizer. The IM treatment reduced NH3-N-induced N fertilizer loss in both basal fertilization and topdressing periods, while the SF treatment mainly reduced the NH3 volatilization during basal fertilization period. On balance, both the application of slow-release fertilizer and the technique of integrated management of water and fertilizer were the effective ways in the reduction of NH3 volatilization from greenhouse vegetable field, and were worthy for recommendation.

Key words: greenhouse vegetable fields, fertilization method, ammonia volatilization, nitrogen loss

Table 1

Fertilization treatments in the field experiment"

试验处理
Treatment
基肥
Basal fertilizer (kg·hm-2)
追肥-Ⅰ
Topdressing-Ⅰ (kg·hm-2)
追肥-Ⅱ
Topdressing-Ⅱ (kg·hm-2)
总施肥量
Total amount (kg·hm-2)
N P2O5 K2O N P2O5 K2O N P2O5 K2O N P2O5 K2O
Control 96 96 96 96
CF 120 120 120 30 50 200 120 120
SF 96 96 96 24 40 160 96 96
OF 96 96 96 24 40 160 96 96
MF 96 96 96 24 40 160 96 96
IM 96 84 72 24 4.5 9 40 7.5 15 160 96 96

Fig. 1

The structure of a sampling device for NH3 volatilization measurement"

Fig. 2

Dynamics of NH3 volatilization from vegetable fields under different treatments"

Fig. 3

Cumulative emissions of NH3 from vegetable fields under different treatments"

Table 2

The NH3-induced N loss rates during different fertilization periods under different treatments"

处理
Treatment
基肥氮损失率
NH3-induced N loss from basal fertilizer (%)
追肥-Ⅰ氮损失率
NH3-induced N loss from topdressing - Ⅰ (%)
追肥-Ⅱ氮损失率
NH3-induced N loss from topdressing - Ⅱ (%)
全季氮损失率
Seasonal NH3 volatilization-induced N loss (%)
CF 11.9±1.1ab* 18.3±3.6ab 18.8±2.4a 15.0±0.7a
SF 9.1±0.9bc 19.2±4.3ab 19.8±1.6a 14.1±0.6a
OF 11.3±0.2ab 21.5±1.0a 23.8±5.4a 16.7±1.6a
MF 13.1±1.3a 20.2±2.3ab 22.5±4.6a 17.1±1.3a
IM 6.8±0.9c 8.4±0.9c 14.3±0.7a 10.0±0.8b

Fig. 4

Correlations between NH3 volatilization-induced N loss rates and temperatures"

Fig. 5

Correlation between NH4+-N concentrations of 0-10 cm soil layer and NH3 volatilization-induced N loss rates"

[1] 徐虹, 张晓勇, 毕晓辉, 方小珍, 郑伟巍, 冯银厂, 姬亚芹. 中国PM2.5中水溶性硫酸盐和硝酸盐的时空变化特征. 南开大学学报(自然科学版), 2013, 46(6): 32-40.
XU H, ZHANG X Y, BI X H, FANG X Z, ZHENG W W, FENG Y C, JI Y Q. The spatial-temporal characteristics of water-soluble sulphates and nitrates in PM2.5 in China. Acta Scientiarum Natrualium Universitatis Nankaiensis, 2013, 46(6): 32-40. (in Chinese)
[2] 薛文博, 许艳玲, 唐晓龙, 雷宇, 王金南. 中国氨排放对PM2.5污染的影响. 中国环境科学, 2016, 36(12): 3531-3539. doi: 10.3969/j.issn.1000-6923.2016.12.002.
doi: 10.3969/j.issn.1000-6923.2016.12.002
XUE W B, XU Y L, TANG X L, LEI Y, WANG J N. Impacts of ammonia emission on PM2.5 pollution in China. China Environmental Science, 2016, 36(12): 3531-3539. doi: 10.3969/j.issn.1000-6923.2016.12.002. (in Chinese)
doi: 10.3969/j.issn.1000-6923.2016.12.002
[3] 许中坚, 刘广深, 俞佳栋. 氮循环的人为干扰与土壤酸化. 地质地球化学, 2002, 30(2): 74-78. doi: 10.3969/j.issn.1672-9250.2002.02.013.
doi: 10.3969/j.issn.1672-9250.2002.02.013
XU Z J, LIU G S, YU J D. Soil acidification and nitrogen cycle disturbed by man-made factors. Geology-Geochemistry, 2002, 30(2): 74-78. doi: 10.3969/j.issn.1672-9250.2002.02.013. (in Chinese)
doi: 10.3969/j.issn.1672-9250.2002.02.013
[4] 赵雄飞. 大气氮排放与沉降的定位观测及区域模拟研究[D]. 南京: 南京大学, 2019.
ZHAO X F. Positioning observation and regional simulation of atmospheric nitrogen emission and deposition[D]. Nanjing: Nanjing University, 2019. (in Chinese)
[5] 刘文竹, 王晓燕, 樊彦波. 大气氮沉降及其对水体氮负荷估算的研究进展. 环境污染与防治, 2014, 36(5): 88-93, 101. doi: 10.15985/j.cnki.1001-3865.2014.05.019.
doi: 10.15985/j.cnki.1001-3865.2014.05.019
LIU W Z, WANG X Y, FAN Y B. A review of atmospheric nitrogen deposition and its estimated contributions to nitrogen input of waters. Environmental Pollution & Control, 2014, 36(5): 88-93, 101. doi: 10.15985/j.cnki.1001-3865.2014.05.019. (in Chinese)
doi: 10.15985/j.cnki.1001-3865.2014.05.019
[6] GALLOWAY J N, DENTENER F J, CAPONE D G, BOYER E W, HOWARTH R W, SEITZINGER S P, ASNER G P, CLEVELAND C C, GREEN P A, HOLLAND E A, KARL D M, MICHAELS A F, PORTER J H, TOWNSEND A R, VÖOSMARTY C J. Nitrogen cycles: past, present, and future. Biogeochemistry, 2004, 70(2): 153-226. doi: 10.1007/s10533-004-0370-0.
doi: 10.1007/s10533-004-0370-0
[7] GAO Z L, MA W Q, ZHU G D, ROELCKE M. Estimating farm-gate ammonia emissions from major animal production systems in China. Atmospheric Environment, 2013, 79: 20-28. doi: 10.1016/j.atmosenv.2013.06.025.
doi: 10.1016/j.atmosenv.2013.06.025
[8] 中华人民共和国农业部. 中国农业年鉴. 北京: 中国农业出版社, 2015: 15-16.
Ministry of Agriculture of the PRC. China Agricultural Organization Catalogue. Beijing: China Agricultural Press, 2015: 15-16. (in Chinese)
[9] 朱兆良, 张绍林, 尹斌, 颜晓元. 太湖地区单季晚稻产量-氮肥施用量反应曲线的历史比较. 植物营养与肥料学报, 2010, 16(1): 1-5.
ZHU Z L, ZHANG S L, YIN B, YAN X Y. Historical comparison on the response curves of rice yield-nitrogen application rate in Tai-lake Region. Plant Nutrition and Fertilizer Science, 2010, 16(1): 1-5. (in Chinese)
[10] XING G X, ZHU Z L. An assessment of N loss from agricultural fields to the environment in China. Nutrient Cycling in Agroecosystems, 2000, 57(1): 67-73. doi: 10.1023/A:1009717603427.
doi: 10.1023/A:1009717603427
[11] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924. doi: 10.3321/j.issn:0564-3929.2008.05.018.
doi: 10.3321/j.issn:0564-3929.2008.05.018
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. doi: 10.3321/j.issn:0564-3929.2008.05.018. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2008.05.018
[12] 曹兵, 贺发云, 徐秋明, 蔡贵信. 露地蔬菜的氮肥效应与氮素去向. 核农学报, 2008, 22(3): 343-347.
CAO B, HE F Y, XU Q M, CAI G X. Nitrogen use efficiency and fate of N fertilizers applied to open field vegetables. Journal of Nuclear Agricultural Sciences, 2008, 22(3): 343-347. (in Chinese)
[13] 朱坚, 石丽红, 田发祥, 纪雄辉. 典型双季稻田基施碳酸氢铵和尿素的氨挥发损失研究. 中国土壤与肥料, 2015(2): 83-88.
ZHU J, SHI L H, TIAN F X, JI X H. Ammonia volatilization loss from typical double-cropping paddy field with basal application of ammonium bicarbonate and urea. Soil and Fertilizer Sciences in China, 2015(2): 83-88. (in Chinese)
[14] ZHOU F, CIAIS P, HAYASHI K, GALLOWAY J, KIM D G, YANG C L, LI S Y, LIU B, SHANG Z Y, GAO S S. Re-estimating NH3 emissions from Chinese cropland by a new nonlinear model. Environmental Science & Technology, 2016, 50(2): 564-572. doi: 10.1021/acs.est.5b03156.
doi: 10.1021/acs.est.5b03156
[15] 龚巍巍, 张宜升, 何凌燕, 栾胜基. 菜地氨挥发损失及影响因素原位研究. 环境科学, 2011, 32(2): 345-350. doi: 10.13227/j.hjkx.2011.02.023.
doi: 10.13227/j.hjkx.2011.02.023
GONG W W, ZHANG Y S, HE L Y, LUAN S J. In-situ measurement on volatilization loss of ammonia in the vegetable field and its influencing factors. Environmental Science, 2011, 32(2): 345-350. doi: 10.13227/j.hjkx.2011.02.023. (in Chinese)
doi: 10.13227/j.hjkx.2011.02.023
[16] 谢梓豪, 樊品镐, 武华, 程琨, 潘根兴. 基于氨挥发因子方法的中国农田氨排放量估算. 环境科学学报, 2020, 40(11): 4180-4188. doi: 10.13671/j.hjkxxb.2020.0183.
doi: 10.13671/j.hjkxxb.2020.0183
XIE Z H, FAN P G, WU H, CHENG K, PAN G X. Deriving volatile factors and estimating direct ammonia emissions for crop cultivation in China. Acta Scientiae Circumstantiae, 2020, 40(11): 4180-4188. doi: 10.13671/j.hjkxxb.2020.0183. (in Chinese)
doi: 10.13671/j.hjkxxb.2020.0183
[17] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20(4): 783-795.
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese)
[18] 王朝辉, 刘学军, 巨晓棠, 张福锁. 田间土壤氨挥发的原位测定——通气法. 植物营养与肥料学报, 2002, 8(2): 205-209.
WANG Z H, LIU X J, JU X T, ZHANG F S. Field in situ determination of ammonia volatilization from soil: Venting method. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205-209. (in Chinese)
[19] 赵洁, 王莉. 分光光度法快速测定硝、铵态氮的可行性研究. 现代农业科技, 2011(6): 42, 45.
ZHAO J, WANG L. Feasibility study on NO3--N, NH4+-N determination by spectrophotometry method. Modern Agricultural Science and Technology, 2011(6): 42, 45. (in Chinese)
[20] 郝小雨, 高伟, 王玉军, 金继运, 黄绍文, 唐继伟, 张志强. 有机无机肥料配合施用对日光温室土壤氨挥发的影响. 中国农业科学, 2012, 45(21): 4403-4414. doi: 10.3864/j.issn.0578-1752.2012.21.009.
doi: 10.3864/j.issn.0578-1752.2012.21.009
HAO X Y, GAO W, WANG Y J, JIN J Y, HUANG S W, TANG J W, ZHANG Z Q. Effects of combined application of organic manure and chemical fertilizers on ammonia volatilization from greenhouse vegetable soil. Scientia Agricultura Sinica, 2012, 45(21): 4403-4414. doi: 10.3864/j.issn.0578-1752.2012.21.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.21.009
[21] 李银坤, 武雪萍, 武其甫, 吴会军. 水氮用量对设施栽培蔬菜地土壤氨挥发损失的影响. 植物营养与肥料学报, 2016, 22(4): 949-957.
LI Y K, WU X P, WU Q F, WU H J. Effects of irrigation and nitrogen application on ammonia volatilization loss from vegetable fields under greenhouse cultivation. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 949-957. (in Chinese)
[22] 王欢, 郑西来, 辛佳. 土壤氨挥发的影响因素及其与脲酶活性的关系研究. 安徽农学通报, 2016, 22(9): 74-79. doi: 10.16377/j.cnki.issn1007-7731.2016.09.037.
doi: 10.16377/j.cnki.issn1007-7731.2016.09.037
WANG H, ZHENG X L, XIN J. Influencing factors on ammonia volatilization and its relations with urease activity. Anhui Agricultural Science Bulletin, 2016, 22(9): 74-79. doi: 10.16377/j.cnki.issn1007-7731.2016.09.037. (in Chinese)
doi: 10.16377/j.cnki.issn1007-7731.2016.09.037
[23] SIGURDARSON J J, SVANE S, KARRING H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Reviews in Environmental Science and Bio/Technology, 2018, 17(2): 241-258. doi: 10.1007/s11157-018-9466-1.
doi: 10.1007/s11157-018-9466-1
[24] SUN L Y, WU Z, MA Y C, LIU Y L, XIONG Z Q. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China. Atmospheric Environment, 2018, 181: 97-105. doi: 10.1016/j.atmosenv.2018.02.050.
doi: 10.1016/j.atmosenv.2018.02.050
[25] XIE W M, LI S J, SHI W M, ZHANG H L, FANG F, WANG G X, ZHANG L M. Quantitatively ranking the influencing factors of ammonia volatilization from paddy soils by grey relational entropy. Environmental Science and Pollution Research, 2020, 27(2): 2319-2327.
doi: 10.1007/s11356-019-06952-8
[26] 李世清, 李生秀. 影响土壤尿素水解速率的一些因子. 植物营养与肥料学报, 1999, 5(2): 156-162.
LI S Q, LI S X. Some factors affecting urea hydrolysisrates in soils. Plant Nutrition and Fertilizer Science, 1999, 5(2): 156-162. (in Chinese)
[27] 贺发云, 尹斌, 金雪霞, 曹兵, 蔡贵信. 南京两种菜地土壤氨挥发的研究. 土壤学报, 2005, 42(2): 253-259. doi: 10.3321/j.issn:0564-3929.2005.02.012.
doi: 10.3321/j.issn:0564-3929.2005.02.012
HE F Y, YIN B, JIN X X, CAO B, CAI G X. Ammonia volatilization from urea applied to two vegetable fields in Nanjing suburbs. Acta Pedologica Sinica, 2005, 42(2): 253-259. doi: 10.3321/j.issn:0564-3929.2005.02.012. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2005.02.012
[28] CASTELLANO-HINOJOSA A, GONZÁLEZ-LÓPEZ J, VALLEJO A, BEDMAR E J. Effect of urease and nitrification inhibitors on ammonia volatilization and abundance of N-cycling genes in an agricultural soil. Journal of Plant Nutrition and Soil Science, 2020, 183(1): 99-109. doi: 10.1002/jpln.201900038.
doi: 10.1002/jpln.201900038
[29] CANTARELLA H, OTTO R, SOARES J R, SILVA A G D B. Agronomic efficiency of NBPT as a urease inhibitor: A review. Journal of Advanced Research, 2018, 13: 19-27. doi: 10.1016/j.jare.2018.05.008.
doi: 10.1016/j.jare.2018.05.008
[30] SILVA A G B, SEQUEIRA C H, SERMARINI R A, OTTO R. Urease inhibitor NBPT on ammonia volatilization and crop productivity: A meta-analysis. Agronomy Journal, 2017, 109(1): 1-13. doi: 10.2134/agronj2016.04.0200.
doi: 10.2134/agronj2016.04.0200
[31] 马芬, 杨荣全, 郭李萍. 控制氮肥施用引起的活性氮气体排放: 脲酶/硝化抑制剂研究进展与展望. 农业环境科学学报, 2020, 39(4): 908-922. doi: 10.11654/jaes.2020-0129.
doi: 10.11654/jaes.2020-0129
MA F, YANG R Q, GUO L P. Decrease the emission of active nitrogen gases in nitrogen fertilizer application: research progresses and perspectives of urease/nitrification inhibitors. Journal of Agro-Environment Science, 2020, 39(4): 908-922. doi: 10.11654/jaes.2020-0129. (in Chinese)
doi: 10.11654/jaes.2020-0129
[32] 陈惠哲, 朱德峰, 林贤青, 张玉屏. 微生物肥对水稻产量及氮肥利用的影响. 核农学报, 2010, 24(5): 1051-1055.
CHEN H Z, ZHU D F, LIN X Q, ZHANG Y P. Effect of microbial fertilizer on yield and nitrogen use efficiency in rice. Acta Agriculturae Nucleatae Sinica, 2010, 24(5): 1051-1055. (in Chinese)
[33] ZHANG T, LIU H B, LUO J F, WANG H Y, ZHAI L M, GENG Y C, ZHANG Y T, LI J G, LEI Q L, BASHIR M A, WU S X, LINDSEY S. Long-term manure application increased greenhouse gas emissions but had no effect on ammonia volatilization in a Northern China upland field. Science of the Total Environment, 2018, 633: 230-239. doi: 10.1016/j.scitotenv.2018.03.069.
doi: 10.1016/j.scitotenv.2018.03.069
[34] 武星魁, 姜振萃, 陆志新, 路广, 徐永辉, 施卫明, 闵炬. 有机肥部分替代化肥氮对叶菜产量和环境效应的影响. 中国生态农业学报(中英文), 2020, 28(3): 349-356. doi: 10.13930/j.cnki.cjea.190761.
doi: 10.13930/j.cnki.cjea.190761
WU X K, JIANG Z C, LU Z X, LU G, XU Y H, SHI W M, MIN J. Effects of the partial replacement of chemical fertilizer with manure on the yield and nitrogen emissions in leafy vegetable production. Chinese Journal of Eco-Agriculture, 2020, 28(3): 349-356. doi: 10.13930/j.cnki.cjea.190761. (in Chinese)
doi: 10.13930/j.cnki.cjea.190761
[35] 张明中, 韩桂琪, 徐卫红, 刘俊, 王崇力, 杨芸, 张进忠, 王正银, 谢德体. 专用缓释肥氨挥发特性及对茄子产量、品质的影响. 中国蔬菜, 2013(24): 37-45. doi: 10.3969/j.issn.1000-6346.2013.24.009.
doi: 10.3969/j.issn.1000-6346.2013.24.009
ZHANG M Z, HAN G Q, XU W H, LIU J, WANG C L, YANG Y, ZHANG J Z, WANG Z Y, XIE D T. Characteristics of ammonia volatilization of special slow-release fertilizer and effects of slow- release fertilizers on eggplant quality and yield. China Vegetables, 2013(24): 37-45. doi: 10.3969/j.issn.1000-6346.2013.24.009. (in Chinese)
doi: 10.3969/j.issn.1000-6346.2013.24.009
[36] 王崇力, 韩桂琪, 徐卫红, 杨芸, 熊仕娟, 谢文文, 张进忠, 王正银, 谢德体. 专用缓释肥的土壤氨挥发特性及其对辣椒氮磷钾吸收利用的影响. 中国生态农业学报, 2014, 22(2): 143-150.
doi: 10.3724/SP.J.1011.2014.30947
WANG C L, HAN G Q, XU W H, YANG Y, XIONG S J, XIE W W, ZHANG J Z, WANG Z Y, XIE D T. Characteristics of soil ammonia volatilization and the absorption and utilization of nitrogen, phosphorus and potassium of pepper under slow-release fertilizer application. Chinese Journal of Eco-Agriculture, 2014, 22(2): 143-150. (in Chinese)
doi: 10.3724/SP.J.1011.2014.30947
[37] 吴振宇. 新型缓释尿素养分释放特性及环境效应研究[D]. 合肥: 安徽大学, 2017.
WU Z Y. Study on nutrient release characteristics and environmental effects of a new slow-release urea[D]. Hefei: Anhui University, 2017. (in Chinese)
[38] 王远, 许纪元, 潘云枫, 赵冬青, 杨东平, 巨昇容, 闵炬, 施卫明. 长江下游地区水肥一体化对设施番茄氮肥利用率及氨挥发的影响. 土壤学报. 2021. https://kns.cnki.net/kcms/detail/32.1119.P.20201105.1519.002.html.
WANG Y, XU J Y, PAN Y F, ZHAO D Q, YANG D P, JU S R, MIN J, SHI W M, Effects of fertigation on nitrogen use efficiency and ammonia volatilization in greenhouse tomato cultivation in lower reaches of the Yangtze River. Acta Pedologica Sinica, 2021. https://kns.cnki.net/kcms/detail/32.1119.P.20201105.1519.002.html. (in Chinese)
[39] 杜建军, 苟春林, 崔英德, 曲东. 保水剂对氮肥氨挥发和氮磷钾养分淋溶损失的影响. 农业环境科学学报, 2007, 26(4): 1296-1301. doi: 10.3321/j.issn:1672-2043.2007.04.019.
doi: 10.3321/j.issn:1672-2043.2007.04.019
DU J J, GOU C L, CUI Y D, QU D. Effects of water retaining agent on ammonia volatilization and nutrient leaching loss from N, P and K fertilizers. Journal of Agro-Environment Science, 2007, 26(4): 1296-1301. doi: 10.3321/j.issn:1672-2043.2007.04.019. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2007.04.019
[40] 宋勇生, 范晓晖. 稻田氨挥发研究进展. 生态环境, 2003, 12(2): 240-244. doi: 10.16258/j.cnki.1674-5906.2003.02.029.
doi: 10.16258/j.cnki.1674-5906.2003.02.029
SONG Y S, FAN X H. Summanry of research on ammonia volatilization in paddy soil. Ecology and Environment, 2003, 12(2): 240-244. doi: 10.16258/j.cnki.1674-5906.2003.02.029. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2003.02.029
[41] 朱文博. 化肥配施有机肥对稻田氮素归趋的影响[D]. 沈阳: 沈阳农业大学, 2020.
ZHU W B. Effects of chemical nitrogen fertilizer and organic fertilizer on nitrogen fate in paddy field[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese)
[42] SOMMER S G, SCHJOERRING J K, DENMEAD O T. Ammonia emission from mineral fertilizers and fertilized crops//Advances in Agronomy. Amsterdam: Elsevier, 2004: 557-622. doi: 10.1016/s0065-2113(03)82008-4.
doi: 10.1016/s0065-2113(03)82008-4
[43] 魏玉云. 热带地区砖红壤上不同土壤pH和含水量对尿素氨挥发的影响研究[D]. 海口: 华南热带农业大学, 2006.
WEI Y Y. Study on the volatilization difference of ammonia from latosols with different soil pH and different soil water content[D]. Haikou: South China University of Tropical Agriculture, 2006. (in Chinese)
[44] FAN C H, LI B, XIONG Z Q. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China. The Science of the Total Environment, 2018, 612: 480-489. doi: 10.1016/j.scitotenv.2017.08.159.
doi: 10.1016/j.scitotenv.2017.08.159
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[3] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[4] JING JianYuan,YUAN Liang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang. The Characteristics of Ammonia Volatilization of Humic Acid-Urea Complex Combined with Urea from Different Fertilized Soils [J]. Scientia Agricultura Sinica, 2022, 55(14): 2786-2796.
[5] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[6] ZHAO XinZhou,ZHANG ShiChun,LI Ying,ZHENG YiMin,ZHAO HongLiang,XIE LiYong. The Characteristics of Soil Ammonia Volatilization Under Different Fertilizer Application Measures in Corn Field of Liaohe Plain [J]. Scientia Agricultura Sinica, 2020, 53(18): 3741-3751.
[7] FENG XiaoJie, ZHENG ZiCheng, LI TingXuan, FAN Li. Characteristics of Nitrogen Loss in Sloping Cropland of Purple Soil During Maize Growth Stage Under Rainstorm [J]. Scientia Agricultura Sinica, 2018, 51(4): 738-749.
[8] WEI Sha, BAI ZhaoHai, WU DiMei, XIA LiJiang, JIANG RongFeng, MA Lin. Nutrient Flow and Environmental Effects of “Soil-Feed-Livestock” System in Metropolis: A Case Study in Beijing [J]. Scientia Agricultura Sinica, 2018, 51(3): 430-441.
[9] WANG GuoDong,XIAO YuanSong,PENG FuTian,ZHANG YaFei,GAO HuaiFeng,SUN XiWu,HE Yue. Effects of Urea Application Combined with Different Amounts of Nano-Carbon on Plant Growth Along with Nitrogen Absorption and Utilization in Young Peach Trees [J]. Scientia Agricultura Sinica, 2018, 51(24): 4700-4709.
[10] Ping LIU, DeShui TAN, Yu XU, HaiTao LIN, Yan LI, XiaoZong SONG, YuWen SHEN, ZhaoHui LIU. Effects of Fertilization Methods of Self-Made Wheat-Specific Controlled-Release Nitrogen Fertilizer on Fertilizer Efficiencies [J]. Scientia Agricultura Sinica, 2018, 51(20): 3897-3908.
[11] JIANG Yifei, ZHANG YanMing, YANG Ming,YU Na, ZHANG YuLing, ZOU HongTao, ZHANG YuLong. Nitrogen Volatilization Characteristics of Different Materials Coated Nitrogen Fertilizer and Its Effect on Rape Yield [J]. Scientia Agricultura Sinica, 2018, 51(12): 2348-2356.
[12] ZHANG Zhi, LI Xiao-kun, CONG Ri-huan, REN Tao, HUANG Tie-ping, LU Yan-hong. Optimized Fertilization Effects and Environmental Benefits Evaluation of Nitrogen and Phosphorus in the Paddy Soil [J]. Scientia Agricultura Sinica, 2016, 49(5): 906-915.
[13] WANG Jing-guo, LIN Shan, LI Bao-guo. Nitrogen Cycling and Management Strategies in Chinese Agriculture [J]. Scientia Agricultura Sinica, 2016, 49(3): 503-517.
[14] WU Yun-Jie, YANG Tie-Zhao, ZHANG Xiao-Quan, LI Fei, LI Li-Hua. Study on Correlation Between Ammonia Volatilization and Nitrogen Metabolism During the Tobacco Leaves Senescence [J]. Scientia Agricultura Sinica, 2013, 46(19): 4027-4034.
[15] DONG Wen-Xu, HU Chun-Sheng, CHEN Su-Ying, QIN Shu-Ping, ZHANG Yu-Ming. Effect of Conservation Tillage on Ammonia Volatilization from Nitrogen Fertilizer in Winter Wheat-Summer Maize Cropping System [J]. Scientia Agricultura Sinica, 2013, 46(11): 2278-2284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!