Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (19): 3791-3806.doi: 10.3864/j.issn.0578-1752.2022.19.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin

ZHANG XinYao1(),ZHANG Min1(),ZHU YuanPeng1,HUI XiaoLi2,CHAI RuShan1,GAO HongJian1,LUO LaiChao1()   

  1. 1College of Resources and Environment, Anhui Agricultural University/Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention/Research Center of Phosphorous Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Belt, Hefei 230036
    2College of Natural Resources and Environment, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
  • Received:2021-08-19 Accepted:2021-12-07 Online:2022-10-01 Published:2022-10-10
  • Contact: LaiChao LUO E-mail:2422685787@qq.com;438087133@qq.com;luolaichao0106@163.com

Abstract:

【Objective】 The aim of this study was to explore the effects of reduced phosphorus (P) application on crop yield and nutritional quality, so as to provide a theoretical basis for increasing the P use efficiency and producing high grain quality of crops under the rice-wheat crop rotation system in the Chaohu Lake Basin. 【Method】 A field trial of reduced P application rates was conducted from 2017 to 2019 with five treatments in the Chaohu Lake Basin, which were contrast (CK, No phosphorus), farmers’ application rate (P1, 90 kg P2O5·hm-2), 10% P reduction (P2, 81 kg P2O5·hm-2), 20% P reduction (P3, 72 kg P2O5·hm-2), and 30% P reduction (P4, 63 kg P2O5·hm-2). The effects of reduced P application rates on rice and wheat grain yield and its components, grain protein and fraction content, micronutrients and their bioavailability were analyzed. 【Result】 Compared with no P application, the P application significantly increased the grain yield of rice and wheat by 9.8% to 28.3% and 56.6% to 89.7%, respectively. The 10% and 20% P reduction treatments for rice and wheat grain yield were not significantly different from the farmers’ P fertilizer application (P>0.05). However, the rice yields under the 30% P reduction treatment were significantly decreased by 14.4%. Compared with the farmers’ P application rate, the P reduction treatments significantly affected the crop protein, gliadin and glutenin content, while which had no significant effect on structural protein (albumin and globulin); the P reduction of 20% reduced rice grain protein and glutenin content by 2.7% and 32.3%, respectively. Compared with farmers’ P application rate, the grain protein and glutenin content of rice and wheat under the 30% phosphorus reduction treatment reduced by 6.8% and 21.9%, 48.4% and 31.6%, respectively. Phosphorus application also significantly affected the micronutrients content and bioavailability in rice and wheat grains. Compared with the farmers’ P application rate, P reduction treatments increased iron (Fe), copper (Cu) and zinc (Zn) concentration in rice and wheat grains by 21.2% and 19.3%, 11.9% and 15.8%, 14.5% and 19.9%, respectively; meanwhile, P/Fe, P/Cu and P/Zn molar ratios also reduced by 21.6% and 26.3%, 20.6% and 27%, 17.7% and 21.3%, respectively. The grain zinc concentration of rice and wheat increased linearly with decreasing P application, while the iron, manganese (Mn) and Cu concentrations were no significant differences among the P reduction treatments. P/Zn molar ratio of rice reduced with lower P application, but the P/Fe, P/Mn and P/Cu molar ratios had no significant differences among P reduction treatments. The P/Fe, P/Mn, P/Cu and P/Zn molar ratios in wheat grains reduced with lower P application, and then increasing the bioavailability of Fe, Cu and Zn in wheat grains. 【Conclusion】 In the rice-wheat crop rotation area of the Chaohu Lake Basin, reduced P application by 20% (from 90 kg P2O5·hm-2 reduction to 72 kg P2O5·hm-2) could still ensure stable crop yields. The reduced application of P fertilizer significantly increased the micronutrients concentration and its bioavailability in rice and wheat grains, although the grain protein and glutenin content lower than the farmers’ P application rate. In conclusion, the P3 (20% reduction in P fertilizer application based on the farmers’ P application rate) was the recommended P fertilizer rate to achieve P use efficiency and double high (yield and quality) of crop production in the rice-wheat rotation areas of the Chaohu Lake Basin.

Key words: rice-wheat rotation, phosphate fertilizer reduction, protein components, micronutrient concentration, bioavailability

Table 1

Physical and chemical properties of soil before rice planting in 2017"

土层
Soil layer (cm)
有机质
OM
(g·kg-1)
全氮
TN
(g·kg-1)
有效磷
Olsen-P
(mg·kg-1)
速效钾
AK
(mg·kg-1)
有效铁
DTPA-Fe
(mg·kg-1)
有效锰
DTPA-Mn
(mg·kg-1)
有效铜
DTPA-Cu
(mg·kg-1)
有效锌
DTPA-Zn
(mg·kg-1)
pH
(2.5﹕1)
0-20 30.1 1.17 15.8 140.3 53.0 39.9 2.5 1.3 5.43

Fig. 1

Effect of phosphorus fertilizer reduction on crop grain yield under rice-wheat rotation Different lowercase letters above the bars represent significantly different among treatments (P rates) in the same cropping year (P<0.05). The same as below"

Fig. 2

Effect of phosphorus fertilizer reduction on crop yield components under rice-wheat rotation"

Table 2

Response of grain protein and its components content of rice to phosphorus fertilizer reduction"

年份
Year
处理
Treatment
蛋白质含量
Protein content (%)
清蛋白含量
Albumin content (%)
球蛋白含量
Globulin content (%)
醇溶蛋白含量
Gliadin content (%)
谷蛋白含量
Glutenin content (%)
2017 CK 6.6±0.1c 0.8±0.2c 0.9±0.1b 2.0±0.3ab 2.2±0.1ab
P1 7.6±0.3a 1.7±0.3a 1.0±0.1ab 1.3±0.3b 2.8±0.4a
P2 7.3±0.1ab 1.3±0.5ab 1.0±0.1ab 2.7±0.5a 1.6±0.4b
P3 7.3±0.2ab 1.8±0.3a 1.3±0.2a 1.6±0.6ab 1.9±0.5b
P4 7.0±0.1b 1.4±0.3ab 1.2±0.1ab 2.6±0.2a 1.2±0.1b
2018 CK 6.7±0.2b 1.0±0.1a 0.6±0.1b 3.1±0.2a 1.8±0.1b
P1 7.3±0.1a 0.5±0.2b 1.4±0.5a 1.9±0.2c 3.3±0.5a
P2 7.2±0.1a 0.8±0.2ab 1.1±0.1a 2.3±0.1bc 2.5±0.3b
P3 7.0±0.1a 1.1±0.1a 1.1±0.1a 2.5±0.5b 2.2±0.2b
P4 6.8±0.1b 0.7±0.2ab 1.0±0.2a 2.6±0.2b 2.0±0.1b
平均
Average
CK 6.7±0.2c 0.9±0.1b 0.7±0.2b 2.5±0.7ab 2.0±0.1b
P1 7.4±0.4a 1.1±0.3ab 1.2±0.4a 1.6±0.5b 3.1±0.2a
P2 7.3±0.1a 1.0±0.1ab 1.1±0.1a 2.5±0.4ab 2.1±0.3b
P3 7.2±0.3ab 1.4±0.2a 1.2±0.1a 2.1±0.3ab 2.1±0.3b
P4 6.9±0.2bc 1.1±0.2ab 1.1±0.2a 2.6±0.1a 1.6±0.4b
年份Year (Y) 2.73ns 37.10** 0.44ns 7.23* 4.44*
处理Treatment (T) 7.54** 3.14* 7.37** 4.70** 7.06**
年份×处理Year×Treatment (Y×T) 0.51ns 5.84** 3.85* 2.74ns 1.71ns

Table 3

Response of grain protein and its components content of wheat to phosphorus fertilizer reduction"

年份
Year
处理
Treatment
蛋白质含量
Protein content (%)
清蛋白含量
Albumin content (%)
球蛋白含量
Globulin content (%)
醇溶蛋白含量
Gliadin content (%)
谷蛋白含量
Glutenin content (%)
2018 CK 10.6±0.5b 1.7±0.3a 1.4±0.1a 3.2±0.5b 3.6±0.1cd
P1 14.5±1.2a 1.7±0.3a 1.5±0.1a 4.4±0.4a 5.3±0.2a
P2 11.4±0.3b 1.8±0.3a 1.4±0.2a 3.3±0.3b 4.5±0.2b
P3 10.5±0.4b 1.4±0.1a 1.4±0.1a 2.6±0.1b 3.8±0.3c
P4 9.7±0.4b 1.4±0.2a 1.6±0.2a 3.1±0.1b 3.0±0.4d
2019 CK 10.5±0.1b 0.8±0.2a 0.6±0.1a 4.0±0.4b 4.1±0.2c
P1 12.8±0.9a 1.1±0.2a 0.5±0.2a 4.2±0.3ab 6.1±0.1a
P2 12.8±0.4a 1.0±0.1a 0.8±0.2a 4.9±0.3a 5.9±0.3a
P3 11.6±0.3ab 1.1±0.1a 0.6±0.2a 4.1±0.1b 5.2±0.2b
P4 11.6±0.2ab 1.0±0.1a 0.7±0.1a 4.5±0.2ab 4.9±0.1b
平均
Average
CK 10.5±0.2c 1.3±0.2a 1.0±0.2a 3.6±0.3ab 3.8±0.2d
P1 13.7±0.8a 1.4±0.2a 1.0±0.2a 4.3±0.3a 5.7±0.2a
P2 12.1±0.4b 1.4±0.5a 1.1±0.4a 4.1±0.4a 5.2±0.9b
P3 11.0±0.3bc 1.3±0.2a 1.0±0.2a 3.3±0.3b 4.5±0.3c
P4 10.7±0.5bc 1.2±0.3a 1.1±0.5a 3.8±0.3ab 3.9±0.4d
年份Year (Y) 2.16ns 23.64** 118.18** 28.77** 110.62**
处理Treatment (T) 10.74** 0.44ns 0.38ns 3.16* 39.45**
年份×处理Year×Treatment (Y×T) 3.20* 0.87ns 0.59ns 3.41* 4.52**

Table 4

Effect of phosphorus fertilizer reduction on grain micronutrients content of rice under rice-wheat rotation"

年份
Year
处理
Treatment
铁含量
Fe content (mg·kg-1)
锰含量
Mn content (mg·kg-1)
铜含量
Cu content (mg·kg-1)
锌含量
Zn content (mg·kg-1)
2017 CK 36.2±0.86a 74.9±8.04ab 3.6±0.11a 24.5±0.52a
P1 25.2±0.43b 86.2±5.70a 3.4±0.27ab 17.8±1.14c
P2 33.4±5.58a 75.4±3.56ab 3.4±0.09ab 20.7±0.35b
P3 33.3±0.59a 77.7±4.36ab 2.9±0.21b 21.1±0.84b
P4 31.3±0.61a 67.2±0.48b 3.0±0.10ab 23.0±0.47ab
2018 CK 34.2±0.75a 78.0±0.71bc 3.4±0.09a 20.0±0.55a
P1 29.7±0.59b 119.3±3.04a 2.2±0.06c 16.5±0.25b
P2 35.5±0.73a 83.0±2.06b 3.4±0.07a 16.7±0.26b
P3 33.7±1.07a 74.2±1.34cd 3.1±0.10b 18.4±0.61a
P4 32.9±1.25a 70.8±2.75d 3.0±0.09b 18.4±0.70a
平均
Average
CK 35.2±0.68a 76.5±3.67b 3.5±0.08a 22.3±1.06a
P1 27.5±1.06b 102.8±7.94a 2.8±0.28b 17.2±0.60d
P2 34.4±2.56a 79.2±2.50b 3.4±0.05a 18.7±0.92bcd
P3 33.5±0.56a 76.0±2.19b 3.0±0.11ab 19.7±0.76bc
P4 32.1±0.71a 69.0±1.49b 3.0±0.16ab 20.7±1.09b
年份Year (Y) 4.53* 59.75** 12.91** 0.02ns
处理Treatment (T) 5.33** 3.95* 4.08* 13.31**
年份×处理Year×Treatment (Y×T) 0.42ns 0.71ns 1.60ns 0.18ns

Table 5

Effect of phosphorus fertilizer reduction on grain micronutrients content of wheat under rice-wheat rotation"

年份
Year
处理
Treatment
铁含量
Fe content (mg·kg-1)
锰含量
Mn content (mg·kg-1)
铜含量
Cu content (mg·kg-1)
锌含量
Zn content (mg·kg-1)
2018 CK 57.1±2.36a 78.2±5.54a 4.6±0.60a 47.5±0.83a
P1 45.4±1.07b 63.4±3.23b 2.9±0.20c 31.6±2.07c
P2 56.3±5.16a 68.5±2.72ab 3.6±0.26bc 30.7±2.32c
P3 54.2±1.70a 70.9±4.33ab 3.9±0.51bc 38.2±3.43bc
P4 58.2±4.53a 76.9±4.22ab 4.9±0.51a 43.1±2.01ab
2019 CK 54.0±1.73a 61.0±1.13a 5.4±0.39a 42.5±0.67a
P1 44.9±0.72b 52.8±1.70b 4.7±0.27ab 34.8±1.62b
P2 53.2±1.36a 54.6±0.44b 4.6±0.17b 35.0±1.02b
P3 50.4±1.56a 56.0±1.42ab 4.6±0.25b 37.2±1.93ab
P4 51.1±2.01a 56.3±2.89ab 4.9±0.17ab 40.7±2.96ab
平均
Average
CK 55.6±1.49a 69.6±4.61a 5.0±0.37a 45.0±1.22a
P1 45.2±0.59b 58.1±2.87c 3.8±0.42b 33.2±1.37c
P2 54.8±2.49a 61.6±3.35bc 4.1±0.25b 32.8±1.49c
P3 52.3±1.33a 63.4±3.91abc 4.2±0.30b 37.7±1.77bc
P4 54.7±2.73a 66.6±5.15ab 4.9±0.24a 41.9±1.69ab
年份Year (Y) 1.19ns 12.67** 9.19** 73.79**
处理Treatment (T) 5.05** 21.90** 10.77** 19.31**
年份×处理Year×Treatment (Y×T) 0.76ns 6.58** 6.89** 2.49ns

Table 6

Effects of phosphorus fertilizer reduction on bioavailability of micronutrients in rice grains under rice-wheat rotation"

年份 Year 处理 Treatment 磷铁摩尔比 P/Fe 磷锰摩尔比 P/Mn 磷铜摩尔比 P/Cu 磷锌摩尔比 P/Zn
2017 CK 144.8±5.1b 70.5±8.1a 1640.9±74.8a 250.4±7.4b
P1 202.6±2.9a 58.9±4.8a 1759.0±143.0a 339.3±24.8a
P2 164.8±32.5ab 67.5±3.6a 1704.6±67.5a 291.0±6.5b
P3 152.2±3.9ab 64.4±3.7a 2003.1±118.5a 281.5±5.0b
P4 159.3±2.5ab 73.1±0.5a 1879.4±83.8a 254.3±7.5b
2018 CK 137.1±3.0c 59.1±0.5c 1576.0±41.7c 274.4±7.7c
P1 200.2±7.6a 49.1±1.7d 3023.8±187.3a 422.4±17.0a
P2 155.3±3.6b 65.3±1.4b 1835.6±41.5bc 385.9±7.4a
P3 157.2±6.5b 70.1±1.8ab 1963.1±68.5b 336.9±10.7b
P4 158.6±5.3b 72.4±2.4a 2006.8±41.8b 331.2±10.4b
平均
Average
CK 141.0±3.2b 64.8±4.4b 1608.5±41.0b 262.4±7.2d
P1 201.4±3.7a 54.0±3.2a 2391.4±301.8a 380.9±22.9a
P2 160.1±14.8b 66.4±1.8a 1770.1±46.0b 338.5±21.7b
P3 154.7±3.6b 67.3±2.3a 1983.1±61.8ab 309.2±13.5bc
P4 159.0±2.6b 72.8±1.1a 1943.1±50.7b 292.7±18.1d
年份Year (Y) 0.19ns 2.58ns 18.19** 78.63**
处理Treatment (T) 8.13** 7.30** 17.13** 28.74**
年份×处理Year×Treatment (Y×T) 0.13ns 1.91ns 15.41** 2.75ns

Table 7

Effects of phosphorus fertilizer reduction on bioavailability of micronutrients in wheat grains under rice-wheat rotation"

年份 Year 处理 Treatment 磷铁摩尔比 P/Fe 磷锰摩尔比 P/Mn 磷铜摩尔比 P/Cu 磷锌摩尔比 P/Zn
2018 CK 81.4±4.1c 59.1±5.7c 1179.1±157.2c 114.2±1.6b
P1 133.9±12.2a 94.0±5.6a 2347.7±123.1a 225.7±20.5a
P2 101.6±10.2b 81.0±4.7ab 1773.5±132.5b 217.8±22.1a
P3 91.9±4.7bc 69.4±4.2bc 1493.5±154.8bc 154.1±10.6b
P4 86.1±5.3bc 63.9±2.9c 1180.5±154.4c 135.3±4.2b
2019 CK 88.1±3.4b 76.7±3.0b 1002.3±66.6b 131.0±6.3b
P1 122.3±7.0a 103.2±10.3a 1327.6±50.5a 186.0±15.6a
P2 95.1±0.2b 91.2±2.6ab 1266.2±22.9a 169.5±4.1ab
P3 96.0±7.0b 85.4±8.4b 1195.3±42.7ab 153.1±14.7ab
P4 95.6±7.9b 85.6±7.6b 1143.0±98.0ab 142.5±18.8b
平均
Average
CK 84.8±2.8c 67.9±4.9d 1090.7±86.0c 122.6±4.8b
P1 128.1±6.8a 98.6±5.6a 1837.6±235.7a 205.8±14.5a
P2 98.3±4.8b 86.1±3.3b 1519.8±128.4b 193.7±14.8a
P3 94.0±3.9bc 77.4±5.5bc 1344.4±98.0bc 153.6±8.1b
P4 90.9±4.8bc 74.8±6.1cd 1161.8±82.2c 138.9±8.8b
年份Year(Y) 0.01ns 15.43** 33.52** 2.22ns
处理Treatment(T) 11.64** 7.73** 14.54** 13.31**
年份×处理Year×Treatment(Y×T) 0.84ns 0.39ns 5.91** 2.23ns
[1] NAGAI T, MAKINO A. Differences between rice and wheat in temperature responses of photosynthesis and plant growth. Plant and Cell Physiology, 2009, 50(4): 744-755. doi: 10.1093/pcp/pcp029.
doi: 10.1093/pcp/pcp029 pmid: 19251744
[2] SHEWRY P R. Wheat. Journal of Experimental Botany, 2009, 60(6): 1537-1553. doi: 10.1093/jxb/erp058.
doi: 10.1093/jxb/erp058 pmid: 19386614
[3] MA G S, JIN Y, LI Y P, ZHAI F Y, KOK F J, JACOBSEN E, YANG X G. Iron and zinc deficiencies in China: What is a feasible and cost-effective strategy? Public Health Nutrition, 2008, 11(6): 632-638. doi: 10.1017/S1368980007001085.
doi: 10.1017/S1368980007001085 pmid: 17894916
[4] Food and Agriculture Organization of the United Nations. http://www.fao.org/home/zh/, 2019.
[5] BALIGAR V C, FAGERIA N K, HE Z L. Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis, 2001, 32(7/8): 921-950. doi: 10.1081/CSS-100104098.
doi: 10.1081/CSS-100104098
[6] LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ- MORALES S I, LÓPEZ-BUCIO J, HERRERA-ESTRELLA L. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 2014, 65: 95-123. doi: 10.1146/annurev-arplant-050213-035949.
doi: 10.1146/annurev-arplant-050213-035949
[7] BARROW N J. Soil phosphate chemistry and the P-sparing effect of previous phosphate applications. Plant and Soil, 2015, 397(1/2): 401-409. doi: 10.1007/s11104-015-2514-5.
doi: 10.1007/s11104-015-2514-5
[8] 汪玉, 袁佳慧, 陈浩, 陈光蕾, 赵洪猛, 徐灵颖, 赵旭, 王慎强. 太湖流域典型农田土壤磷库演变特征及环境风险预测. 土壤学报, 2021. https://kns.cnki.net/kcms/detail/32.1119.P.20210809.1259.004.html.
WANG Y, YUAN J H, CHEN H, CHEN G L, ZHAO H M, XU L Y, ZHAO X, WANG S Q. Soil phosphorus pool evolution and environmental risk prediction of paddy soil in the Taihu Lake Region. Acta Pedologica Sinica, 2021. https://kns.cnki.net/kcms/detail/32.1119.P.20210809.1259.004.html. (in Chinese)
[9] YADVINDER-SINGH, DOBERMANN A, BIJAY-SINGH, BRONSON K F, KHIND C S. Optimal phosphorus management strategies for wheat-rice cropping on a loamy sand. Soil Science Society of America Journal, 2000, 64(4): 1413-1422. doi: 10.2136/sssaj2000.6441413x.
doi: 10.2136/sssaj2000.6441413x
[10] WANG Y, ZHAO X, WANG L, ZHAO P H, ZHU W B, WANG S Q. Phosphorus fertilization to the wheat-growing season only in a rice-wheat rotation in the Taihu Lake region of China. Field Crops Research, 2016, 198: 32-39. doi: 10.1016/j.fcr.2016.08.025.
doi: 10.1016/j.fcr.2016.08.025
[11] 陈浩, 汪玉, 袁佳慧, 朱文彬, 王慎强. 太湖稻麦轮作区减施磷肥对土壤供磷和小麦吸收磷的影响. 农业环境科学学报, 2018, 37(4): 741-746. doi: 10.11654/jaes.2017-1551.
doi: 10.11654/jaes.2017-1551
CHEN H, WANG Y, YUAN J H, ZHU W B, WANG S Q. The effect of phosphorus-reduction on soil phosphorus supply and wheat phosphorus uptake in a rice-wheat rotation system in the Taihu Lake Region. Journal of Agro-Environment Science, 2018, 37(4): 741-746. doi: 10.11654/jaes.2017-1551. (in Chinese)
doi: 10.11654/jaes.2017-1551
[12] 张阳阳, 张淑利, 谢迎新, 康国章, 陈波, 马冬云, 王晨阳, 郭天财. 沿黄淮稻麦轮作区农田土壤磷库现状及减量施磷农学效应初探. 河南农业科学, 2021, 50(3): 67-73. doi: 10.15933/j.cnki.1004-3268.2021.03.009.
doi: 10.15933/j.cnki.1004-3268.2021.03.009
ZHANG Y Y, ZHANG S L, XIE Y X, KANG G Z, CHEN B, MA D Y, WANG C Y, GUO T C. Phosphorus pool and agronomic effects of phosphorus fertilizer reduction in rice-wheat rotation field along the Yellow River and Huai River of China. Journal of Henan Agricultural Sciences, 2021, 50(3): 67-73. doi: 10.15933/j.cnki.1004-3268.2021.03.009. (in Chinese)
doi: 10.15933/j.cnki.1004-3268.2021.03.009
[13] 毛凤梧, 赵会杰, 段藏禄. 潮土麦田施磷对小麦品质的影响初探. 河南农业大学学报, 2001, 35(4): 400-402. doi: 10.16445/j.cnki.1000-2340.2001.04.027.
doi: 10.16445/j.cnki.1000-2340.2001.04.027
MAO F W, ZHAO H J, DUAN C L. A primary study of the effect of phosphorus fertilizer application on the wheat quality on the alluvial soil. Journal of Henan Agricultural University, 2001, 35(4): 400-402. doi: 10.16445/j.cnki.1000-2340.2001.04.027. (in Chinese)
doi: 10.16445/j.cnki.1000-2340.2001.04.027
[14] ZHU X K, LI C Y, JIANG Z Q, HUANG L L, FENG C N, GUO W S, PENG Y X. Responses of phosphorus use efficiency, grain yield, and quality to phosphorus application amount of weak-gluten wheat. Journal of Integrative Agriculture, 2012, 11(7): 1103-1110. doi: 10.1016/S2095-3119(12)60103-8.
doi: 10.1016/S2095-3119(12)60103-8
[15] 王苏影, 潘晓华, 吴建富, 石庆华. 施磷量对双季早、晚稻产量及稻米品质的影响. 中国土壤与肥料, 2011(2): 39-43. doi: 10.3969/j.issn.1673-6257.2011.02.007.
doi: 10.3969/j.issn.1673-6257.2011.02.007
WANG S Y, PAN X H, WU J F, SHI Q H. Effects of amount P-applied on yield and rice quality of double-cropping rice. Soils and Fertilizers Sciences in China, 2011(2): 39-43. doi: 10.3969/j.issn.1673-6257.2011.02.007. (in Chinese)
doi: 10.3969/j.issn.1673-6257.2011.02.007
[16] 王鹏, 张定一, 王姣爱, 裴雪霞. 氮、磷、钾肥对强筋小麦临优145产量及品质的影响. 山西农业科学, 2006, 34(3): 50-52. doi: 10.3969/j.issn.1002-2481.2006.03.017.
doi: 10.3969/j.issn.1002-2481.2006.03.017
WANG P, ZHANG D Y, WANG J A, PEI X X. The effect of the nitrogen, phosphorus, potassium fertilizer application on the yield and quality of high gluten wheat Linyou 145. Journal of Shanxi Agricultural Sciences, 2006, 34(3): 50-52. doi: 10.3969/j.issn.1002-2481.2006.03.017. (in Chinese)
doi: 10.3969/j.issn.1002-2481.2006.03.017
[17] 龚金龙, 张洪程, 李杰, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 李炳维, 沙安勤, 周有炎, 罗学超, 朱镇. 施磷量对超级稻南粳44产量和品质的影响. 中国水稻科学, 2011, 25(4): 447-451. doi: 10.3969/j.issn.1001-7216.2011.04.017.
doi: 10.3969/j.issn.1001-7216.2011.04.017
GONG J L, ZHANG H C, LI J, CHANG Y, DAI Q G, HUO Z Y, XU K, WEI H Y, LI D J, LI B W, SHA A Q, ZHOU Y Y, LUO X C, ZHU Z. Effects of phosphorus levels on grain yield and quality of super rice Nanjing 44. Chinese Journal of Rice Science, 2011, 25(4): 447-451. doi: 10.3969/j.issn.1001-7216.2011.04.017. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2011.04.017
[18] 姜宗庆, 封超年, 黄联联, 郭文善, 朱新开, 彭永欣. 施磷量对不同类型专用小麦产量和品质的调控效应. 麦类作物学报, 2006, 26(5): 113-116. doi: 10.3969/j.issn.1009-1041.2006.05.025.
doi: 10.3969/j.issn.1009-1041.2006.05.025
JIANG Z Q, FENG C N, HUANG L L, GUO W S, ZHU X K, PENG Y X. Effect of phosphorus application on grain yield and quality of wheat for different end uses. Journal of Triticeae Crops, 2006, 26(5): 113-116. doi: 10.3969/j.issn.1009-1041.2006.05.025. (in Chinese)
doi: 10.3969/j.issn.1009-1041.2006.05.025
[19] 柳伟伟. 增施磷肥和氮肥后移对四川丘陵旱地中强筋小麦籽粒产量和品质的影响[D]. 雅安: 四川农业大学, 2019.
LIU W W. Effects of phosphorus fertilization and nitrogen fertilization postpone management on grain yield and quality of medium gluten wheat and medium-strong gluten wheat in hilly of Sichuan Province[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese)
[20] LI B Y, ZHOU D M, CANG L, ZHANG H L, FAN X H, QIN S W. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil and Tillage Research, 2007, 96(1/2): 166-173. doi: 10.1016/j.still.2007.05.005.
doi: 10.1016/j.still.2007.05.005
[21] 昝亚玲. 氮磷对旱地冬小麦产量、养分利用及籽粒矿质营养品质的影响[D]. 杨凌: 西北农林科技大学, 2012.
ZAN Y L. Effect of nitrogen and phosphorus fertilizer rate on yield, nutrient utilization and grain mineral nutrient quality of wheat in dryland[D]. Yangling: Northwest A & F University, 2012. (in Chinese)
[22] 郝虎林, 杨肖娥, 冯英, 吴春勇. 供磷水平对铁、锰、铜、锌在稻株中分布和糙米品质的影响. 植物营养与肥料学报, 2009, 15(6): 1350-1356. doi: 10.3321/j.issn:1008-505X.2009.06.015.
doi: 10.3321/j.issn:1008-505X.2009.06.015
HAO H L, YANG X E, FENG Y, WU C Y. Effects of P fertilizer level on distribution of Fe, Mn, Cu and Zn and brown rice qualities in rice(Oryza sativa L.). Plant Nutrition and Fertilizer Science, 2009, 15(6): 1350-1356. doi: 10.3321/j.issn:1008-505X.2009.06.015. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2009.06.015
[23] LUO L C, HUI X L, WANG Z H, ZHANG X, XIE Y H, GAO Z Q, CHAI S X, LU Q L, LI T L, SUN M, CHANG L, BAI Y L, MALHI S S. Multi-site evaluation of plastic film mulch and nitrogen fertilization for wheat grain yield, protein content and its components in semiarid areas of China. Field Crops Research, 2019, 240: 86-94. doi: 10.1016/j.fcr.2019.06.002.
doi: 10.1016/j.fcr.2019.06.002
[24] ZHANG X X, SHI Z Q, JIANG D, HÖGY P, FANGMEIER A. Independent and combined effects of elevated CO2 and post-anthesis heat stress on protein quantity and quality in spring wheat grains. Food Chemistry, 2019, 277: 524-530. doi: 10.1016/j.foodchem.2018.11.010.
doi: 10.1016/j.foodchem.2018.11.010
[25] ZHANG Y Q, SHI R L, REZAUL K M, ZHANG F S, ZOU C Q. Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. Journal of Agricultural and Food Chemistry, 2010, 58(23): 12268-12274. doi: 10.1021/jf103039k.
doi: 10.1021/jf103039k pmid: 21073194
[26] 黄倩楠, 党海燕, 黄婷苗, 侯赛宾, 王朝辉. 我国主要麦区农户施肥评价及减肥潜力分析. 中国农业科学, 2020, 53(23): 4813-4834. doi: 10.3864/j.issn.0578-1752.2020.23.009.
doi: 10.3864/j.issn.0578-1752.2020.23.009
HUANG Q N, DANG H Y, HUANG T M, HOU S B, WANG Z H. Evaluation of farmers’ fertilizer application and fertilizer reduction potentials in major wheat production regions of China. Scientia Agricultura Sinica, 2020, 53(23): 4813-4834. doi: 10.3864/j.issn.0578-1752.2020.23.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.23.009
[27] 张锦滨, 王晓云, 孟圆, 孙玉香, 马洪波. 不同磷肥用量对水稻产量效益、磷肥利用率及土壤养分的影响. 中国农学通报, 2021, 37(32): 96-101.
ZHANG J B, WANG X Y, MENG Y, SUN Y X, MA H B. Effects of different amounts of phosphate fertilizer on rice yield, fertilizer utilization and soil nutrients. Chinese Agricultural Science Bulletin, 2021, 37(32): 96-101. (in Chinese)
[28] 王桂苓, 马友华, 孙兴旺, 宋法龙, 张丽娟, 徐宏军, 肖圣辉. 巢湖流域麦稻轮作农田径流氮磷流失研究. 水土保持学报, 2010, 24(2): 6-10, 29. doi: 10.13870/j.cnki.stbcxb.2010.02.010.
doi: 10.13870/j.cnki.stbcxb.2010.02.010
WANG G L, MA Y H, SUN X W, SONG F L, ZHANG L J, XU H J, XIAO S H. Study of nitrogen and phosphorus runoff in wheat-rice rotation farmland in Chao Lake Basin. Journal of Soil and Water Conservation, 2010, 24(2): 6-10, 29. doi: 10.13870/j.cnki.stbcxb.2010.02.010. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2010.02.010
[29] 马清霞, 王朝辉, 惠晓丽, 张翔, 张悦悦, 侯赛宾, 黄宁, 罗来超, 张世君, 党海燕. 基于产量和养分含量的旱地小麦施磷量和土壤有效磷优化. 中国农业科学, 2019, 52(1): 73-85. doi: 10.3864/j.issn.0578-1752.2019.01.008.
doi: 10.3864/j.issn.0578-1752.2019.01.008
MA Q X, WANG Z H, HUI X L, ZHANG X, ZHANG Y Y, HOU S B, HUANG N, LUO L C, ZHANG S J, DANG H Y. Optimization of phosphorus rate and soil available phosphorus based on grain yield and nutrient contents in dryland wheat production. Scientia Agricultura Sinica, 2019, 52(1): 73-85. doi: 10.3864/j.issn.0578-1752.2019.01.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.01.008
[30] 易均, 谢桂先, 刘强, 田昌, 谭力彰, 李旭, 何石福, 石敦杰. 磷肥减施对双季稻生长和产量及磷肥利用率的影响. 湖南农业大学学报(自然科学版), 2016, 42(2): 197-201. doi: 10.13331/j.cnki.jhau.2016.02.017.
doi: 10.13331/j.cnki.jhau.2016.02.017
YI J, XIE G X, LIU Q, TIAN C, TAN L Z, LI X, HE S F, SHI D J. Effects of phosphorus fertilizer reduction on the growth, yield and its utilization efficiency of double cropping rice. Journal of Hunan Agricultural University (Natural Sciences), 2016, 42(2): 197-201. doi: 10.13331/j.cnki.jhau.2016.02.017. (in Chinese)
doi: 10.13331/j.cnki.jhau.2016.02.017
[31] 付雪蛟, 马畅, 付立东. 施磷量对滨海盐碱稻区水稻生长发育及产量的影响. 东北农业科学, 2022, 47(1): 5-10. doi: 10.16423/j.cnki.1003-8701.2022.01.002.
doi: 10.16423/j.cnki.1003-8701.2022.01.002
FU X J, MA C, FU L D. Effects of phosphorus application on growth and yield of rice in coastal salt-alkali rice area. Journal of Northeast Agricultural Sciences, 2022, 47(1): 5-10. doi: 10.16423/j.cnki.1003-8701.2022.01.002. (in Chinese)
doi: 10.16423/j.cnki.1003-8701.2022.01.002
[32] SHEWRY P R. Improving the protein content and composition of cereal grain. Journal of Cereal Science, 2007, 46(3): 239-250. doi: 10.1016/j.jcs.2007.06.006.
doi: 10.1016/j.jcs.2007.06.006
[33] DUNCAN E G, O’SULLIVAN C A, ROPER M M, BIGGS J S, PEOPLES M B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: Review. Field Crops Research, 2018, 226: 56-65. doi: 10.1016/j.fcr.2018.07.010.
doi: 10.1016/j.fcr.2018.07.010
[34] ZHANG W, LIU D Y, LIU Y M, CHEN X P, ZOU C Q. Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 2017, 65(8): 1473-1482. doi: 10.1021/acs.jafc.6b04778.
doi: 10.1021/acs.jafc.6b04778
[35] BOUKHALFA DERAOUI N, HANIFI MEKLICHE L, MEKLICHE A, CHELOUFI H, BABAHANI S. Influence of phosphorus fertilizers application on phosphorus use efficiency and grain protein of winter wheat in alkaline-calcareous soil, southern Algeria. Indian Journal of Agricultural Research, 2020, 54: 51-57.
[36] 姜东, 戴廷波, 荆奇, 曹卫星, 赵辉, 周琴, 范雪梅, 陈荣振, 冯国华, 刘东涛, 张爱君. 氮磷钾肥长期配合施用对冬小麦籽粒品质的影响. 中国农业科学, 2004, 37(4): 566-571.
JIANG D, DAI T B, JING Q, CAO W X, ZHAO H, ZHOU Q, FAN X M, CHEN R Z, FENG G H, LIU D T, ZHANG A J. Effects of long-term combined application of N, P and K fertilizer on grain quality in winter wheat. Scientia Agricultura Sinica, 2004, 37(4): 566-571. (in Chinese)
[37] MAEOKA R E, SADRAS V O, CIAMPITTI I A, DIAZ D R, FRITZ A K, LOLLATO R P. Changes in the phenotype of winter wheat varieties released between 1920 and 2016 in response to in-furrow fertilizer: biomass allocation, yield, and grain protein concentration. Frontiers in Plant Science, 2020, 10: 1786. doi: 10.3389/fpls.2019.01786.
doi: 10.3389/fpls.2019.01786
[38] 王旭东, 于振文, 石玉, 王小燕. 磷对小麦旗叶氮代谢有关酶活性和籽粒蛋白质含量的影响. 作物学报, 2006, 32(3): 339-344. doi: 10.3321/j.issn:0496-3490.2006.03.004.
doi: 10.3321/j.issn:0496-3490.2006.03.004
WANG X D, YU Z W, SHI Y, WANG X Y. Effects of phosphorus on activities of enzymes related to nitrogen metabolism in flag leaves and protein contents in grains of wheat. Acta Agronomica Sinica, 2006, 32(3): 339-344. doi: 10.3321/j.issn:0496-3490.2006.03.004. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2006.03.004
[39] 王平, 尹燕枰, 付国占, 郭营, 蔡瑞国, 梁太波, 耿庆辉, 邬云海, 王振林. 施磷对小麦旗叶氮代谢关键酶活性和子粒蛋白质含量的影响. 植物营养与肥料学报, 2009, 15(1): 24-31. doi: 10.3321/j.issn:1008-505X.2009.01.004.
doi: 10.3321/j.issn:1008-505X.2009.01.004
WANG P, YIN Y P, FU G Z, GUO Y, CAI R G, LIANG T B, GENG Q H, WU Y H, WANG Z L. Effect of phosphorus on activities of enzymes related to nitrogen metabolism in flag leaves and protein content of wheat grains. Plant Nutrition and Fertilizer Science, 2009, 15(1): 24-31. doi: 10.3321/j.issn:1008-505X.2009.01.004. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2009.01.004
[40] 王伟妮, 鲁剑巍, 何予卿, 李小坤, 李慧. 氮、磷、钾肥对水稻产量、品质及养分吸收利用的影响. 中国水稻科学, 2011, 25(6): 645-653. doi: 10.3969/j.issn.1001-7216.2011.06.012.
doi: 10.3969/j.issn.1001-7216.2011.06.012
WANG W N, LU J W, HE Y Q, LI X K, LI H. Effects of N, P, K fertilizer application on grain yield, quality, nutrient uptake and utilization of rice. Chinese Journal of Rice Science, 2011, 25(6): 645-653. doi: 10.3969/j.issn.1001-7216.2011.06.012. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2011.06.012
[41] 刘孝成, 赵广才, 石书兵, 常旭虹, 王德梅, 陶志强, 杨玉双, 王美, 郭明明, 亓振, 王雨. 肥水调控对冬小麦产量及籽粒蛋白质组分的影响. 核农学报, 2017, 31(7): 1404-1411. doi: 10.11869/j.issn.100-8551.2017.07.1404.
doi: 10.11869/j.issn.100-8551.2017.07.1404
LIU X C, ZHAO G C, SHI S B, CHANG X H, WANG D M, TAO Z Q, YANG Y S, WANG M, GUO M M, QI Z, WANG Y. Effects of fertilizer and water regulation on yield and grain protein components of winter wheat. Journal of Nuclear Agricultural Sciences, 2017, 31(7): 1404-1411. doi: 10.11869/j.issn.100-8551.2017.07.1404. (in Chinese)
doi: 10.11869/j.issn.100-8551.2017.07.1404
[42] CAKMAK I, PFEIFFER W H, MCCLAFFERTY B. Review: Biofortification of durum wheat with zinc and iron. Cereal Chemistry, 2010, 87(1): 10-20. doi: 10.1094/CCHEM-87-1-0010.
doi: 10.1094/CCHEM-87-1-0010
[43] SU D, ZHOU L J, ZHAO Q, PAN G, CHENG F M. Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid, zinc, and iron in rice (Oryza sativa L.) grains. Journal of Agricultural and Food Chemistry, 2018, 66(7): 1601-1611. doi: 10.1021/acs.jafc.7b04883.
doi: 10.1021/acs.jafc.7b04883
[44] 俄胜哲, 袁继超, 丁志勇, 姚凤娟, 喻小平, 罗付香. 氮磷钾肥对稻米铁、锌、铜、锰、镁、钙含量和产量的影响. 中国水稻科学, 2005, 19(5): 434-440. doi: 10.16819/j.1001-7216.2005.05.009.
doi: 10.16819/j.1001-7216.2005.05.009
E S Z, YUAN J C, DING Z Y, YAO F J, YU X P, LUO F X. Effect of N, P, K fertilizers on Fe, Zn, Cu, Mn, Ca and Mg contents and yields in rice. Chinese Journal of Rice Science, 2005, 19(5): 434-440. doi: 10.16819/j.1001-7216.2005.05.009. (in Chinese)
doi: 10.16819/j.1001-7216.2005.05.009
[45] SRIVASTAVA P C, BHATT M, PACHAURI S P, TYAGI A K. Effect of zinc application methods on apparent utilization efficiency of zinc and phosphorus fertilizers under basmati rice-wheat rotation. Archives of Agronomy and Soil Science, 2014, 60(1): 33-48. doi: 10.1080/03650340.2013.770145.
doi: 10.1080/03650340.2013.770145
[46] 靳静静, 王朝辉, 戴健, 王森, 高雅洁, 曹寒冰, 于荣. 长期不同氮、磷用量对冬小麦籽粒锌含量的影响. 植物营养与肥料学报, 2014, 20(6): 1358-1367. doi: 10.11674/zwyf.2014.0605.
doi: 10.11674/zwyf.2014.0605
JIN J J, WANG Z H, DAI J, WANG S, GAO Y J, CAO H B, YU R. Effects of long-term N and P fertilization With different rates on Zn concentration in grain of winter wheat. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1358-1367. doi: 10.11674/zwyf.2014.0605. (in Chinese)
doi: 10.11674/zwyf.2014.0605
[47] 惠晓丽, 王朝辉, 罗来超, 马清霞, 王森, 戴健, 靳静静. 长期施用氮磷肥对旱地冬小麦籽粒产量和锌含量的影响. 中国农业科学, 2017, 50(16): 3175-3185. doi: 10.3864/j.issn.0578-1752.2017.16.012.
doi: 10.3864/j.issn.0578-1752.2017.16.012
HUI X L, WANG Z H, LUO L C, MA Q X, WANG S, DAI J, JIN J J. Winter wheat grain yield and Zn concentration affected by long-term N and P application in dryland. Scientia Agricultura Sinica, 2017, 50(16): 3175-3185. doi: 10.3864/j.issn.0578-1752.2017.16.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.16.012
[48] ZHANG W, ZHANG W S, WANG X Z, LIU D Y, ZOU C Q, CHEN X P. Quantitative evaluation of the grain zinc in cereal crops caused by phosphorus fertilization. A meta-analysis. Agronomy for Sustainable Development, 2021, 41(1): 1-12. doi: 10.1007/s13593-020-00661-0.
doi: 10.1007/s13593-020-00661-0
[49] HUI X L, LUO L C, WANG S, CAO H B, HUANG M, SHI M, MALHI S S, WANG Z H. Critical concentration of available soil phosphorus for grain yield and zinc nutrition of winter wheat in a zinc-deficient calcareous soil. Plant and Soil, 2019, 444(1/2): 315-330. doi: 10.1007/s11104-019-04273-w.
doi: 10.1007/s11104-019-04273-w
[50] 买文选, 田霄鸿, 陆欣春, 杨习文. 磷锌肥配施对冬小麦籽粒锌生物有效性的影响. 中国生态农业学报, 2011, 19(6): 1243-1249.
doi: 10.3724/SP.J.1011.2011.01243
MAI W X, TIAN X H, LU X C, YANG X W. Effect of Zn and P supply on grain Zn bioavailability in wheat. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1243-1249. (in Chinese)
doi: 10.3724/SP.J.1011.2011.01243
[51] 赵婷婷, 王春丽, 赵秀兰. 不同磷肥对水稻根表铁膜及砷镉吸收的影响: 以石灰岩黄壤性水稻土为例. 中国环境科学, 2021, 41(1): 297-306. doi: 10.19674/j.cnki.issn1000-6923.2021.0036.
doi: 10.19674/j.cnki.issn1000-6923.2021.0036
ZHAO T T, WANG C L, ZHAO X L. Effects of different phosphate fertilizers on iron plaque amount on root surface and arsenic and cadmium uptake by rice grown in a limestone yellow loamy paddy soil. China Environmental Science, 2021, 41(1): 297-306. doi: 10.19674/j.cnki.issn1000-6923.2021.0036. (in Chinese)
doi: 10.19674/j.cnki.issn1000-6923.2021.0036
[52] SHEN H, YAN X L, ZHAO M, ZHENG S L, WANG X R. Exudation of organic acids in common bean as related to mobilization of aluminum- and iron-bound phosphates. Environmental and Experimental Botany, 2002, 48(1): 1-9. doi: 10.1016/S0098-8472(02)00009-6.
doi: 10.1016/S0098-8472(02)00009-6
[53] WEN Z H, LI H G, SHEN J B, RENGEL Z. Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant and Soil, 2017, 416(1/2): 377-389. doi: 10.1007/s11104-017-3214-0.
doi: 10.1007/s11104-017-3214-0
[54] BOHN L, MEYER A S, RASMUSSEN S K. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. Journal of Zhejiang University Science B, 2008, 9(3): 165-191. doi: 10.1631/jzus.b0710640.
doi: 10.1631/jzus.b0710640
[55] KUTMAN U B, YILDIZ B, CAKMAK I. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of Cereal Science, 2011, 53(1): 118-125. doi: 10.1016/j.jcs.2010.10.006.
doi: 10.1016/j.jcs.2010.10.006
[56] ZHANG Y Q, DENG Y, CHEN R Y, CUI Z L, CHEN X P, YOST R, ZHANG F S, ZOU C Q. The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant and Soil, 2012, 361(1/2): 143-152. doi: 10.1007/s11104-012-1238-z.
doi: 10.1007/s11104-012-1238-z
[57] 赵荣芳, 邹春琴, 张福锁. 长期施用磷肥对冬小麦根际磷、锌有效性及其作物磷锌营养的影响. 植物营养与肥料学报, 2007, 13(3): 368-372. doi: 10.3321/j.issn:1008-505X.2007.03.003.
doi: 10.3321/j.issn:1008-505X.2007.03.003
ZHAO R F, ZOU C Q, ZHANG F S. Effects of long-term P fertilization on P and Zn availability in winter wheat rhizoshpere and their nutrition. Plant Nutrition and Fertilizer Science, 2007, 13(3): 368-372. doi: 10.3321/j.issn:1008-505X.2007.03.003. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2007.03.003
[58] FROSSARD E, BUCHER M, MÄCHLER F, MOZAFAR A, HURRELL R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. Journal of the Science of Food and Agriculture, 2000, 80(7): 861-879. doi: 10.1002/(sici)1097-0010(20000515)80:7<861:aid-jsfa601>3.0.co;2-p.
doi: 10.1002/(sici)1097-0010(20000515)80:7<861:aid-jsfa601>3.0.co;2-p
[59] RYAN M H, MCINERNEY J K, RECORD I R, ANGUS J F. Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. Journal of the Science of Food and Agriculture, 2008, 88(7): 1208-1216. doi: 10.1002/jsfa.3200.
doi: 10.1002/jsfa.3200
[60] 郝兴顺, 姜雨含, 吴玉红, 田霄鸿, 许伟, 张春辉, 陈浩, 秦宇航, 蒙天竣. 汉中地区籼稻锌、铁、锰营养基因型差异及叶面喷锌对籽粒锌含量的影响. 中国稻米, 2019, 25(4): 74-77. doi: 10.3969/j.issn.1006-8082.2019.04.019.
doi: 10.3969/j.issn.1006-8082.2019.04.019
HAO X S, JIANG Y H, WU Y H, TIAN X H, XU W, ZHANG C H, CHEN H, QIN Y H, MENG T J. Genotypic difference in zinc, iron and manganese in indica rice and the effects of foliar application zinc fertilizer on zinc concentration of rice in Hanzhong area. China Rice, 2019, 25(4): 74-77. doi: 10.3969/j.issn.1006-8082.2019.04.019. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2019.04.019
[61] ROSE T J, PARIASCA-TANAKA J, ROSE M T, FUKUTA Y, WISSUWA M. Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crops Research, 2010, 119(1): 154-160. doi: 10.1016/j.fcr.2010.07.004.
doi: 10.1016/j.fcr.2010.07.004
[1] LI YaFei, SHI JiangLan, WU TianQi, WANG ShaoXia, LI YuNuo, QU ChunYan, LIU CongHui, NING Peng, TIAN XiaoHong. Effects of Combined Foliar Application of Zinc with Imidacloprid on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(3): 514-528.
[2] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[3] WANG JinYu,CHENG WenLong,HUAI ShengChang,WU HongLiang,XING TingTing,YU WeiJia,WU Ji,LI Min,LU ChangAi. Effects of Deep Plowing and Organic-Inorganic Fertilization on Soil Water and Nitrogen Leaching in Rice Field [J]. Scientia Agricultura Sinica, 2021, 54(20): 4385-4395.
[4] YAN ChaoQun, LI JianYe, ZHANG Shen, XIE Shun, HU Lang, GU Xin, CAO Ying, HUANG ShiXin, HUANG XianHui. Pharmacokinetics and Bioavailability of Tildipirosin Solution in Pigs [J]. Scientia Agricultura Sinica, 2018, 51(19): 3807-3814.
[5] WANG Cong, LI ShuQing, LIU ShuWei, ZOU JianWen. Response of N2O Emissions to Elevated Atmospheric CO2 Concentration and Temperature in Rice-wheat Rotation Agroecosystem [J]. Scientia Agricultura Sinica, 2018, 51(13): 2535-2550.
[6] ZHANG Wei-le, DAI Zhi-gang, REN Tao, ZHOU Xian-zhu, WANG Zhong-liang, LI Xiao-kun, CONG Ri-huan. Effects of Nitrogen Fertilization Managements with Residues Incorporation on Crops Yield and Nutrients Uptake Under Different Paddy-Upland Rotation Systems [J]. Scientia Agricultura Sinica, 2016, 49(7): 1254-1266.
[7] ZHAO Ya-nan, CHAI Guan-qun, ZHANG Zhen-zhen, XIE Jun, LI Dan-ping, ZHANG Yue-qiang, SHI Xiao-jun. Soil Organic Carbon Lability of Purple Soil as Affected by Long-Term Fertilization in a Rice-Wheat Cropping System [J]. Scientia Agricultura Sinica, 2016, 49(22): 4398-4407.
[8] JIANG Min, SHEN Ming-Xing, SHI Lin-Lin, SHEN Xin-Ping, DAI Qi-Gen. Changes in Weed Seed Bank Community of Agricultural Soils in Rice-Wheat Rotation Field Due to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2013, 46(3): 555-563.
[9] SHI Lin-Lin, SHEN Ming-Xing, JIANG Min, LU Chang-Ying, WANG Hai-Hou, WU Tong-Dong, ZHOU Xin-Wei, SHEN Xin-Ping. Effect of Long-Term Different Fertilization Management on Weed Community in Rice-Wheat Rotation Field [J]. Scientia Agricultura Sinica, 2013, 46(2): 310-316.
[10] WANG Jin-Jin, BAI Ling-Yu, ZENG Xi-Bai, SUN Yuan-Yuan. Assessment of Diffusion Gradients in Thin Films Technique for Measurement of the Arsenic Bioavailability in Soils [J]. Scientia Agricultura Sinica, 2012, 45(4): 697-705.
[11] ZHAO Yong-da,LIU Shuai-shuai,JIAO Xiao-jun,NI Heng-jia,YU Hui-min,HE Xiang-ren,WANG Si-fan,ZENG Zhen-ling,HUANG Xian-hui
. Pharmacokinetic and Bioavailability Study of Tulathromycin in Swine
[J]. Scientia Agricultura Sinica, 2011, 44(4): 823-828 .
[12] BAO Xue-Lian, LI Qi, LIANG Wen-Ju, ZHU Jian-Guo. Effect of Elevated Atmospheric CO2 and N Fertilization on Soil Nematode Community in a Rice-Wheat Rotation System [J]. Scientia Agricultura Sinica, 2011, 44(22): 4627-4635.
[13] HUANG He-xian ,ZENG Zhen-ling,HUANG Xian-hui
. The Pharmacokinetics and Bioavailability of Injectable Tiamulin Suspension in Pigs
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2168-2173 .
[14]

. Effects of Irrigation Stage and Amount on Water Consumption Characteristics, Grain Yield and Content of Protein Components of Wheat
[J]. Scientia Agricultura Sinica, 2009, 42(4): 1306-1315 .
[15] . Effects of Application of Phosphorus Combined with Nitrogen Fertilizer on Changes of Grain Protein Components and Characteristics of Dough Rheological in Wheat [J]. Scientia Agricultura Sinica, 2008, 41(6): 1640-1648 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!