Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (19): 3751-3766.doi: 10.3864/j.issn.0578-1752.2022.19.006

• PLANT PROTECTION • Previous Articles     Next Articles

Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus

KANG Chen(),ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing()   

  1. Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051
  • Received:2022-04-28 Accepted:2022-05-29 Online:2022-10-01 Published:2022-10-10
  • Contact: ZhiMing WU E-mail:kangchen19910228@163.com;zhiming71@126.com

Abstract:

【Objective】 The bioinformatics and expression pattern analysis of the CC-NBS-LRR (CNL) gene family of the whole cucumber (Cucumis sativus) genome was carried out to provide a reference for further study of the functions of the CsCNL gene family in growth, development and disease stress response. 【Method】 Taking the CNL gene sequence of Arabidopsis thaliana as the reference, the genome of cucumber ‘9930’ was searched by local Perl language and Pfam software, and the members of CsCNL gene family were identified. CsCNL gene family was analyzed by some bioinformatics tools, such as ExPASY, GSDS2.0, MEGA, MEME, Tbtools and Mev. Transcriptome data, inoculating with downy mildew and powdery mildew pathogens (Pseudoperonospora cubensis and Podosphaera xanthii) and real-time quantitative PCR (qRT-PCR) were used to evaluate the expression of the genes. 【Result】 A total of 17 CsCNL genes were identified from cucumber genome. CsCNL genes are distributed on 6 chromosomes except chromosome 1. The encoded proteins are similar in structure to other plant CNLs. All CsCNL proteins contain conserved domains of CC, NBS and LRR. The amino acid sequence size ranged from 197 to 1 148 aa, with a molecular weight (MW) of 22.6 to 131.3 kD, and a protein isoelectric point (PI) ranged from 5.71 to 8.38. Collinear analysis showed that there were no segmental duplication and tandem duplication genes, and the multi-species phylogenetic relationship showed that CNL gene family members had high structural and functional similarities among Cucurbitaceae plants. There were many cis-acting elements related to disease resistance in the promoter of CsCNL genes. The expression of CsCNL genes was tissue-specific. At 2 d and 5 d after inoculation with P. cubensis, Csa3G815400, Csa3G822360 and Csa7G420890 were all significantly up-regulated in resistant variety, Csa4G015850 was down-regulated in resistant variety, and significantly different in susceptible variety. At 2 d and 5 d after P. xanthii inoculation, Csa2G008000 and Csa3G684170 were significantly up-regulated in susceptible variety and significantly down-regulated in resistant variety. Csa4G016360, Csa7G420890 and Csa7G425940 were significantly up-regulated in resistant variety, while unchanged or significantly down-regulated in susceptible variety. 【Conclusion】 CsCNL gene family has specific expression pattern in different tissues, and most of the CsCNL genes were induced by P. cubensis and P. xanthii. It is speculated that the increased expression of Csa3G815400, Csa3G822360 and Csa7G420890, and the decreased expression of Csa4G015850 can induce downy mildew resistance in resistant cucumber varieties. The increased expression of Csa4G016360, Csa7G420890 and Csa7G425940, and the decreased expression of Csa2G008000 and Csa3G684170 can induce the resistance to powdery mildew in resistant cucumber varieties, while the increased expression of Csa7G420890 can simultaneously induce disease resistance to downy mildew and powdery mildew in resistant cucumber varieties.

Key words: cucumber (Cucumis sativus), CC-NBS-LRR (CNL), downy mildew, powdery mildew, gene expression

Table 1

The primer sequences for qRT-PCR"

基因名称 Gene name 正向引物序列 Forward sequence (5′-3′) 反向引物序列 Reverse sequence (5′-3′)
ACTIN TCCACGAGACTACCTACAACTC GCTCATACGGTCAGCGAT
Csa2G008000 GCCGCTCAATTTTCTGGAGA GAGTAAACCCGTGTGCCATC
Csa2G074130 GATGGATTGGCAACCTCACC AGGCCAATCTTCTCGTCTGT
Csa2G433340 TGTTCATGAGGCTGACGACT TTGCGCAACTTCAGTCTCTG
Csa3G172400 GCAACCCAACAAATCCGTCT CTCGCCTAAGGTCCTCGTAG
Csa3G684170 GCTGACAAAACACCTCCACA ATCTGCTCCCTTTGCTTCCT
Csa3G815400 GGCTTGAAAACTCGGCAGAA ACTGCCAAATTCCGGTGTTC
Csa3G822360 TGGCATGGGAGTTGGAGAAT TATGCTCCACTGTTCGTCGA
Csa4G015840 CCGAGATTGACGAGCATTCC TGCAAGCTTGGAGGGTAGTT
Csa4G015850 TGGGTGGAGAAGCTTGAACA CCATGATACTCGCTGCACAA
Csa4G016360 GTGAACGTTGCAGCTCAGAA CCCATCTGCCCATCTCTTCA
Csa4G016430 GGGGTCTACGAGAAATGGGT TTGAATGAACCCTTGTGCCA
Csa4G016460 TGGGTGCCGTAAAATGACAC GAAGTTGCTCAGTCACGCTC
Csa5G266890 ACCCAACTTCCCCAACAACT TGGCCTCTCTCGAAGGTAAC
Csa6G375730 AGGACCATGAACTCGACACA GCCTTGTGCCATCCATTGTT
Csa7G420890 CGAATTTTGGGGCAAGGACA CTGTTGTCCTTGCTGCCATT
Csa7G425930 TGTTCAACGTTGCTGCAAATG CAATCTTTGACTGCGTGGCT
Csa7G425940 TGAGTTCTTGCCAGTGGAGT AAGTGTCCGGAGATTGCTGA

Fig. 1

The chromosome location of the CsCNL gene family"

Table 2

Genome-wide identification and molecular characterization of CsCNL gene family"

基因编号
Gene ID
染色体位置
Genomic location
氨基酸数量
Number of amino acid (aa)
外显子
Exon
分子量
MW (Da)
等电点
PI
Csa2G008000 Chr02:1351990-1356361 823 5 95328.28 6.80
Csa2G074130 Chr02:5810883-5814239 915 2 105955.85 8.29
Csa2G433340 Chr02:22624852-22628165 966 2 111929.62 8.38
Csa3G172400 Chr03:11532697-11536241 1148 1 131344.13 7.38
Csa3G684170 Chr03:26192533-26195851 1089 1 125618.99 6.10
Csa3G815400 Chr03:31465330-31468278 892 1 103116.33 6.43
Csa3G822360 Chr03:32245772-32249528 1053 2 120249.54 6.27
Csa4G015840 Chr04:2102886-2106281 1087 1 124356.65 6.84
Csa4G015850 Chr04:2107386-2110628 1080 1 123310.24 7.36
Csa4G016360 Chr04:2113346-2116883 958 2 109571.71 7.09
Csa4G016430 Chr04:2146414-2149099 840 3 96126.70 6.14
Csa4G016460 Chr04:2153828-2157080 947 2 108232.33 7.33
Csa5G266890 Chr05:11239765-11242908 1047 1 119379.10 6.04
Csa6G375730 Chr06:16934210-16937464 917 2 106784.55 8.21
Csa7G420890 Chr07:16247369-16250149 555 2 64716.85 7.61
Csa7G425930 Chr07:16263128-16264206 197 2 22566.76 5.71
Csa7G425940 Chr07:16268256-16272547 1020 5 116400.68 6.86

Fig. 2

The gene structure (A) and conserved motif (B) of CsCNL gene family members"

Fig. 3

Phylogenetic relationships of CNL family protein in different species"

Fig. 4

Syntenic analyses of the CNL genes between cucumber and other species The gray lines in the background indicate the collinear blocks, while the red lines highlight the syntenic CNL gene pairs"

Fig. 5

The disease resistant related cis-elements on CsCNL promoters The numbers represent the amount of cis-elements"

Fig. 6

The 3D structure modeling of CsCNL family proteins"

Fig. 7

The expression profiles of the CsCNL family genes"

Fig. 8

Expression analysis of CsCNLs in response to P. cubensis by qRT-PCR Significance differences between treatment and control were analyzed by t-test. * α=0.05,**α=0.01。The same as Fig. 9"

Fig. 9

Expression analysis of CsCNLs in response to P. xanthii by qRT-PCR"

[1] BAKER C M, CHITRAKAR R, OBULAREDDY N, PANCHAL S, WILLIAMS P, MELOTTO M. Molecular battles between plant and pathogenic bacteria in the phyllosphere. Brazilian Journal of Medical and Biological Research, 2010, 43(8): 698-704.
doi: S0100-879X2010007500060 pmid: 20602017
[2] HAAK D C, FUKAO T, GRENE R, HUA Z H, IVANOV R, PERRELLA G, LI S. Multilevel regulation of abiotic stress responses in plants. Frontiers in Plant Science, 2017, 8: 1564.
doi: 10.3389/fpls.2017.01564 pmid: 29033955
[3] SONG W, FORDERER A, YU D L, CHAI J J. Structural biology of plant defence. New Phytologist, 2021, 229(2): 692-711.
doi: 10.1111/nph.16906
[4] JONES J D G, DANGL J L. The plant immune system. Nature, 2006, 444(7117): 323-329.
doi: 10.1038/nature05286
[5] BOLLER T, HE S Y. Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science, 2009, 324(5928): 742-744.
doi: 10.1126/science.1171647 pmid: 19423812
[6] TAKKEN F L W, TAMELING W I L. To nibble at plant resistance proteins. Science, 2009, 324(5928): 744-746.
doi: 10.1126/science.1171666 pmid: 19423813
[7] WAN H J, YUAN W, YE Q J, WANG R Q, RUAN M Y, LI Z M, ZHOU G Z, YAO Z P, ZHAO J, LIU S J, YANG Y J. Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: Characterization, genetic variation, functional divergence and expression patterns. BMC Genomics, 2012, 13: 502.
doi: 10.1186/1471-2164-13-502 pmid: 22998579
[8] THOMAS A, CARBONE I, CHOE K, QUESADA-OCAMPO L M, OJIAMBO P S. Resurgence of cucurbit downy mildew in the United States: Insights from comparative genomic analysis of Pseudoperonospora cubensis. Ecology and Evolution, 2017, 7(16): 6231-6246.
doi: 10.1002/ece3.3194
[9] PÉREZ-GARCÍA A, ROMERO D, FERNÁNDEZ-ORTUÑO D, LÓPEZ-RUIZ F, DE VICENTE A, TORÉS J A. The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits. Molecular Plant Pathology, 2009, 10(2): 153-160.
doi: 10.1111/j.1364-3703.2008.00527.x
[10] BERG J A, APPIANO M, SANTILLÁN MARTÍNEZ M, HERMANS F W, VRIEZEN W H, VISSER R G, BAI Y L, SCHOUTEN H J. A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biology, 2015, 15: 243.
doi: 10.1186/s12870-015-0635-x
[11] SARASTE M, SIBBALD P R, WITTINGHOFER A. The P-loop—A common motif in ATP- and GTP-binding proteins. Trends in Biochemical Sciences, 1990, 15(11): 430-434.
doi: 10.1016/0968-0004(90)90281-F
[12] DANGL J L, JONES J D G. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411(6839): 826-833.
doi: 10.1038/35081161
[13] MATSUSHIMA N, MIYASHITA H. Leucine-rich repeat (LRR) domains containing intervening motifs in plants. Biomolecules, 2012, 2(2): 288-311.
doi: 10.3390/biom2020288 pmid: 24970139
[14] SHAO Z Q, ZHANG Y M, HANG Y Y, XUE J Y, ZHOU G C, WU P, WU X Y, WU X Z, WANG Q, WANG B, CHEN J Q. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: Understanding gained from and beyond the legume family. Plant Physiology, 2014, 166(1): 217-234.
doi: 10.1104/pp.114.243626
[15] SUKARTA O C A, SLOOTWEG E J, GOVERSE A. Structure- informed insights for NLR functioning in plant immunity. Seminars in Cell and Developmental Biology, 2016, 56: 134-149.
doi: 10.1016/j.semcdb.2016.05.012
[16] ZHOU T, WANG Y, CHEN J Q, ARAKI H, JING Z, JIANG K, SHEN J, TIAN D. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Molecular Genetics and Genomics, 2004, 271(4): 402-415.
doi: 10.1007/s00438-004-0990-z
[17] KANG Y J, KIM K H, SHIM S, YOON M Y, SUN S, KIM M Y, VAN K, LEE S. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biology, 2012, 12: 139.
doi: 10.1186/1471-2229-12-139 pmid: 22877146
[18] LOZANO R, PONCE O, RAMIREZ M, MOSTAJO N, ORJEDA G. Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group phureja. PLoS ONE, 2012, 7(4): e34775.
doi: 10.1371/journal.pone.0034775
[19] LOZANO R, HAMBLIN M T, PROCHNIK S, JANNINK J. Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC Genomics, 2015, 16: 360.
doi: 10.1186/s12864-015-1554-9 pmid: 25948536
[20] YANG X P, WANG J P. Genome-wide analysis of NBS-LRR genes in sorghum genome revealed several events contributing to NBS-LRR gene evolution in grass species. Evolutionary Bioinformatics, 2016, 12: 9-21.
[21] 张颖, 李峰, 刘崇怀, 樊秀彩, 孙海生, 姜建福, 张国海. 中国野生刺葡萄抗白腐病NBS-LRR类抗病基因同源序列的分离与鉴定. 中国农业科学, 2013, 46(4): 780-789.
ZHANG Y, LI F, LIU C H, FAN X C, SUN H S, JIANG J F, ZHANG G H. Isolation and identification of NBS-LRR resistance gene analogs sequences from Vitis davidii. Scientia Agricultura Sinica, 2013, 46(4): 780-789. (in Chinese)
[22] MUN J H, YU H J, PARK S, PARK B S. Genome-wide identification of NBS-encoding resistance genes in Brassica rapa. Molecular Genetics and Genomics, 2009, 282(6): 617-631.
doi: 10.1007/s00438-009-0492-0
[23] LIU Y, LI D L, YANG N, ZHU X L, HAN K X, GU R, BAI J Y, WANG A X, ZHANG Y W. Genome-wide identification and analysis of CC-NBS-LRR family in response to downy mildew and black rot in Chinese cabbage. International Journal of Molecular Sciences, 2021, 22(8): 4266.
doi: 10.3390/ijms22084266
[24] 李任建, 申哲源, 李旭凯, 韩渊怀, 张宝俊. 谷子NBS-LRR类基因家族全基因组鉴定及表达分析. 河南农业科学, 2020, 49(2): 34-43.
LI R J, SHEN Z Y, LI X K, HAN Y H, ZHANG B J. Genome-wide identification and expression analysis of NBS-LRR gene family in Setaria italica. Journal of Henan Agricultural Sciences, 2020, 49(2): 34-43. (in Chinese)
[25] LOUTRE C, WICKER T, TRAVELLA S, GALLI P, SCOFIELD S, FAHIMA T, FEUILLET C, KELLER B. Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. The Plant Journal, 2009, 60(6): 1043-1054.
doi: 10.1111/j.1365-313X.2009.04024.x
[26] HAYASHI N, INOUE H, KATO T, FUNAO T, SHIROTA M, SHIMIZU T, KANAMORI H, YAMANE H, HAYANO-SAITO Y, MATSUMOTO T, YANO M, TAKATSUJI H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. The Plant Journal, 2010, 64(3): 498-510.
doi: 10.1111/j.1365-313X.2010.04348.x
[27] XING L P, HU P, LIU J Q, WITEK K, ZHOU S, XU J F, ZHOU W H, GAO L, HUANG Z P, ZHANG R Q, et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR that confers powdery mildew resistance in wheat. Molecular Plant, 2018, 11(6): 874-878.
doi: 10.1016/j.molp.2018.02.013
[28] WANG J H, TIAN W, TAO F, WANG J J, SHANG H S, CHEN X M, XU X M, HU X P. TaRPM1 positively regulates wheat high- temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. Frontiers in Plant Science, 2020, 10: 1679.
doi: 10.3389/fpls.2019.01679
[29] WAN H J, YUAN W, BO K L, SHEN J, PANG X, CHEN J F. Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genomics, 2013, 14: 109.
doi: 10.1186/1471-2164-14-109
[30] 郝俊杰, 李磊, 王波, 秦玉红, 崔健, 王瑛, 王佩圣, 江志训, 孙吉禄, 王珍青, 岳欢, 张守才. 黄瓜白粉病抗性基因定位及候选基因分析. 中国农业科学, 2018, 51(17): 3427-3434.
HAO J J, LI L, WANG B, QIN Y H, CUI J, WANG Y, WANG P S, JIANG Z X, SUN J L, WANG Z Q, YUE H, ZHANG S C. Fine mapping and analysis candidate gene to powdery mildew in cucumber (Cucumis sativus L.). Scientia Agricultura Sinica, 2018, 51(17): 3427-3434. (in Chinese)
[31] ALTSCHUL S F, MADDEN T L, SCHAFFER A A, ZHANG J, ZHANG Z, MILLER W, LIPMAN D J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17): 3389-3402.
[32] BIASINI M, BIENERT S, WATERHOUSE A, ARNOLD K, STUDER G, SCHMIDT T, KIEFER F, CASSARINO T G, BERTONI M, BORDOLI L, SCHWEDE T. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 2014, 42(Web Server issue): W252-W258.
doi: 10.1093/nar/gku340
[33] HEATH M C. Hypersensitive response-related death. Plant Molecular Biology, 2000, 44(3): 321-334.
pmid: 11199391
[34] JOSÉ-ESTANYOL M, GOMIS-RÜTH F X, PUIGDOMÈNECH P. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiology and Biochemistry, 2004, 42(5): 355-365.
doi: 10.1016/j.plaphy.2004.03.009
[35] LIU F, ZHANG X B, LU C M, ZENG X H, LI Y J, FU D H, WU G. Non-specific lipid transfer proteins in plants: Presenting new advances and an integrated functional analysis. Journal of Experimental Botany, 2015, 66(19): 5663-5681.
doi: 10.1093/jxb/erv313 pmid: 26139823
[36] RUSHTON P J, REINSTÄDLER A, LIPKA V, LIPPOK B, SOMSSICH I E. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. The Plant Cell, 2002, 14(4): 749-762.
doi: 10.1105/tpc.010412
[37] XIE Z, ZHANG Z L, ZOU X L, HUANG J, RUAS P, THOMPSON D, SHEN Q J. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiology, 2005, 137(1): 176-189.
pmid: 15618416
[38] BUCHEL A S, BREDERODE F T, BOL J F, LINTHORST H J M. Mutation of GT-1 binding sites in the Pr-1A promoter influences the level of inducible gene expression in vivo. Plant Molecular Biology, 1999, 40(3): 387-396.
doi: 10.1023/A:1006144505121
[39] QU D H, SHOW P L, MIAO X L. Transcription factor ChbZIP1 from alkaliphilic microalgae Chlorella sp. BLD enhancing alkaline tolerance in transgenic Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22(5): 2387.
doi: 10.3390/ijms22052387
[40] FELDBRÜGGE M, SPRENGER M, HAHLBROCK K, WEISSHAAR B. PcMYB1, a novel plant protein containing a DNA-binding domain with one MYB repeat, interacts in vivo with a light-regulatory promoter unit. The Plant Journal, 1997, 11(5): 1079-1093.
doi: 10.1046/j.1365-313X.1997.11051079.x
[41] BOSTOCK R M. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annual Review of Phytopathology, 2005, 43: 545-580.
pmid: 16078895
[42] MUR L A J, KENTON P, ATZORN R, MIERSCH O, WASTERNACK C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiology, 2006, 140(1): 249-262.
pmid: 16377744
[43] WANG Y H, VANDENLANGENBERG K, WEN C L, WEHNER T C, WENG Y Q. QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping-by-sequencing in RIL population. Theoretical and Applied Genetics, 2018, 131(3): 597-611.
doi: 10.1007/s00122-017-3022-1 pmid: 29159421
[44] WANG Y H, VANDENLANGENBERG K, WEHNER T C, KRAAN P A G, SUELMANN J, ZHENG X Y, OWENS K, WENG Y Q. QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628). Theoretical and Applied Genetics, 2016, 129(8): 1493-1505.
doi: 10.1007/s00122-016-2719-x pmid: 27147071
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[4] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[5] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[6] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[7] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[8] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[9] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[10] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[11] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[12] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[13] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[14] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
[15] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!