Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 5032-5042.doi: 10.3864/j.issn.0578-1752.2021.23.009


Effects and Mechanism of Humic Acid in Humic Acid Enhanced Phosphate Fertilizer on Fertilizer-Phosphorus Migration

JING JianYuan(),YUAN Liang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2020-12-05 Accepted:2021-04-21 Online:2021-12-01 Published:2021-12-06
  • Contact: BingQiang ZHAO;


【Objective】The difference between HA (raw humic acid) and PHA (humic acid which extracted from humic acid enhanced phosphate fertilizers, HAP) on fertilizer-phosphorus migration, Ca2+ and phosphate adsorption characteristics was systematically compared to provide the theoretical basis for the study on high-efficiency mechanism of humic acid enhanced phosphate fertilizer. 【Method】 In this study, HA, HAP, and conventional phosphate fertilizer were prepared in the laboratory, and PHA was extracted by adjusting the pH of HAP’s solution based on the method of alkali-extraction acid-precipitation. The addition of HA or PHA accounted for 0.5% and 5% of the application amount of phosphate fertilizer, and marked with 0.5HA+P, 0.5PHA+P, 5HA+P, and 5PHA+P, respectively. Only phosphate fertilizer application (P) and no fertilizer application (CK) were arranged at the same time. Then, the effects of HA and PHA applicated with phosphate fertilizer on the migration of fertilizer-phosphorus in soil was investigated. In addition, the adsorption characteristics of HA or PHA on Ca2+ and phosphate were studied to reveal the mechanism that HA and PHA showed different performance on phosphorus migration. 【Result】Both HA and PHA could promote the migration of fertilizer-phosphorus. Phosphorus could migrate to 42 mm vertical distance from the fertilizer layer under the treatment of P. However, when phosphate fertilizers application combined with HA and PHA, it could reach 46 mm and 50 mm away from the fertilizer layer, respectively. This result was due to the fact that HA or PHA had a higher adsorption capacity on soil Ca2+, while the application of HA or PHA reduced phosphorus fixation. The cumulative percentage of soil available P in total P application tended to be stable after 42 mm away from the fertilizer layer, and 0.5 HA+P ≈ 5PHA+P>5HA+P>0.5PHA + P>P. The promotion effect of PHA on fertilizer-phosphorus migration would be enhanced with the addition of PHA increase, while HA was the opposite, which might be related to the stronger mobility and the weaker phosphate adsorption of PHA than that of HA. The adsorption of Ca2+ by HA and PHA was the result of membrane diffusion and intra-particle diffusion. However, the difficulty of Ca2+ diffusion to the surface of PHA particles was lower than that of HA, and the difficulty of Ca2+ diffusion in the interior of PHA particles was higher than that of HA. Langmuir isothermal adsorption model could well fit the isothermal adsorption curves of HA or PHA on Ca2+, and the theoretical maximum adsorption capacity of HA on Ca2+ was higher than that of PHA, but the adsorption of PHA on Ca2+ was mainly chemical adsorption.【Conclusion】Both HA and PHA had certain ability to adsorb Ca2+, so they could promote the migration of fertilizer-phosphorus in the soil. However, the migration distance of fertilizer-phosphorus of PHA was longer than that of HA, when phosphate application was combined with HA or PHA. This might be one reason why PHA could improve the use efficiency of phosphate fertilizer.

Key words: humic acid enhanced phosphate fertilizer, humic acid, fertilizer-phosphorus migration, calcium ion, adsorption

Table 1

BET surface area and flocculation limit of HA and PHA"

BET surface area (m2·g-1)
Flocculation limit (meg·L-1)
HA 0.36 1.75
PHA 1.59 1.85

Fig. 1

Schematic diagram of fertilizer phosphorus migration experiment"

Fig. 2

Variation of available phosphorus content and cumulative percentage of total available phosphorus in total phosphorus application with increasing vertical distance from fertilizer layer Means with the same letter in the same vertical distance from the fertilizer layer are not significantly different (P>0.05)"

Fig. 3

Adsorption kinetic curve of HA and PHA on Ca2+ (a) and the simulated curve of Weber-Morris internal diffusion equation (b)"

Table 2

Adsorption kinetics fitting parameters of HA and PHA on Ca2+"

Pseudo first order kinetic equation
Pseudo second order kinetic equation
Weber-Morris模型Weber-Morris model
附段1 Stage1 附段2 Stage2
qe,cal (mg·g-1) k1 (h-1) R2 qe,cal (mg·g-1) k2 (h-1) R2 ki C R2 ki C R2
HA 5.63 26.89 0.99 5.70 17.27 0.94 1.41 4.71 0.81 0.01 5.62 0.42
PHA 5.33 28.38 0.89 5.39 19.16 0.99 1.18 4.52 0.95 0.02 5.33 0.34

Fig. 4

Adsorption isotherms of HA and PHA on Ca2+"

Table 3

Isotherm parameters for the adsorption of Ca2+ with HA and PHA"

Langmuir等温吸附模型 Freundlich等温吸附模型
qmax (mg·g-1) b R2 kF n R2
HA 14.84 0.76 0.996 6.06 2.81 0.93
PHA 12.79 0.80 0.989 5.40 2.83 0.97

Fig. 5

Adsorption kinetic curve of HA and PHA on phosphate"

Table 4

Adsorption kinetics fitting parameters of HA and PHA on phosphate"

准一级动力学方程 Pseudo first order kinetic equation 准二级动力学方程 Pseudo second order kinetic equation
qe,cal (mg·g-1) k1 (h-1) R2 qe,cal (mg·g-1) k2(h-1) R2
HA 3.83 9.49 0.93 3.99 4.45 0.94
PHA 1.88 5.71 0.95 1.98 4.63 0.87
[1] ZHANG F S, CUI Z L, CHEN X P, JU X T, SHEN J B, CHEN Q, LIU X J, ZHANG W F, MI G H, FAN M S, JIANG R F. Integrated nutrient management for food security and environmental quality in China. Advances in Agronomy, 2012, 116:1-40. doi: 10.1016/b978-0-12-394277-7.00001-4.
doi: 10.1016/b978-0-12-394277-7.00001-4
[2] 冯媛媛. 主要粮食作物磷肥利用率与土壤有效磷含量的定量关系分析[D]. 荆州: 长江大学, 2019: 3-5.
FENG Y Y. An analysis of the relationship between phosphorus use efficiency and soil Olsen-P in the wheat, rice, corn land[D]. Jingzhou: Yangtze University, 2019: 3-5. (in Chinese)
[3] KING K W, WILLIAMS M R, MACRAE M L, FAUSEY N R, FRANKENBERGER J, SMITH D R, KLEINMAN P J A, BROWN L C. Phosphorus transport in agricultural subsurface drainage: A review. Journal of Environmental Quality, 2015, 44(2):467-485. doi: 10.2134/jeq2014.04.0163.
doi: 10.2134/jeq2014.04.0163
[4] SUN B, ZHANG L X, YANG L Z, ZHANG F S, NORSE D, ZHU Z L. Agricultural non-point source pollution in China: causes and mitigation measures. Ambio, 2012, 41(4):370-379. doi: 10.1007/s13280-012-0249-6.
doi: 10.1007/s13280-012-0249-6
[5] 李军, 袁亮, 赵秉强, 李燕婷, 温延臣, 李伟, 林治安. 磷肥中腐植酸添加比例对玉米产量、磷素吸收及土壤速效磷含量的影响. 植物营养与肥料学报, 2017, 23(3):641-648. doi: 10.11674/zwyf.16319.
doi: 10.11674/zwyf.16319
LI J, YUAN L, ZHAO B Q, LI Y T, WEN Y C, LI W, LIN Z A. Effect of adding humic acid to phosphorous fertilizer on maize yield and phosphorus uptake and soil available phosphorus content. Journal of Plant Nutrition and Fertilizer, 2017, 23(3):641-648. doi: 10.11674/zwyf.16319. (in Chinese)
doi: 10.11674/zwyf.16319
[6] 李志坚, 林治安, 赵秉强, 袁亮, 李燕婷, 温延臣. 增值磷肥对潮土无机磷形态及其变化的影响. 植物营养与肥料学报, 2013, 19(5):1183-1191. doi: 10.11674/zwyf.2013.0518.
doi: 10.11674/zwyf.2013.0518
LI Z J, LIN Z A, ZHAO B Q, YUAN L, LI Y T, WEN Y C. Effects of value-added phosphate fertilizers on transformation of inorganic phosphorus in calcareous soils. Journal of Plant Nutrition and Fertilizer, 2013, 19(5):1183-1191. doi: 10.11674/zwyf.2013.0518. (in Chinese)
doi: 10.11674/zwyf.2013.0518
[7] 马明坤, 袁亮, 李燕婷, 高强, 赵秉强. 不同磺化腐殖酸磷肥提高冬小麦产量和磷素吸收利用的效应研究. 植物营养与肥料学报, 2019, 25(3):362-369. doi: 10.11674/zwyf.18461.
doi: 10.11674/zwyf.18461
MA M K, YUAN L, LI Y T, GAO Q, ZHAO B Q. The effect of sulfonated humus acid phosphate fertilizer on enhancing grain yield and phosphorus uptake and utilization in winter wheat. Journal of Plant Nutrition and Fertilizer, 2019, 25(3):362-369. doi: 10.11674/zwyf.18461. (in Chinese)
doi: 10.11674/zwyf.18461
[8] 张静, 尹飞虎, 李光永. 农田磷肥的有效性研究进展与发展趋势. 新疆农垦科技, 2015, 38(7):57-59, 60. doi: 10.3969/j.issn.1001-361X.2015.07.025.
doi: 10.3969/j.issn.1001-361X.2015.07.025
ZHANG J, YIN F H, LI G Y. Research progress and development trend of the effectiveness of farmland phosphate fertilizer. Xinjiang Farm Research of Science and Technology, 2015, 38(7):57-59, 60. doi: 10.3969/j.issn.1001-361X.2015.07.025. (in Chinese)
doi: 10.3969/j.issn.1001-361X.2015.07.025
[9] 金亮, 周健民, 王火焰, 陈小琴, 杜昌文. 磷酸氢二铵在酸性土壤中的转化与垂直扩散. 生态与农村环境学报, 2008, 24(3):45-50.
JIN L, ZHOU J M, WANG H Y, CHEN X Q, DU C W. Vertical diffusion and transformation of diammonium phosphate in acidic soil. Journal of Ecology and Rural Environment, 2008, 24(3):45-50. (in Chinese)
[10] 周全来, 赵牧秋, 鲁彩艳, 史奕, 陈欣. 磷在稻田土壤中的淋溶和迁移模拟研究. 土壤, 2006, 38(6):734-739.
ZHOU Q L, ZHAO M Q, LU C Y, SHI Y, CHEN X. Simulation of leaching and transport of P in paddy soil. Soils, 2006, 38(6):734-739. (in Chinese)
[11] 鲁如坤. 土壤-植物营养学原理与施肥. 北京: 化学工业出版社, 1998.
LU R K. Principles of Soil-Plant Nutrition and Fertilization. Beijing: Chemical Industry Press, 1998. (in Chinese)
[12] 李春越, 党廷辉, 王万忠, 刘文兆. 腐殖酸对农田土壤磷素吸附行为的影响研究. 水土保持学报, 2011, 25(3):77-82. doi: 10.13870/j.cnki.stbcxb.2011.03.031.
doi: 10.13870/j.cnki.stbcxb.2011.03.031
LI C Y, DANG T H, WANG W Z, LIU W Z. Influence of humic acid on the adsorption behavior of phosphorus in agricultural soil. Journal of Soil and Water Conservation, 2011, 25(3):77-82. doi: 10.13870/j.cnki.stbcxb.2011.03.031. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2011.03.031
[13] DU Q, ZHANG S S, ANTONIETTI M, YANG F. Sustainable leaching process of phosphates from animal bones to alleviate the world phosphate crisis. ACS Sustainable Chemistry & Engineering, 2020, 8(26):9775-9782. doi: 10.1021/acssuschemeng.0c02233.
doi: 10.1021/acssuschemeng.0c02233
[14] YANG F, ZHANG S S, SONG J P, DU Q, LI G X, TARAKINA N V, ANTONIETTI M. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility. Angewandte Chemie International Edition, 2019, 58(52):18813-18816. doi: 10.1002/anie.201911060.
doi: 10.1002/anie.201911060
[15] 李丽, 武丽萍, 成绍鑫. 腐植酸对磷肥增效作用的研究概况. 腐植酸, 1998(4):1-6.
LI L, WU L P, CHENG S X. Research summary of synergistic effect of humic acid on phosphate fertilizer. Humic Acid, 1998(4):1-6. (in Chinese)
[16] 杜振宇, 王清华, 刘方春, 马丙尧. 腐殖酸物质对磷在褐土中迁移的影响. 中国土壤与肥料, 2012(2):14-17, 50. doi: 10.3969/j.issn.1673-6257.2012.02.003.
doi: 10.3969/j.issn.1673-6257.2012.02.003
DU Z Y, WANG Q H, LIU F C, MA B Y. Phosphorus movement in a cinnamon soil as affected by humic substances. Soils and Fertilizers Sciences in China, 2012(2):14-17, 50. doi: 10.3969/j.issn.1673-6257.2012.02.003. (in Chinese)
doi: 10.3969/j.issn.1673-6257.2012.02.003
[17] 杨志福, 李京淑, 杨琇. 利用32P研究腐植酸对磷肥在土壤中移动深度及有效性的影响. 北京农业大学学报, 1982(2):29-36.
YANG Z F, LI J S, YANG X. Study of the use of 32P method on the effects of humic substances on phosphorus mobility and availability in soil. Journal of Beijing Agricultural University, 1982(2):29-36. (in Chinese)
[18] 张宇超, 董正亚, 赵玉潮, 杨梅, 陈光文. 微反应器内自热结晶法制备磷酸二氢铵. 化学反应工程与工艺, 2016, 32(5):392-399.
ZHANG Y C, DONG Z Y, ZHAO Y C, YANG M, CHEN G W. Preparation of monoammonium phosphate by autothermal crystallization in a microreactor. Chemical Reaction Engineering and Technology, 2016, 32(5):392-399. (in Chinese)
[19] 彭宝林, 项双龙. 肥料级湿法磷酸直接生产工业级磷酸一铵工业化技术研究. 现代化工, 2017, 37(7):152-155. doi: 10.16606/j.cnki.issn0253-4320.2017.07.036.
doi: 10.16606/j.cnki.issn0253-4320.2017.07.036
PENG B L, XIANG S L. Study on industrial technology of fertilizer grade wet-process phosphoric acid to produce industrial MAP. Modern Chemical Industry, 2017, 37(7):152-155. doi: 10.16606/j.cnki.issn0253-4320.2017.07.036. (in Chinese)
doi: 10.16606/j.cnki.issn0253-4320.2017.07.036
[20] JING J Y, ZHANG S Q, YUAN L, LI Y T, LIN Z A, XIONG Q Z, ZHAO B Q. Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings. Scientific Reports, 2020, 10(1):17502. doi: 10.1038/s41598-020-74349-6.
doi: 10.1038/s41598-020-74349-6
[21] PRAMANIK P, KIM P J. Fractionation and characterization of humic acids from organic amended rice paddy soils. Science of the Total Environment, 2014, 466/467:952-956. doi: 10.1016/j.scitotenv.2013.07.115.
doi: 10.1016/j.scitotenv.2013.07.115
[22] NUL L. Humus chemistry—Genesis, composition, reactions. Soil Science, 1983, 135(2):129-130.
[23] ZHANG S Q, YUAN L, LI W, LIN Z A, LI Y T, HU S W, ZHAO B Q. Characterization of pH-fractionated humic acids derived from Chinese weathered coal. Chemosphere, 2017, 166:334-342. doi: 10.1016/j.chemosphere.2016.09.095.
doi: 10.1016/j.chemosphere.2016.09.095
[24] 中国科学院山西煤化所. 腐植酸化学性质和结构分析. 腐植酸, 1995(4):24-34.
Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences. Chemical properties and structure analysis of humic acid. Humic Acid, 1995(4):24-34. (in Chinese)
[25] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[26] 张宏, 蒋菊, 刘燕梅, 向金凤, 刘新. 油菜秸秆髓芯对水中铜离子吸附作用及其机理. 环境工程学报, 2015, 9(12):5865-5873.
ZHANG H, JIANG J, LIU Y M, XIANG J F, LIU X. Adsorption behavior and mechanism of rape straw pith core to Cu2+ from water solution. Chinese Journal of Environmental Engineering, 2015, 9(12):5865-5873. (in Chinese)
[27] 杨承虎, 南春容, 蔡景波. 非活性原始铜藻对水中Cr(Ⅵ)的生物吸附. 环境污染与防治, 2017, 39(2):159-164, 169. doi: 10.15985/j.cnki.1001-3865.2017.02.010.
doi: 10.15985/j.cnki.1001-3865.2017.02.010
YANG C H, NAN C R, CAI J B. Bioadsorption characteristic of Cr(Ⅵ) from aqueous solution by nonliving Sargassum horneri. Environmental Pollution & Control, 2017, 39(2):159-164, 169. doi: 10.15985/j.cnki.1001-3865.2017.02.010. (in Chinese)
doi: 10.15985/j.cnki.1001-3865.2017.02.010
[28] FRIMMEL F H, HUBER L. Influence of humic substances on the aquatic adsorption of heavy metals on defined mineral phases. Environment International, 1996, 22(5):507-517. doi: 10.1016/0160-4120(96)00040-2.
doi: 10.1016/0160-4120(96)00040-2
[29] 武丽君, 王朝旭, 张峰, 崔建国. 玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能. 中国环境科学, 2016, 36(1):74-81. doi: 10.3969/j.issn.1000-6923.2016.01.012.
doi: 10.3969/j.issn.1000-6923.2016.01.012
WU L J, WANG C X, ZHANG F, CUI J G. The adsorption characters of inorganic nitrogen in aqueous solution by maize straw- and corn cob-derived biochars. China Environmental Science, 2016, 36(1):74-81. doi: 10.3969/j.issn.1000-6923.2016.01.012. (in Chinese)
doi: 10.3969/j.issn.1000-6923.2016.01.012
[30] 杨志福, 张福锁, 苏春明. 腐植酸及其氧解产物对速效磷增效作用的研究. 腐植酸, 1990(4):20-26. doi: 10.19451/j.cnki.issn1671-9212.1990.04.006.
doi: 10.19451/j.cnki.issn1671-9212.1990.04.006
YANG Z F, ZHANG F S, SU C M. Synergistic effect of humic acid and its oxygen hydrolysate on available phosphorus. Humic Acid, 1990(4):20-26. doi: 10.19451/j.cnki.issn1671-9212.1990.04.006. (in Chinese)
doi: 10.19451/j.cnki.issn1671-9212.1990.04.006
[31] 孙桂芳, 金继运, 石元亮. 腐殖酸和改性木质素对土壤磷有效性影响的研究进展. 土壤通报, 2011, 42(4):1003-1009. doi: 10.19336/j.cnki.trtb.2011.04.043.
doi: 10.19336/j.cnki.trtb.2011.04.043
SUN G F, JIN J Y, SHI Y L. Advances in the effect of humic acid and modified lignin on availability to crops. Chinese Journal of Soil Science, 2011, 42(4):1003-1009. doi: 10.19336/j.cnki.trtb.2011.04.043. (in Chinese)
doi: 10.19336/j.cnki.trtb.2011.04.043
[32] 杜作勇, 庹先国, 王彦惠, 卫纯纯, 魏青峰. 腐殖酸对U(Ⅵ)的吸附机理研究. 环境化学, 2019, 38(8):1768-1774. doi: 10.7524/j.issn.0254-6108.2018102502.
doi: 10.7524/j.issn.0254-6108.2018102502
DU Z Y, TUO X G, WANG Y H, WEI C C, WEI Q F. Adsorption mechanism of U(Ⅵ) by humic acid. Environmental Chemistry, 2019, 38(8):1768-1774. doi: 10.7524/j.issn.0254-6108.2018102502. (in Chinese)
doi: 10.7524/j.issn.0254-6108.2018102502
[33] 黄财德, 李扬, 乔玉辉, 孙振钧. 蚓粪腐殖酸对Cd2+的吸附作用研究. 环境污染与防治, 2020, 42(3):324-327. doi: 10.15985/j.cnki.1001-3865.2020.03.012.
doi: 10.15985/j.cnki.1001-3865.2020.03.012
HUANG C D, LI Y, QIAO Y H, SUN Z J. Study on the adsorption of Cd2+ by vermi-compost humic acid. Environmental Pollution & Control, 2020, 42(3):324-327. doi: 10.15985/j.cnki.1001-3865.2020.03.012. (in Chinese)
doi: 10.15985/j.cnki.1001-3865.2020.03.012
[34] 陈雪娇, 林启美, 肖弘扬, Muhammad Rizwan, 赵小蓉, 李贵桐. 改性油菜秸秆生物质炭吸附/解吸Cd2+特征. 农业工程学报, 2019, 35(18):221-228. doi: 10.11975/j.issn.1002-6819.2019.18.027.
doi: 10.11975/j.issn.1002-6819.2019.18.027
CHEN X J, LIN Q M, XIAO H Y, RIZWAN M, ZHAO X R, LI G T. Characteristics of Cd2+ sorption/desorption of modified oilrape straw biochar. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18):221-228. doi: 10.11975/j.issn.1002-6819.2019.18.027. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2019.18.027
[35] 杭波, 王小宇, 杨晓军, 陈养平, 孙婷, 赵光跃. 硝酸氧化对腐植酸钾抗硬水性能的影响. 腐植酸, 2013(2):17-21. doi: 10.19451/j.cnki.issn1671-9212.2013.02.006.
doi: 10.19451/j.cnki.issn1671-9212.2013.02.006
HANG B, WANG X Y, YANG X J, CHEN Y P, SUN T, ZHAO G Y. Effect of nitric acid oxidation on performance of hard-water resistance of potassium humate. Humic Acid, 2013(2):17-21. doi: 10.19451/j.cnki.issn1671-9212.2013.02.006. (in Chinese)
doi: 10.19451/j.cnki.issn1671-9212.2013.02.006
[36] 刘方春, 邢尚军, 刘春生, 杜振宇, 段春华. 不同处理褐煤腐殖酸对磷吸附特性的研究. 水土保持学报, 2008, 22(2):177-181. doi: 10.13870/j.cnki.stbcxb.2008.02.014.
doi: 10.13870/j.cnki.stbcxb.2008.02.014
LIU F C, XING S J, LIU C S, DU Z Y, DUAN C H. Characteristics of adsorption of P on humic acid extracted from different treated brown coal. Journal of Soil and Water Conservation, 2008, 22(2):177-181. doi: 10.13870/j.cnki.stbcxb.2008.02.014. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2008.02.014
[37] 刘秀梅, 张夫道, 冯兆滨, 张树清, 何绪生, 王茹芳, 王玉军. 风化煤腐殖酸对氮、磷、钾的吸附和解吸特性. 植物营养与肥料学报, 2005, 11(5):641-646.
LIU X M, ZHANG F D, FENG Z B, ZHANG S Q, HE X S, WANG R F, WANG Y J. N, P and K adsorption and desorption characteristics of humic acids made from the airslake-coal. Plant Nutrition and Fertilizer Science, 2005, 11(5):641-646. (in Chinese)
[38] 张伟, 杨柳, 蒋海燕, 汪彩文, 汪爱河, 周俊. 污泥活性炭的表征及其对Cr(Ⅵ)的吸附特性. 环境工程学报, 2014, 8(4):1439-1446.
ZHANG W, YANG L, JIANG H Y, WANG C W, WANG A H, ZHOU J. Characterization of sludge-based activated carbon and its adsorption properties on Cr(Ⅵ). Chinese Journal of Environmental Engineering, 2014, 8(4):1439-1446. (in Chinese)
[39] 韩梅香, 尹洪斌, 唐婉莹. 热改性凹土钝化底泥对水体磷的吸附特征研究. 中国环境科学, 2016, 36(1):100-108. doi: 10.3969/j.issn.1000-6923.2016.01.017.
doi: 10.3969/j.issn.1000-6923.2016.01.017
HAN M X, YIN H B, TANG W Y. Phosphorus sorption from aqueous solution by the thermally-treated attapulgite amended sediment. China Environmental Science, 2016, 36(1):100-108. doi: 10.3969/j.issn.1000-6923.2016.01.017. (in Chinese)
doi: 10.3969/j.issn.1000-6923.2016.01.017
[40] 王宝娥, 胡勇有, 谢磊, 彭康. CMC固定化灭活烟曲霉小球对活性艳蓝KN-R的吸附机理: 吸附平衡、动力学和扩散传质过程. 环境科学学报, 2008, 28(1):89-94. doi: 10.13671/j.hjkxxb.2008.01.024.
doi: 10.13671/j.hjkxxb.2008.01.024
WANG B E, HU Y Y, XIE L, PENG K. Mechanism of biosorption of reactive brilliant blue KN-R by inactive Aspergillus fumigatus immobilized on CMC beads: Equilibrium, kinetics, diffusion and mass transfer. Acta Scientiae Circumstantiae, 2008, 28(1):89-94. doi: 10.13671/j.hjkxxb.2008.01.024. (in Chinese)
doi: 10.13671/j.hjkxxb.2008.01.024
[41] 吕婧, 张立秋, 封莉. 活性炭对水中微量酰胺咪嗪吸附规律. 环境工程学报, 2012, 6(10):3529-3536.
LÜ J, ZHANG L Q, FENG L. Adsorption rules of activated carbons for trace carbamazepine in water. Techniques and Equipment for Environmental Pollution Control, 2012, 6(10):3529-3536. (in Chinese)
[1] ZHOU LiPing,YUAN Liang,ZHAO BingQiang,LI YanTing. Effects of Single-Sided Application of Humic Acid on Maize Root Growth [J]. Scientia Agricultura Sinica, 2022, 55(2): 339-349.
[2] JING JianYuan,YUAN Liang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang. The Characteristics of Ammonia Volatilization of Humic Acid-Urea Complex Combined with Urea from Different Fertilized Soils [J]. Scientia Agricultura Sinica, 2022, 55(14): 2786-2796.
[3] LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84.
[4] WANG Qiong,ZHAN XiaoYing,ZHANG ShuXiang,PENG Chang,GAO HongJun,ZHANG XiuZhi,ZHU Ping,GILLES Colinet. Phosphorus Adsorption and Desorption Characteristics and Its Response to Soil Properties of Black Soil Under Long-Term Different Fertilization [J]. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877.
[5] ZHOU LiPing,YUAN Liang,ZHAO BingQiang,LI YanTing,LIN ZhiAn. Response of Maize Roots to Different Additive Amounts of Weathered Coal Humic Acids [J]. Scientia Agricultura Sinica, 2019, 52(2): 285-292.
[6] WEI ShiPing,WU Meng,LI GuiLong,JIANG ChunYu,LIU Ming,CHEN RuiRui,LI ZhongPei. Slow-Release Synergistic Effect of Humic Acid on Low Concentration Chlorothalonil [J]. Scientia Agricultura Sinica, 2019, 52(1): 65-72.
[7] LI Ping, Magzum Nurolla, LIANG ZhiJie, HUANG ZhongDong, QI XueBin. Effects of Canal Well Water Ratios on Root Layer Soil Desalination and Groundwater Hydrochemical Characteristics [J]. Scientia Agricultura Sinica, 2017, 50(3): 526-536.
[8] PEI RuiJie, YUAN TianYou, WANG JunZhong, HU Na, LI YaNan. Effects of Application of Humic Acid on Yield, Nitrogen Use Efficiency of Summer Maize [J]. Scientia Agricultura Sinica, 2017, 50(11): 2189-2198.
[9] LI Mei, YU Min- . Characteristics of Adsorption and Desorption of Aluminum in Pectin as Influenced by Boron [J]. Scientia Agricultura Sinica, 2013, 46(8): 1595-1602.
[10] YANG Ting, WU Yin-Liang, LI Cun, ZHAO Jian, CHEN Guo, LU Yan . Preparation and Characterization of Ractopamine-Imprinted Material Using Surface-Molecular Imprinting Method and Its Adsorption Characteristics [J]. Scientia Agricultura Sinica, 2013, 46(6): 1256-1262.
[11] GUAN Lian-Zhu, CHAN Zhong-Xiang, ZHANG Jin-Hai, ZHANG Guang-Cai, ZHANG Yun. Influence of Carbonized Maize Stalks on Fractions and Availability of Phosphorus in Brown Soil [J]. Scientia Agricultura Sinica, 2013, 46(10): 2050-2057.
[12] FU Qing-Ling, DENG Ya-Li, HU Hong-Qing, WEI Xia, HAN Xiao-Fang, LI Yan. Effects of Fe and Al Oxides on Adsorption of Bt Toxin by Several Soils in South of China [J]. Scientia Agricultura Sinica, 2012, 45(23): 4836-4843.
[13] LI Na, HAN Li-Si, WU Zheng-Chao, WANG Yue, LAN Yu, HAN Xiao-Ri. Kinetics of K+ Adsorption and Desorption of Brown Soil Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2012, 45(21): 4396-4402.

. The Transformation and Transport of Main Degradation Products of Atrazine in Soils - A Review
[J]. Scientia Agricultura Sinica, 2009, 42(5): 1690-1697 .
[15] TIAN Chao,WANG Mi-dao,SI You-bin. Influences of Charcoal Amendment on Adsorption-Desorption of Isoproturon in Soils
[J]. Scientia Agricultura Sinica, 2009, 42(11): 3956-3963 .
Full text



No Suggested Reading articles found!