Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (22): 4419-4432.doi: 10.3864/j.issn.0578-1752.2022.22.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil

QIN ZhenHan(),WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Quality of Arable Land, Beijing 100081
  • Received:2021-12-19 Accepted:2022-02-22 Online:2022-11-16 Published:2022-12-14
  • Contact: ShuXiang ZHANG E-mail:qzh7017@163.com;zhangshuxiang@caas.cn

Abstract:

【Objective】 Agronomic and environmental thresholds of Olsen phosphorus (P) are the most important parameters for soil P management, but the characteristics of phosphorus fractions under the different threshold regions are not clear. This research evaluated the characteristics of the P fraction under the different threshold regions of Olsen P and its influencing factors in black soils for enabling to understand the transformation process of soil P, so as to provide a reference for optimizing the Olsen-P management strategy and improving the efficiency of P resource utilization.【Method】9 Olsen P levels (11, 21, 31, 40, 57, 69, 128, 331, and 490 mg·kg-1) of agricultural fields plow layer (0-20 cm) soil samples were collected in Gongzhuling, Jilin Province. TIESSEN-Moir modified HEDLEY phosphorus classification method was used to classify soil inorganic phosphorus and organic phosphorus. The relationship between the phosphorus fractions and soil chemical properties, such as soil organic matter (SOM), C/P, Fe, and Al oxides, was also analyzed to clarify the characteristics of phosphorus fractions and the main controlling factors under the different threshold regions of soil Olsen P.【Result】The P pool was dominated by Pi, accounting for 71.25%-96.19%, with Po accounting for 3.81%-28.75%. When the Olsen P level was below the agronomic threshold (7.4-13 mg·kg-1), the proportion of liable P (LP) of 19.89% was the lowest in comparation with other P fractions. When the Olsen P level was below the environmental threshold (51.0-56.4 mg·kg-1), the proportion of medium active phosphorus (ML-P) and stable phosphorus (OP) is close, 36.03% and 35.49% respectively, both higher than the proportion of LP (28.48%). The highest proportion of LP (42.86%) was observed when the Olsen P level was above the environmental threshold. When the Olsen P level is higher than the environmental threshold, the content of LP and ML-P in the soil is significantly higher than that in the soil where the Olsen P level is lower than the environmental threshold, and the resin-P showed the greatest variation with Olsen P above and below the environmental threshold. The value of P activation coefficient (PAC), and the concentration of Mehlich-3 extractable aluminum (M3-Al), free Al oxide (Ald), organic-bound Fe, Al oxide (Fep, Alp), and amorphous Fe, Al oxide (Feo, Alo) increased significantly, while a significant decrease in C/P was observed with increasing Olsen P levels. The correlation analysis shows that when the Olsen P level was below the environmental threshold, the soil organic matter was positively and significantly correlated with the highly active inorganic P fractions (Resin-P, NaHCO3-Pi, NaOH-Pi) above the environmental threshold; when the Olsen P level was above the environmental threshold, Fep+Alp showed a strong positive correlation with each inorganic P fraction blow the environmental threshold. The redundancy analysis results showed that when the Olsen P level was below the environmental threshold, SOM and M3-Fe were the key factors for affecting the change of P fractions in black soils, explaining 50.2% and 24.1% of the total variation, respectively; when the Olsen P level was above the environmental threshold, Fep+Alp was the main factor influencing the change of P fractions, explaining 68.1% of the total variation.【Conclusion】 When the Olsen P level was below the agronomic threshold, the liable P accounted for the lowest proportion; however, which was the greatest proportion when the Olsen P level was above the environmental threshold. In addition, the Resin-P is the phosphorus fraction with the largest variation below and above the environmental threshold. SOM, M3-Fe, and Fep+Alp were the key factors affecting the change of P fractions below and above the environmental threshold, respectively.

Key words: black soil, available phosphorus, agronomic threshold, environmental threshold, phosphorus fractions, soil chemical properties

Fig. 1

The proportion of phosphorus fractions in black soils under different threshold regions"

Fig. 2

Content of phosphorus fractions in black soils under different threshold regions Different lower-case letters above or inside the bars indicate the significant differences for the content of the same P fraction among the different soil samples at 5% level, and different capital letters indicate significant difference for the mean content of the same P fraction before and after the environmental threshold region at 5% level"

Fig. 3

Principal component analysis of soil chemical properties"

Fig. 4

Effect of soil chemistry on phosphorus fractions in the region before and after the environmental threshold (a)and (b)are the redundancy analysis(RDA)for Olsen P levels below and above the environmental threshold, respectively"

Fig. 5

Relationship between soil chemistry and phosphorus fractions in the region above and below the environmental threshold (a) and (b) are the correlation analyses for Olsen P levels below and above the environmental threshold, respectively. And "*" represents significant at the P < 0.01 level"

Table 1

Regression equation of phosphorus content of different phosphorus fractions and Olsen-P content in black soils"

磷形态
P fraction
P1-P5(≤Et) P6-P9(>Et)
回归方程 Regression equation R2 回归方程 Regression equation R2
Pi y = 5.38x + 231.66 0.97** y = 4.09x +205.73 0.99**
Resin-P y = 2.93x + 13.56 0.97** y = 1.62x + 48.54 0.98**
NaHCO3-Pi y = 0.60x + 3.63 0.93** y = 0.52x - 3.75 0.98**
NaOH-Pi y = 1.42x + 28.7 0.95** y = 1.50x - 21.67 0.96**
D.HCl-Pi y = 0.48x + 36.02 0.62** y = 0.38x + 39.93 0.90**
C.HCl-Pi y=0.10x + 76.25 0.45** y=0.063x + 79.60 0.74**
Residual-P y=-0.004x + 65.96 0.001 y=0.009x + 63.03 0.37
*: P<0.05; **: P<0.01. Et: 环境阈值Environmental threshold

Table 2

Soil properties under different threshold regions in black soil"

区间
Region
土壤样品
Soil
sample
Olsen P
(mg·kg-1)
pH C/P PAC
(%)
TP
(g·kg-1)
SOM
(g·kg-1)
M3-Ca
(g·kg-1)
M3-Mg
(g·kg-1)
M3-Fe
(g·kg-1)
M3-Al
(g·kg-1)
Fed
(g·kg-1)
Ald
(g·kg-1)
Fep
(g·kg-1)
Alp
(g·kg-1)
Feo
(g·kg-1)
Alo
(g·kg-1)
≤Et <At P1 11.16i 5.19ab 25.94ab 2.42g 0.46e 20.53c 3.00a 0.52b 0.30d 1.57c 7.51ab 1.62de 0.30d 1.13d 3.46e 2.07e
At-Et P2 21.06h 5.26ab 27.46a 4.56f 0.46e 21.84b 3.03a 0.54ab 0.30d 1.57c 7.61a 1.62de 0.30d 1.12d 4.36d 2.34de
P3 31.93g 5.10ab 23.55bc 5.90ef 0.54de 21.96ab 2.81ab 0.53ab 0.32cd 1.63bc 7.54ab 1.54e 0.34cd 1.13d 4.59cd 2.46d
P4 39.96f 5.07ab 21.88cd 6.69de 0.60de 22.47ab 3.03a 0.54ab 0.35bc 1.66bc 7.64a 1.70d 0.36cd 1.14d 4.42d 2.54d
P5 56.53e 5.11ab 19.64d 8.07d 0.6d 22.73ab 2.99a 0.53ab 0.36bc 1.66bc 7.48ab 1.67de 0.37c 1.12d 4.25d 2.39de
均值
Mean
31.64B 5.15 23.70A 5.53B 0.55B 21.90 2.97 0.53 0.33 1.62B 7.51 1.63B 0.33B 1.13B 4.16B 2.36B
>Et P6 69.44d 5.34a 15.79e 8.10d 0.86c 23.34ab 2.68b 0.55ab 0.50a 1.94a 7.16b 1.67de 0.37c 1.21d 4.41d 2.61d
P7 128.17c 5.09ab 13.87e 13.00c 1.01c 23.22ab 2.63b 0.58a 0.51a 1.89a 7.7a 1.93c 0.49b 1.50c 4.85c 3.06c
P8 331.14b 5.00ab 7.32f 18.61a 1.77b 22.46ab 2.98a 0.56ab 0.34cd 1.70b 7.6a 2.28b 0.54b 1.93b 5.43b 3.71b
P9 526.32a 4.75c 4.23f 16.84b 3.12a 22.78a 2.81ab 0.53ab 0.38b 1.71b 7.63a 2.94a 0.85a 2.77a 6.02a 4.27a
均值
Mean
263.77A 5.05 10.30B 14.14A 1.69A 22.95 2.77 0.56 0.42 1.81A 7.44 2.21A 0.56A 1.85A 5.18A 3.41A
不同小写字母表示同一土壤化学性质在不同土壤样品间差异显著(P<0.05);不同大写字母表示同一土壤化学性质的均值在环境阈值区间差异显著(P<0.05),Mean:≤Et及>Et部分的均值。TP:全磷
Different lowercase letters indicate significant differences in the same soil chemical properties among different soil samples at 5% level; Different capital letters indicate significant differences for the mean value in the same soil chemical properties above and below the environmental threshold region at 5% level. Mean: Mean values of≤Et and >Et. TP: Total phosphorus
[1] DALY K, STYLES D, LALOR S, WALL D P. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. European Journal of Soil Science, 2015, 66(4): 792-801. doi:10.1111/ejss.12260.
doi: 10.1111/ejss.12260.
[2] SIMS J T, EDWARDS A C, SCHOUMANS O F, SIMARD R R. Integrating soil phosphorus testing into environmentally based agricultural management practices. Journal of Environmental Quality, 2000, 29(1): 60-71. doi:10.2134/jeq2000.00472425002900010008x.
doi: 10.2134/jeq2000.00472425002900010008x.
[3] 康日峰, 任意, 吴会军, 张淑香. 26年来东北黑土区土壤养分演变特征. 中国农业科学, 2016, 49(11): 2113-2125.
KANG R F, REN Y, WU H J, ZHANG S H. Changes in the nutrients and fertility of black soil over 26 years in Northeast China. Scientia Agricultura Sinica, 2016, 49(11): 2113-2125. (in Chinese)
[4] 马星竹, 周宝库, 郝小雨, 陈雪丽, 高中超, 迟凤琴. 小麦-大豆-玉米轮作体系长期不同施肥黑土磷素平衡及有效性. 植物营养与肥料学报, 2018, 24(6): 1672-1678.
MA X Z, ZHOU B K, HAO X Y, CHEN X L, GAO Z C, CHI F Q. Phosphorus balance and availability in black soil under long-term wheat-soybean-maize rotation and fertilization. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1672-1678. (in Chinese)
[5] MALLARINO A P, BLACKMER A M. Comparison of methods for determining critical concentrations of soil test phosphorus for corn. Agronomy Journal, 1992, 84(5): 850-856. doi:10.2134/agronj1992.00021962008400050017x.
doi: 10.2134/agronj1992.00021962008400050017x.
[6] LI H G, LIU J, LI G H, SHEN J B, BERGSTRÖM L, ZHANG F S. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio, 2015, 44(Suppl 2): S274-S285. doi:10.1007/s13280-015-0633-0.
doi: 10.1007/s13280-015-0633-0.
[7] ZHOU J, ZHANG Y F, WU K B, HU M P, WU H, CHEN D J. National estimates of environmental thresholds for upland soil phosphorus in China based on a meta-analysis. Science of the Total Environment, 2021, 780: 146677. doi:10.1016/j.scitotenv.2021.146677.
doi: 10.1016/j.scitotenv.2021.146677.
[8] 张林, 吴宁, 吴彦, 罗鹏, 刘琳, 陈文年, 胡红宇. 土壤磷素形态及其分级方法研究进展. 应用生态学报, 2009, 20(7): 1775-1782.
ZHANG L, WU N, WU Y, LUO P, LIU L, CHEN W N, HU H Y. Soil phosphorus form and fractionation scheme: A review. Chinese Journal of Applied Ecology, 2009, 20(7):1775-1782. (in Chinese)
[9] HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi:10.2136/sssaj1982.03615995004600050017x.
doi: 10.2136/sssaj1982.03615995004600050017x.
[10] TIESSEN H, MOIR J O. Characterization of Available P by Sequential Extraction. Boca Raton: CRC Press, 1993.
[11] CROSS A F, SCHLESINGER W H. A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 1995, 64(3/4): 197-214.doi:10.1016/0016-7061(94)00023-4.
doi: 10.1016/0016-7061(94)00023-4.
[12] NEGASSA W, LEINWEBER P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. Journal of Plant Nutrition and Soil Science, 2009, 172(3): 305-325. doi:10.1002/jpln.200800223.
doi: 10.1002/jpln.200800223.
[13] 金欣, 姚珊, Batbayar Javkhlan, 贾丽洁, 张树兰, 杨学云. 冬小麦-夏休闲体系作物产量和土壤磷形态对长期施肥的响应. 植物营养与肥料学报, 2018, 24(6): 1660-1671.
JIN X, YAO S, JAVKHLAN B, JIA L J, ZHANG S L, YANG X Y. Response of wheat yield and soil phosphorus fractions to long-term fertilization under rainfed winter wheat-summer fallow cropping system. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1660-1671. (in Chinese)
[14] SHI Y C, ZIADI N, MESSIGA A J, LALANDE R, HU Z Y. Changes in soil phosphorus fractions for a long-term corn-soybean rotation with tillage and phosphorus fertilization. Soil Science Society of America Journal, 2013, 77(4): 1402-1412. doi:10.2136/sssaj2012.0427.
doi: 10.2136/sssaj2012.0427.
[15] YAN Z J, CHEN S, LI J L, ALVA A, CHEN Q. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses. Journal of Environmental Management, 2016, 181: 26-35. doi:10.1016/j.jenvman.2016.05.081.
doi: S0301-4797(16)30336-X pmid: 27300290
[16] PRIYADARSHI R, KUMAR S, CHOUDHARY C. Phosphorus fraction dynamics in soil as affected by tillage and cropping system under irrigated agro-ecosystem. Journal of Pharmacognosy and Phytochemistry, 2018, 7: 392-396.
[17] 贾莉洁, 李玉会, 孙本华, 杨学云. 不同管理方式对土壤无机磷及其组分的影响. 土壤通报, 2013, 44(3): 612-616. doi:10.19336/j.cnki.trtb.2013.03.017.
doi: 10.19336/j.cnki.trtb.2013.03.017.
JIA L J, LI Y H, SUN B H, YANG X Y. Effect of diverse soil managements on inorganic phosphorus and its fractions in a loess soil from a long-term experiment. Chinese Journal of Soil Science, 2013, 44(3): 612-616. doi:10.19336/j.cnki.trtb.2013.03.017. (in Chinese)
doi: 10.19336/j.cnki.trtb.2013.03.017.
[18] 焦亚鹏, 齐鹏, 王晓娇, 姚一铭, 武均, 蔡立群, 张仁陟. 氮磷配施对黄土高原旱作农业区典型农田土壤无机磷形态的影响. 植物营养与肥料学报, 2020, 26(8): 1459-1472.
JIAO Y P, QI P, WANG X J, YAO Y M, WU J, CAI L Q, ZHANG R Z. Effects of nitrogen and phosphorus fertilization on inorganic phosphorus forms of typical farmland soil in the dry farming area of the Loess Plateau. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1459-1472. (in Chinese)
[19] 王蕾, 王艳玲, 李欢, 石嘉琦, 周亦靖. 长期施肥下红壤旱地磷素有效性影响因子的冗余分析. 中国土壤与肥料, 2021(1): 17-25.
WANG L, WANG Y L, LI H, SHI J Q, ZHOU Y J. Redundancy analysis of influencing factors of phosphorus availability in red soil upland under long-term fertilization. Soil and Fertilizer Sciences in China, 2021(1): 17-25. (in Chinese)
[20] YAN Y P, LIU F Jr, LI W, LIU F, FENG X H, SPARKS D L. Sorption and desorption characteristics of organic phosphates of different structures on aluminium (oxyhydr)oxides. European Journal of Soil Science, 2014, 65(2): 308-317. doi:10.1111/ejss.12119.
doi: 10.1111/ejss.12119.
[21] CELI L, PRATI M, MAGNACCA G, SANTORO V, MARTIN M. Role of crystalline iron oxides on stabilization of inositol phosphates in soil. Geoderma, 2020, 374: 114442. doi:10.1016/j.geoderma.2020.114442.
doi: 10.1016/j.geoderma.2020.114442.
[22] 颜晓, 卢志红, 魏宗强, 周春火. 几种典型酸性旱地土壤磷吸附的关键影响因素. 中国土壤与肥料, 2019(3): 1-7.
YAN X, LU Z H, WEI Z Q, ZHOU C H. Key factors influencing phosphorus sorption for several acid upland soils. Soil and Fertilizer Sciences in China, 2019(3): 1-7. (in Chinese)
[23] 徐明岗. 土壤离子吸附1.离子吸附的类型及研究方法. 土壤肥料, 1997(5): 3-7.
XU M G. Soil ion adsorption 1. Types of ion adsorption and research methods. Soil and Fertilizer Sciences in China, 1997(5): 3-7.. (in Chinese)
[24] 吴璐璐, 张水清, 黄绍敏, 杜伟, 柳小琪, 王晓红, 吕家珑. 长期定位施肥对潮土磷素形态和有效性的影响. 土壤通报, 2021, 52(2): 379-386.
WU L L, ZHANG S Q, HUANG S M, DU W, LIU X Q, WANG X H, LÜ J L. Effect of long-term fertilization on phosphorus fraction and availability in fluvo-aquic soil. Chinese Journal of Soil Science, 2021, 52(2): 379-386. (in Chinese)
[25] 王琼, 展晓莹, 张淑香, 彭畅, 高洪军, 张秀芝, 朱平,Colinet Gilles. 长期有机无机肥配施提高黑土磷含量和活化系数. 植物营养与肥料学报, 2018, 24(6): 1679-1688.
WANG Q, ZHAN X Y, ZHANG S X, PENG C, GAO H J, ZHANG X Z, ZHU P, GILLES C. Increment of soil phosphorus pool and activation coefficient through long-term combination of NPK fertilizers with manures in black soil. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1679-1688. (in Chinese)
[26] 沈浦. 长期施肥下典型农田土壤有效磷的演变特征及机制[D]. 北京: 中国农业科学院, 2014.
SHEN P. Evolution characteristics and mechanisms of soil available phosphorus in typical croplands under long-term fertilization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
[27] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1/2): 27-37. doi:10.1007/s11104-013-1696-y.
doi: 10.1007/s11104-013-1696-y.
[28] SHEN P, HE X H, XU M G, ZHANG H M, PENG C, GAO H J, LIU H, XU Y M, QIN S, XIAO H J. Soil organic carbon accumulation increases percentage of soil Olsen-P to total P at two 15-year mono-cropping systems in Northern China. Journal of Integrative Agriculture, 2014, 13(3):597-603.doi:10.1016/S2095-3119(13)60717-0.
doi: 10.1016/S2095-3119(13)60717-0
[29] 张鑫, 谷会岩, 陈祥伟. 择伐干扰对小兴安岭阔叶红松林土壤磷形态及有效性的影响. 应用生态学报, 2018, 29(2): 441-448. doi:10.13287/j.1001-9332.201802.009.
doi: 10.13287/j.1001-9332.201802.009
ZHANG X, GU H Y, CHEN X W. Effects of selective cutting on soil phosphorus forms and availability in Korean pine broad-leaved forest in Xiaoxing'an Mountains of China. Chinese Journal of Applied Ecology, 2018, 29(2): 441-448. doi:10.13287/j.1001-9332.201802.009. (in Chinese)
doi: 10.13287/j.1001-9332.201802.009
[30] 闫金垚, 郭丽璇, 王昆昆, 廖世鹏, 陆志峰, 丛日环, 李小坤, 任涛, 鲁剑巍. 长江流域稻-油轮作区土壤磷库现状及环境风险分析. 土壤学报, 2021: 1-13.
YAN J Y, GUO L X, WANG K K, LIAO S P, LU Z F, CONG R H, LI X K, REN T, LU J W. Status of soil phosphorus pool and environmental risk assessment in rice oilseed rape rotation area in the Yangtze River Basin. Acta Pedologica Sinica, 2021: 1-13. (in Chinese)
[31] 李若楠, 王政培, BATBAYAR Javkhlan, 张东杰, 张树兰, 杨学云. 等有机质塿土有效磷和无机磷形态的关系. 中国农业科学, 2019, 52(21): 3852-3865.
LI R N, WANG Z P, BATBAYAR J, ZHANG D J, ZHANG S L, YANG X Y. Relationship between soil available phosphorus and inorganic phosphorus forms under equivalent organic matter condition in a tier soil. Scientia Agricultura Sinica, 2019, 52(21): 3852-3865. (in Chinese)
[32] ZHANG W W, ZHAN X Y, ZHANG S X, IBRAHIMA K H M, XU M G. Response of soil Olsen-P to P budget under different long-term fertilization treatments in a fluvo-aquic soil. Journal of Integrative Agriculture, 2019, 18(3):667-676. doi:10.1016/S2095-3119(18) 62070-2.
doi: 10.1016/S2095-3119(18)62070-2
[33] 刘彦伶, 李渝, 张艳, 张雅蓉, 黄兴成, 张萌, 张文安, 蒋太明. 长期施用磷肥和有机肥黄壤微生物量磷特征. 中国农业科学, 2021, 54(6): 1188-1198.
LIU Y L, LI Y, ZHANG Y, ZHANG Y R, HUANG X C, ZHANG M, ZHANG W A, JIANG T M. Characteristics of microbial biomass phosphorus in yellow soil under long-term application of phosphorus and organic fertilizer. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198. (in Chinese)
[34] YANG X, POST W M. Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences, 2011, 8(10): 2907-2916. doi: 10.5194/bg-8-2907-2011.
doi: 10.5194/bg-8-2907-2011.
[35] 颜晓军, 苏达, 郑朝元, 叶德练, 吴良泉. 长期施肥对酸性土壤磷形态及有效性的影响. 土壤, 2020, 52(6): 1139-1144. doi:10.13758/j.cnki.tr.2020.06.006.
doi: 10.13758/j.cnki.tr.2020.06.006.
YAN X J, SU D, ZHENG C Y, YE D L, WU L Q. Effects of long-term fertilization on phosphorus forms and availability in acid soils. Soils, 2020, 52(6): 1139-1144. doi:10.13758/j.cnki.tr.2020.06.006. (in Chinese)
doi: 10.13758/j.cnki.tr.2020.06.006.
[36] SIDDIQUE M T, ROBINSON J S. Phosphorus sorption and availability in soils amended with animal manures and sewage sludge. Journal of Environmental Quality, 2003, 32(3): 1114-1121. doi:10.2134/jeq2003.1114.
doi: 10.2134/jeq2003.1114. pmid: 12809313
[37] 王琼, 展晓莹, 张淑香, 彭畅, 高洪军, 张秀芝, 朱平,GILLES Colinet. 长期不同施肥处理黑土磷的吸附-解吸特征及对土壤性质的响应. 中国农业科学, 2019, 52(21): 3866-3877. doi:10.3864/j.issn.0578-1752.2019.21.015.
doi: 10.3864/j.issn.0578-1752.2019.21.015.
WANG Q, ZHAN X Y, ZHANG S X, PENG C, GAO H J, ZHANG X Z, ZHU P, COLINET G. Phosphorus adsorption and desorption characteristics and its response to soil properties of black soil under long-term different fertilization. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877. doi:10.3864/j.issn.0578-1752.2019.21.015. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.21.015.
[38] BLAKE L, HESKETH N, FORTUNE S, BROOKES P C. Assessing phosphorus ‘Change-Points’ and leaching potential by isotopic exchange and sequential fractionation. Soil Use and Management, 2002, 18(3): 199-207. doi:10.1111/j.1475-2743.2002.tb00240.x.
doi: 10.1111/j.1475-2743.2002.tb00240.x.
[39] 许艳, 张仁陟. 陇中黄土高原不同耕作措施下土壤磷动态研究. 土壤学报, 2017, 54(3): 670-681. doi:10.11766/trxb201607220250.
doi: 10.11766/trxb201607220250.
XU Y, ZHANG R Z. Dynamics of soil phosphorus as affected by tillage on the loess plateau in central Gansu, China. Acta Pedologica Sinica, 2017, 54(3): 670-681. doi:10.11766/trxb201607220250. (in Chinese)
doi: 10.11766/trxb201607220250.
[40] VERMA S, SUBEHIA S K, SHARMA S P. Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers. Biology and Fertility of Soils, 2005, 41(4): 295-300. doi:10.1007/s00374-004-0810-y.
doi: 10.1007/s00374-004-0810-y.
[41] 夏海勇, 王凯荣. 有机质含量对石灰性黄潮土和砂姜黑土磷吸附-解吸特性的影响. 植物营养与肥料学报, 2009, 15(6): 1303-1310.
XIA H Y, WANG K R. Effects of soil organic matter on characteristics of phosphorus adsorption and desorption in calcareous yellow fluvo-aquic soil and lime concretion black soil. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1303-1310. (in Chinese)
[42] WADE J, CULMAN S W, SHARMA S, MANN M, DEMYAN M S, MERCER K L, BASTA N T. How does phosphorus restriction impact soil health parameters in Midwestern corn-soybean systems? Agronomy Journal, 2019, 111(4): 1682-1692. doi:10.2134/agronj2018.11.0739.
doi: 10.2134/agronj2018.11.0739.
[43] LIU J, YANG J, CADE-MENUN B J, HU Y, LI J, PENG C, MA Y. Molecular speciation and transformation of soil legacy phosphorus with and without long-term phosphorus fertilization: insights from bulk and microprobe spectroscopy. Scientific Reports, 2017, 7: 15354. doi:10.1038/s41598-017-13498-7.
doi: 10.1038/s41598-017-13498-7 pmid: 29127287
[44] MCDOWELL R W, CONDRON L M, STEWART I. Variation in environmentally- and agronomically-significant soil phosphorus concentrations with time since stopping the application of phosphorus fertilisers. Geoderma, 2016, 280: 67-72. doi:10.1016/j.geoderma.2016.06.022.
doi: 10.1016/j.geoderma.2016.06.022.
[45] TIECHER T, DOS SANTOS D R, CALEGARI A. Soil organic phosphorus forms under different soil management systems and winter crops, in a long term experiment. Soil and Tillage Research, 2012, 124: 57-67. doi:10.1016/j.still.2012.05.001.
doi: 10.1016/j.still.2012.05.001.
[46] YANG X, POST W M. Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences, 2011, 8(10): 2907-2916. doi:10.5194/bg-8-2907-2011.
doi: 10.5194/bg-8-2907-2011.
[47] ZHANG T Q, MACKENZIE A F, LIANG B C, DRURY C F. Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion. Soil Science Society of America Journal, 2004, 68(2): 519-528. doi:10.2136/sssaj2004.5190.
doi: 10.2136/sssaj2004.5190.
[48] WANG X M, HU Y F, TANG Y D, YANG P, FENG X H, XU W Q, ZHU M Q. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces. Environmental Science: Nano, 2017, 4(11): 2193-2204. doi:10.1039/c7en00705a.
doi: 10.1039/c7en00705a.
[49] HAVLIN J L, TISDALE S L, NELSON W L BEATON J D. Soil fertility and fertilizers: an introduction to nutrient management. Soil Fertility & Fertilizers an Introduction to Nutrient Management, 1999.
[50] HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi:10.2136/sssaj1982.03615995004600050017x.
doi: 10.2136/sssaj1982.03615995004600050017x.
[51] WRIGHT R B, LOCKABY B G, WALBRIDGE M R. Phosphorus availability in an artificially flooded southeastern floodplain forest soil. Soil Science Society of America Journal, 2001, 65(4): 1293-1302. doi:10.2136/sssaj2001.6541293x.
doi: 10.2136/sssaj2001.6541293x.
[52] YAN X, WANG D J, ZHANG H L, ZHANG G, WEI Z Q. Organic amendments affect phosphorus sorption characteristics in a paddy soil. Agriculture, Ecosystems & Environment, 2013, 175: 47-53. doi:10.1016/j.agee.2013.05.009.
doi: 10.1016/j.agee.2013.05.009.
[53] YAN Z J, CHEN S, DARI B, SIHI D, CHEN Q. Phosphorus transformation response to soil properties changes induced by manure application in a calcareous soil. Geoderma, 2018, 322: 163-171. doi:10.1016/j.geoderma.2018.02.035.
doi: 10.1016/j.geoderma.2018.02.035.
[54] NOBILE C M, BRAVIN M N, BECQUER T, PAILLAT J M. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere, 2020, 239: 124709. doi:10.1016/j.chemosphere.2019.124709.
doi: 10.1016/j.chemosphere.2019.124709.
[55] 孟思明. 长期施肥对土壤粘粒矿物组成及其演变特征的影响[D]. 武汉: 华中农业大学, 2014.
MENG S M. Effect of long-term fertilization on soil clay mineral composition and its evolution characteristics[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[56] MA J, MA Y L, WEI R F, CHEN Y L, WENG L P, OUYANG X X, LI Y T. Phosphorus transport in different soil types and the contribution of control factors to phosphorus retardation. Chemosphere, 2021, 276: 130012. doi:10.1016/j.chemosphere.2021.130012.
doi: 10.1016/j.chemosphere.2021.130012.
[57] ZAMUNER E C, PICONE L I, ECHEVERRIA H E. Organic and inorganic phosphorus in Mollisol soil under different tillage practices. Soil and Tillage Research, 2008, 99(2): 131-138. doi:10.1016/j.still.2007.12.006.
doi: 10.1016/j.still.2007.12.006.
[58] ABDALA D B, DA SILVA I R, VERGÜTZ L, SPARKS D L. Long-term manure application effects on phosphorus speciation, kinetics and distribution in highly weathered agricultural soils. Chemosphere, 2015, 119: 504-514. doi:10.1016/j.chemosphere.2014.07.029.
doi: S0045-6535(14)00889-3 pmid: 25112576
[59] CELI L, DE LUCA G, BARBERIS E. Effects of interaction of organic and inorganic p with ferrihydrite and kaolinite-iron oxide systems on iron release. Soil Science, 2003, 168(7): 479-488. doi:10.1097/01.ss.0000080333.10341.a4.
doi: 10.1097/01.ss.0000080333.10341.a4.
[60] CELI L, PRATI M, MAGNACCA G, SANTORO V, MARTIN M. Role of crystalline iron oxides on stabilization of inositol phosphates in soil. Geoderma, 2020, 374: 114442. doi:10.1016/j.geoderma.2020.114442.
doi: 10.1016/j.geoderma.2020.114442.
[61] WU Q H, ZHANG S X, REN Y, ZHAN X Y, XU M G, FENG G. Soil phosphorus management based on the agronomic critical value of Olsen P. Communications in Soil Science and Plant Analysis, 2018, 49(8): 934-944. doi:10.1080/00103624.2018.1448410.
doi: 10.1080/00103624.2018.1448410.
[62] 张淑香, 徐明岗. 中国土壤磷素演变与高效利用. 北京: 中国农业科学技术出版社, 2020: 71-111.
ZHANG S X, XU M G. Evolution and Efficient Use of Phosphorus in Chinese Soils. Beijing: China Agricultural Science and Technology Press, 2020: 71-111. (in Chinese)
[1] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[2] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[3] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[4] WeiLi ZHANG,H KOLBE,RenLian ZHANG,DingXiang ZHANG,ZhanGuo BAI,Jing ZHANG,HuaDing SHI. Overview of Soil Survey Works in Main Countries of World [J]. Scientia Agricultura Sinica, 2022, 55(18): 3565-3583.
[5] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[6] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[7] ZHANG MengTing, LIU Ping, HUANG DanDan, JIA ShuXia, ZHANG XiaoKe, ZHANG ShiXiu, LIANG WenJu, CHEN XueWen, ZHANG Yan, LIANG AiZhen. Response of Nematode Community to Soil Disturbance After Long-Term No-Tillage Practice in the Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4840-4850.
[8] JI BingJie,LI WenHai,XU MengYang,NIU JinCan,ZHANG ShuLan,YANG XueYun. Varying Synthetic Phosphorus Varieties Lead to Different Fractions in Calcareous Soil [J]. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594.
[9] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[10] MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
[11] Dan WEI,ShanShan CAI,Yan LI,Liang JIN,Wei WANG,YuMei LI,Yang BAI,Yu HU. The Response of Water-Soluble Organic Carbon to Organic Material Applications in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1180-1188.
[12] XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223.
[13] GAO HongJun,PENG Chang,ZHANG XiuZhi,LI Qiang,ZHU Ping,WANG LiChun. Effects of Corn Straw Returning Amounts on Carbon Sequestration Efficiency and Organic Carbon Change of Soil and Aggregate in the Black Soil Area [J]. Scientia Agricultura Sinica, 2020, 53(22): 4613-4622.
[14] ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271.
[15] YanHua CHEN,Le WANG,ShuXiang ZHANG,Ning GUO,ChangBao MA,ChunHua LI,MingGang XU,GuoYuan ZOU. Quality Change of Cinnamon Soil Cultivated Land and Its Effect on Soil Productivity [J]. Scientia Agricultura Sinica, 2019, 52(24): 4540-4554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!