Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (14): 2391-2405.doi: 10.3864/j.issn.0578-1752.2019.14.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG XiaoQiong1,GUO Jian2,DAI ShuTao3,REN Yuan4,LI FengYan5,LIU JingBao3,LI YongXiang2,ZHANG DengFeng2,SHI YunSu2,SONG YanChun2,LI Yu2,WANG TianYu2,ZOU HuaWen1(),LI ChunHui2(
)
[1] |
LYNCH J P . Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 2013,112(2):347-357.
doi: 10.1093/aob/mcs293 |
[2] |
VILLORDON A Q, GINZBERG I, FIRON N . Root architecture and root and tuber crop productivity. Trends in Plant Science, 2014,19(7):419-425.
doi: 10.1016/j.tplants.2014.02.002 |
[3] | NING P, Li S, WHITE P J, LI C J . Maize varieties released in different eras have similar root length density distributions in the soil, which are negatively correlated with local concentrations of soil mineral nitrogen. PLoS ONE, 2014,10(3):e0121892. |
[4] |
HAMMER G L, DONG Z S, MCLEAN G, DOHERTY A, MESSINA C, SCHUSSLER J, ZINSELMEIER C, PASZKIEWICZ S, COOPER M . Can changes in canopy and/or root system architecture explain historical maize yield trends in the U. S. Corn belt? Crop Science, 2009,49(1):299-312.
doi: 10.2135/cropsci2008.03.0152 |
[5] | CAI H G, CHEN F J, MI G H, ZHANG F S, MAURER H P, LIU W X, REIF J C, YUAN L X . Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Theoretical and Applied Genetics, 2012,125(6):1313-1324. |
[6] | 程帅, 李鹏程, 刘志刚, 赵龙飞, 米国华 . 密度、氮肥对玉米杂交种节根数量的影响. 植物营养与肥料学报, 2016,22(4):1118-1125. |
CHENG S, LI P C, LIU Z G, ZHAO L F, MI G H . Effect of plant density and nitrogen supply on nodal root number of maize of different varieties. Journal of Plant Nutrition and Fertilizer, 2016,22(4):1118-1125. (in Chinese) | |
[7] |
ALI M L, LUETCHENS J, NASCIMENTO J, SHAVER T M, KRUGER G R, LORENZ A J . Genetic variation in seminal and nodal root angle and their association with grain yield of maize under water-stressed field conditions. Plant Soil, 2015,397(1/2):213-225.
doi: 10.1007/s11104-015-2554-x |
[8] | UGA Y, SUGIMOTO K, OGAWA S, RANE J, ISHITANI M, HARA N, KITOMI Y, INUKAI Y, ONO K, KANNO N, INOUE H, TAKEHISA H, MOTOYAMA R, NAGAMURA Y, WU J Z, MATSUMOTO T, TAKAI T, OKUNO K, YANO M . Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013,45(9):1097-1102. |
[9] | COMAS L H, BECKER S R, CRUZ V M V, BYRNE P F, DIERIG D A . Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 2013,4(2):442. |
[10] | GAO Y Z, LYNCH J P . Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). Journal of Experimental Botany, 2016,67(15):4545-4557. |
[11] | BURTON A L, JOHNSON J M, FOERSTER J M, HIRSCH C N, BUELL C R, HANLON M T, KAEPPLER S M, BROWN K M, LYNCH J P . QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theoretical and Applied Genetics, 2014,127(11):2293-2311. |
[12] | KUMAR B, ABDEL-GHANI A H, PACE J, REYES-MATAMOROS J, HOCHHOLDINGER F, LÜBBERSTEDT T . Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. Plant Science, 2014,224(13):9-19. |
[13] | PACE J, GARDNER C, ROMAY C, GANAPATHYSUBRAMANIAN B, LÜBBERSTEDT T . Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics, 2015,16(1):47. |
[14] | HOCHHOLDINGER F . The maize root system: Morphology, anatomy, and genetics//Handbook of Maize: Its Biology. New York: Springer, 2009: 145-160. |
[15] |
ZHANG F L, NIU X K, ZHANG Y M, XIE R Z, LIU X, LI S K, GAO S J . Studies on the root characteristics of maize varieties of different eras. Journal of Integrative Agriculture, 2013,12(3):426-435.
doi: 10.1016/S2095-3119(13)60243-9 |
[16] | ZAIDI P H, SEETHARAM K, KRISHNA G, KRISHNAMURTHY L, GAJANAN S, BABU R, ZERKA M, VINAYAN M T, VIVEK B S . Genomic regions associated with root traits under drought stress in tropical maize (Zea mays L.). PLoS ONE, 2016,11(10):e0164340. |
[17] |
ZHANG Z H, ZHANG X, LIN Z L, WANG J, XU M L, LAI J S, YU J M, LIN Z W . The genetic architecture of nodal root number in maize. The Plant Journal, 2018,93(6):1032-1044.
doi: 10.1111/tpj.2018.93.issue-6 |
[18] |
ALI M L, LUETCHENS J, SINGH A, SHAVER T M, KRUGER G R, LORENZ A J . Greenhouse screening of maize genotypes for deep root mass and related root traits and their association with grain yield under water-deficit conditions in the field. Euphytica, 2016,207(1):79-94.
doi: 10.1007/s10681-015-1533-x |
[19] | LANDI P, GIULIANI S, SALVI S, FERRI M, TUBEROSA R, SANGUINETI M C . Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. Journal of Experimental Botany, 2010,61(13):3553-3562. |
[20] |
蔡红光, 刘建超, 米国华, 袁力行, 陈晓辉, 陈范骏, 张福锁 . 田间条件下控制玉米开花前后根系性状的QTL定位. 植物营养与肥料学报, 2011,17(2):317-324.
doi: 10.11674/zwyf.2011.0179 |
CAI H G, LIU J C, MI G H, YUAN L X, CHEN X H, CHEN F J, ZHANG F S . QTL mapping for root traits around flowering stage of maize under field condition. Journal of Plant Nutrition and Fertilizer, 2011,17(2):317-324. (in Chinese)
doi: 10.11674/zwyf.2011.0179 |
|
[21] |
KU L X, SUN Z H, WANG C L, ZHANG J, ZHAO R F, LIU H Y, TAI G Q, CHEN Y H . QTL mapping and epistasis analysis of brace root traits in maize. Molecular Breeding, 2012,30(2):697-708.
doi: 10.1007/s11032-011-9655-x |
[22] |
GU D D, MEI X P, YU T T, SUN N N, XU D, LIU C X, CAI Y L . QTL identification for brace-root traits of maize in different generations and environments. Crop Science, 2017,57:13-21.
doi: 10.2135/cropsci2016.01.0031 |
[23] |
GUO J, CHEN L, LI Y X, SHI Y S, SONG Y C, ZHANG D F, LI Y, WANG T Y, YANG D G, LI C H . Meta-QTL analysis and identification of candidate genes related to root traits in maize. Euphytica, 2018,214(12):223.
doi: 10.1007/s10681-018-2283-3 |
[24] | SANCHEZ D L, LIU S S, IBRAHIM R, BLANCO M, LUBBERSTEDT T . Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Science, 2018,268:30-38. |
[25] |
LIU X, HUANG M, FAN B, BUCKLER E S, ZHANG Z . Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genetics, 2016,12(2):e1005767.
doi: 10.1371/journal.pgen.1005767 |
[26] |
刘志斋, 吴迅, 刘海利, 李永祥, 李清超, 王凤格, 石云素, 宋燕春, 宋伟彬, 赵久然, 赖锦盛, 黎裕, 王天宇 . 基于40个核心SSR标记揭示的820份中国玉米重要自交系的遗传多样性与群体结构. 中国农业科学, 2012,45(11):2107-2138.
doi: 10.3864/j.issn.0578-1752.2012.11.001 |
LIU Z Z, WU X, LIU H L, LI Y X, LI Q C, WANG F G, SHI Y S, SONG Y C, SONG W B, ZHAO J R, LAI J S, LI Y, WANG T Y . Genetic diversity and population structure of important Chinese maize inbred lines revealed by 40 core simple sequence repeats (SSRs). Scientia Agricultura Sinica, 2012,45(11):2107-2138. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.11.001 |
|
[27] | 刘梅, 吴广俊, 路笃旭, 徐振和, 董树亭, 张吉旺, 赵斌, 李耕, 刘鹏 . 不同年代玉米品种氮素利用效率与其根系特征的关系. 植物营养与肥料学报, 2017,23(1):71-82. |
LIU M, WU K J, LU Y X, XU Z H, DONG S T, ZHANG J W, ZHAO B, LI G, LIU P . Improvement of nitrogen use efficiency and the relationship with root system characters of maize cultivars in different years. Journal of Plant Nutrition and Fertilizer, 2017,23(1):71-82. (in Chinese) | |
[28] | 修文雯, 田晓东, 陈传晓, 彭正萍, 李少昆, 张凤路 . 充足灌水条件下不同年代玉米品种根系性状比较研究. 玉米科学, 2013,21(2):78-82. |
XIU W W, TIAN X D, CHEN C X, PENG Z P, LI S K, ZHANG F L . Comparative study on the characteristics of maize root under the conditions of saturated irrigation in different eras. Journal of Maize Science, 2013,21(2):78-82. (in Chinese) | |
[29] | YORK L M, LYNCH J P . Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition. Journal of Experimental Botany, 2015,66(18):5493-505. |
[30] |
SAENGWILAI P, NORD E A, CHIMUNGU J G, BROWN K M, LYNCH J P . Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiology, 2014,166(2):726-735.
doi: 10.1104/pp.114.241711 |
[31] | 赵久然, 李春辉, 宋伟, 王元东, 张如养, 王继东, 王凤格, 田红丽, 王蕊 . 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018,51(4):626-634. |
ZHAO J R, LI C H, SONG W, WANG Y D, ZHANG R Y, WANG J D, WANG F G, TIAN H L, WANG R . Genetic diversity and population structure of important Chinese maize breeding germplasm revealed by SNP-Chips. Scientia Agricultura Sinica, 2018,51(4):626-634. (in Chinese) | |
[32] | 贺文姝, 张海波, 孙宏蕾, 阮燕晔, 崔震海, 张立军 . 不同类群玉米自交系苞叶性状的差异分析. 华中农业大学学报, 2018,37(4):30-35. |
HE W S, ZHANG H B, SUN H L, RUAN Y Y, CUI Z H, ZHANG L J . Variation analysis of husk traits in different maize heterotic groups. Journal of Huazhong Agricultural University, 2018,37(4):30-35. (in Chinese) | |
[33] | 郭晋杰, 赵永锋, 张冬梅, 祝丽英, 黄亚群, 陈景堂 . 不同杂种优势群玉米子粒脱水速率分析. 植物遗传资源学报, 2018,19(1):39-48. |
GUO J J, ZHAO Y F, ZHANG D M, ZHU L Y, HUANG Y Q, CHEN J T . Analysis of grain dehydration rate in different maize heterotic groups. Journal of Plant Genetic Resources, 2018,19(1):39-48. (in Chinese) | |
[34] | TENAILLON M I, SAWKINS M C, LONG A D, GAUT R L, DOEBLEY J F, GAUT B S . Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proceedings of the National Academy of Sciences of the United States of America, 2001,98(16):9161-9166. |
[35] | LEACH K A, TRAN T M, SLEWINSKI T L, MEELEY R B, BRAUN D M . Sucrose transporter2 contributes to maize growth, development, and crop yield. Journal of Integrative Plant Biology, 2017,59(6):390-408. |
[1] | HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30. |
[2] | ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081. |
[3] | LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768. |
[4] | XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264. |
[5] | BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628. |
[6] | CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081. |
[7] | LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499. |
[8] | WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277. |
[9] | CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232. |
[10] | HE KeWei,CHEN JiaFa,ZHOU ZiJian,WU JianYu. Fusarium verticillioides Resistant Maize Inbred Line Development Using Host-Induced Gene Silencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(9): 1835-1845. |
[11] | ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326. |
[12] | YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047. |
[13] | SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944. |
[14] | WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260. |
[15] | ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286. |
|