Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (14): 2391-2405.doi: 10.3864/j.issn.0578-1752.2019.14.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Phenotypic Variation and Genome-wide Association Analysis of Root Architecture at Maize Flowering Stage

ZHANG XiaoQiong1,GUO Jian2,DAI ShuTao3,REN Yuan4,LI FengYan5,LIU JingBao3,LI YongXiang2,ZHANG DengFeng2,SHI YunSu2,SONG YanChun2,LI Yu2,WANG TianYu2,ZOU HuaWen1(),LI ChunHui2()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434000, Hubei
    2Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
    3Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    4Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Taiyuan 030031
    5College of Agronomy, Northwest Agricultural and Forestry University, Yangling 712100, Shanxi
  • Received:2019-03-20 Accepted:2019-04-25 Online:2019-07-16 Published:2019-07-26
  • Contact: HuaWen ZOU,ChunHui LI E-mail:zouhuawen@yangtzeu.edu.cn;lichunhui@caas.cn

Abstract:

【Objective】The root system as an important organ absorbing water and nutrients for plants, is essential for growth and grain yield of maize. More understanding of the genetic mechanism of the root architecture of maize is of great significance for the practice of high-yield breeding of maize.【Method】In this study, 111 maize elite inbred lines were used as an association population. In 2017, six belowground nodal root-related traits, i.e. nodal root layer number (RLN), total nodal root number (TRN), nodal root angle (RA), nodal root area (RS), nodal root volume (RV) and nodal root dry weight (RDW), were measured under four environments including Beijing, Yongshou of Shanxi province, Dingxiang of Shanxi province and Yuanyang of Henan province. The average of the four environments were used as the phenotypic data of the six root-related traits. The statistical analysis and correlation analysis were carried out on six traits, and the differences of six root-related traits for inbred lines developed in different eras and for inbred lines in different heterotic groups were also analyzed. Based on 152352 high-quality SNP markers obtained in this population, the FarmCPU model was used for genome-wide association analysis to obtain significantly associated SNP loci, and candidate genes were predicted based on the LD interval sequence of these significant associated SNPs, and a functional enrichment analysis of candidate genes was carried out.【Result】The phenotypic analysis showed that the six belowground nodal root traits exhibited a normal distribution and high level of heritability. The correlation analysis showed that RLN and TRN are negatively correlated with RA and RS; RA, RS, RV and RDW are significantly positively correlated with each other. With the advance of maize breeding era, RLN and TRN had a decreasing trend, and RA and RS had an increasing trend. There were no significant differences for RDW and RV among inbred lines of different eras. The belowground root structure of those inbred lines from different maize heterotic groups also showed differences, and the six traits of the Lüda Red Cob group were all higher than those of other groups. Genome-wide association study (GWAS) yielded 26 significantly associated SNPs (P<0.00001) referring to RLN, TRN, RV and RDW, of which 11 SNPs located in root-related QTLs previously reported, and 2 SNPs were detected to be significant correlation with RLN and TRN. A total of 177 candidate genes were found based on those significantly associated SNPs, of which 135 genes have functional annotation, the gene Zm00001d037368 was one pleiotropic gene influencing RLN and TRN. The results of enrichment analysis of candidate genes mainly involved in metabolic regulation, the response to stress, transporter activity, catalytic activity, binding protein and cellular components in plants.【Conclusion】The root architecture of maize inbred lines from different eras and different heterotic groups had differences with various degree. Root-related genetic loci and candidate genes identified by the genome-wide association analysis, a total of 26 loci associated with root-related traits were identified.

Key words: maize (Zea mays L.), nodal root, genome-wide association study, candidate gene

Fig. 1

Phenotypic variation of belowground node root-related traits of the maize A: Phenotypic diversity of maize root; B: Frequency distribution of belowground node root-related traits; RLN: Belowground node root layer number; TRN: Total number of belowground node root; RA: Belowground node root angle (°); RS: Belowground node root shadow area (cm2); RV: Belowground node root volume (cm3); RDW: Belowground node root dry weight (g). The same as below"

Table 1

Statistical analysis of belowground nodal root-related traits"

性状 Trait 均值 Mean 最大值 Max 最小值 Min 标准差 SD 变异系数 CV (%) 广义遗传力 H2
地下节根层数RLN 6.67 8.67 5.38 0.62 9.29 0.67
地下节根总条数TRN 59.41 88.00 42.00 8.96 15.08 0.74
地下节根角度RA 58.67 80.70 35.82 8.51 14.50 0.80
地下节根面积RS 76.28 111.91 45.55 13.85 18.15 0.79
地下节根体积RV 68.75 144.17 19.63 24.84 36.13 0.75
地下节根干重RDW 13.77 32.60 4.09 5.11 37.12 0.82

Fig. 2

Correlation analysis of belowground nodal root-related traits *: Correlation is significant at the 0.05 level; ***: Correlation is significant at the 0.001 level"

Table 2

Typical maize inbred lines developed in different eras"

年代
Era
材料数量
Number of materials
材料名称
Name of materials
1970s 10 C103、E28、H21、Mo17、丹黄02 Danhuang02、黄早四Huangzaosi、威风322 Weifeng322、掖8112 Ye8112、原武02 Yuanwu02、吉63 Ji63
1980s 17 853、5003、81162、4F1、B73、K12、Mo17Ht、X178、丹340 Dan340、合344 He344、齐319 Qi319、天涯4 Tianya4、铁7922 Tie7922、掖478 Ye478、掖488 Ye488、掖52106 Ye52106、郑58 Zheng58
1990s 14 444、5237、A801、C8605-2、Ki3、KL4、P138、昌7-2 Chang7-2、丹598 Dan598、多229 Duo229、黄野四3 Huangyesi3、获唐黄17 Huotanghuang17、沈137 Shen137、郑22 Zheng22
2000s 5 沈3336 Shen3336、四-144 Si-144、PH6JM、京724 Jing724、京725 Jing725

Fig. 3

Differences of belowground nodal root-related traits of inbred lines developed in different eras a, b: Significant at the 0.05 level respectively. The same as below"

Fig. 4

Cluster analysis of 111 maize inbred lines used in this study"

Table 3

Statistical analysis of belowground nodal root-related traits in inbred lines of different heterotic groups"

性状/类群 Trait/Group 均值 Mean 标准差 SD 极小值 Min 极大值 Max 变异系数 CV (%)
RLN
瑞德Reid 6.47ab 0.64 5.38 8.22 9.94
旅大红骨LRC 6.86a 0.56 6.17 8.00 8.13
兰卡斯特Lancaster 6.44b 0.43 5.56 7.33 6.73
塘四平头TSPT 7.02a 0.64 6.17 8.17 9.12
P群P group 6.54ab 0.52 5.83 7.21 7.92
混合群Mixed group 7.08a 0.55 6.33 8.67 7.76
TRN
瑞德Reid 56.86b 7.33 43.13 75.83 12.90
旅大红骨LRC 63.72a 10.53 49.39 77.33 16.52
兰卡斯特Lancaster 55.83b 6.51 42.00 68.67 11.66
塘四平头TSPT 63.79a 10.47 48.11 86.67 16.41
P群P group 60.40ab 9.26 47.92 74.80 15.33
混合群Mixed group 63.35a 9.77 51.67 88.00 15.42
RA
瑞德Reid 61.32a 7.13 48.65 80.70 11.62
旅大红骨LRC 62.66a 4.81 53.71 67.65 7.67
兰卡斯特Lancaster 58.43ab 9.82 43.89 78.03 16.81
塘四平头TSPT 54.82b 6.94 44.87 66.00 12.66
P群P group 57.52ab 8.23 43.71 67.99 14.31
混合群Mixed group 55.76ab 9.94 35.82 71.87 17.82
RS
瑞德Reid 82.07a 11.62 60.58 109.61 14.16
旅大红骨LRC 82.68a 12.71 68.47 106.65 15.37
兰卡斯特Lancaster 74.90a 14.99 48.38 111.91 20.02
塘四平头TSPT 65.50b 10.22 51.80 88.01 15.60
P群P group 73.68ab 13.88 57.50 97.73 18.84
混合群Mixed group 74.34a 13.85 45.55 107.94 18.63
RV
瑞德Reid 69.72ab 23.36 34.21 140.83 33.51
旅大红骨LRC 81.82a 33.68 38.31 144.17 41.17
兰卡斯特Lancaster 66.95ab 23.85 19.63 124.52 35.63
塘四平头TSPT 71.59ab 29.86 33.33 139.17 41.71
P群P group 68.97ab 24.45 44.37 107.99 35.45
混合群Mixed group 60.62b 19.36 38.33 123.11 31.93
RDW
瑞德Reid 14.25a 4.34 6.49 24.86 30.44
旅大红骨LRC 16.21a 7.84 7.55 32.60 48.38
兰卡斯特Lancaster 13.07a 4.92 4.09 28.32 37.68
塘四平头TSPT 12.26a 4.99 5.21 25.07 40.66
P群P group 14.22a 4.60 8.99 23.49 32.35
混合群Mixed group 13.74a 5.55 5.86 31.29 40.41

Fig. 5

Differences of belowground nodal root-related traits in inbred lines of different heterotic groups"

Fig. 6

(A) Manhattan plot and (B) Quantile-quantile plot for genome-wide association study of maize root traits"

Table 4

List of significant SNPs affecting maize belowground nodal root-related traits and the plausible candidate genes and their functional annotations"

性状
Trait
SNP Chr. 位置a
Position (bp)
P
P value
候选基因b
Candidate gene
基因功能注释
Gene annotation
参考文献c
Reference
RLN Chr.1.S_31312069 1 31312069 3.07E-06 Zm00001d028337 富含脯氨酸的受体样蛋白激酶PERK4
Proline-rich receptor-like protein kinase PERK4
RLN Chr.1.S_31312087 1 31312087 3.07E-06 Zm00001d028344 推定的金属耐受蛋白C3
Putative metal tolerance protein C3
RDW Chr.3.S_103120493 3 103120493 1.07E-05 Zm00001d041183 蛋白激酶超家族蛋白质/苏氨酸蛋白激酶prpf4B-liken
Protein kinase superfamily proteiserine/threonine-protein kinase prpf4B-liken
RV Chr.3.S_104251070 3 104251070 8.33E-06 Zm00001d041192 蔗糖转运蛋白4 Sucrose transporter4
RDW Chr.4.S_9975093 4 9975093 7.24E-06 Zm00001d048943 硫氧还蛋白超家族蛋白 Thioredoxin superfamily protein [14]
RV Chr.4.S_38214896 4 38214896 3.38E-06 Zm00001d049623 SNARE相关蛋白 SNARE-associated protein-related
Zm00001d049627 蛋氨酸氨肽酶 Methionine aminopeptidase
RV Chr.4.S_63797065 4 63797065 7.79E-06 Zm00001d050069 海藻糖-6-磷酸合成酶8 Trehalose-6-phosphate synthase8
RV Chr.4.S_100804613 4 100804613 8.30E-06 Zm00001d050558 OSJNBa0043A12.20蛋白 OSJNBa0043A12.20 protein
TRN Chr.4.S_246664102 4 246664102 3.96E-06 Zm00001d054104 E3泛素蛋白连接酶UPL3 E3 ubiquitin-protein ligase UPL3
Zm00001d054105 尿苷激酶样蛋白3 Uridine kinase-like protein 3
RDW Chr.6.S_34950886 6 34950886 9.19E-06 Zm00001d035587 G型凝集素S受体样丝氨酸/苏氨酸蛋白激酶At2g19130
G-type lectin S-receptor-like serine/threonine-protein kinase At2g19130
[5,20]
Zm00001d035588 G型凝集素S受体样丝氨酸/苏氨酸蛋白激酶At2g19130
G-type lectin S-receptor-like serine/threonine-protein kinase At2g19130
RDW Chr.6.S_108781517 6 108781517 6.09E-07 Zm00001d037004 Ras相关蛋白RABA1d Ras-related protein RABA1d [17]
Zm00001d037010 毛发相关蛋白激酶iota Shaggy-related protein kinase iota
RLN/TRN Chr.6.S_123079904 6 123079904 4.00E-06 Zm00001d037360 推定的bZIP转录因子超家族蛋白
Putative bZIP transcription factor superfamily protein
[20]
RLN/TRN Chr.6.S_123079927 6 123079927 4.00E-06 Zm00001d037368 未知 Unknown [20]
RLN Chr.6.S_123845438 6 123845438 2.51E-06 Zm00001d037384 花青素3-O-葡糖基转移酶
Anthocyanidin 3-O-glucosyltransferase
[20]
TRN Chr.6.S_135051799 6 135051799 6.13E-06 Zm00001d037712 MAR结合丝状蛋白1
MAR-binding filament-like protein 1
RV Chr.6.S_136591446 6 136591446 6.19E-06 Zm00001d037751 晚期胚胎发育丰富(LEA)富含羟脯氨酸的糖蛋白家族
Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family
RDW Chr.7.S_48142656 7 48142656 3.42E-06 Zm00001d019648 核酸结合蛋白1 Nucleic acid binding protein 1 [14]
RDW Chr.7.S_101804639 7 101804639 7.71E-07 Zm00001d020242 锌指CCCH结构域的蛋白质64
Zinc finger CCCH domain-containing protein 64
[14]
RLN Chr.8.S_55681954 8 55681954 5.47E-06 Zm00001d009324 AMSH样泛素蛋白硫酯酶3
AMSH-like ubiquitin thioesterase 3
RV Chr.8.S_100196991 8 100196991 1.68E-06 Zm00001d010119 冷休克蛋白CS66 Cold shock protein CS66 [20]
RV Chr.8.S_100680141 8 100680141 1.07E-07 Zm00001d010128 酸性核糖体蛋白P2b(rpp2b)
Acidic ribosomal protein P2b (rpp2b)
[20]
RV Chr.9.S_67485696 9 67485696 3.82E-07 Zm00001d046152 推定的RING-H2指蛋白ATL71
Putative RING-H2 finger protein ATL71
RV Chr.9.S_111860806 9 111860806 9.44E-06 Zm00001d046942 果糖-1,6-二磷酸酶 Fructose-1,6-bisphosphatase
RV Chr.10.S_150110617 10 150110617 1.08E-05 Zm00001d026687 生长素响应因子17 Auxin response factor 17 [14]
Zm00001d026694 生长素响应因子13 Auxin response factor 13

Fig. 7

Linkage disequilibrium attenuation distance of the population"

Fig. 8

Histogram of annotations for biological pathways of candidate genes"

[1] LYNCH J P . Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 2013,112(2):347-357.
doi: 10.1093/aob/mcs293
[2] VILLORDON A Q, GINZBERG I, FIRON N . Root architecture and root and tuber crop productivity. Trends in Plant Science, 2014,19(7):419-425.
doi: 10.1016/j.tplants.2014.02.002
[3] NING P, Li S, WHITE P J, LI C J . Maize varieties released in different eras have similar root length density distributions in the soil, which are negatively correlated with local concentrations of soil mineral nitrogen. PLoS ONE, 2014,10(3):e0121892.
[4] HAMMER G L, DONG Z S, MCLEAN G, DOHERTY A, MESSINA C, SCHUSSLER J, ZINSELMEIER C, PASZKIEWICZ S, COOPER M . Can changes in canopy and/or root system architecture explain historical maize yield trends in the U. S. Corn belt? Crop Science, 2009,49(1):299-312.
doi: 10.2135/cropsci2008.03.0152
[5] CAI H G, CHEN F J, MI G H, ZHANG F S, MAURER H P, LIU W X, REIF J C, YUAN L X . Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Theoretical and Applied Genetics, 2012,125(6):1313-1324.
[6] 程帅, 李鹏程, 刘志刚, 赵龙飞, 米国华 . 密度、氮肥对玉米杂交种节根数量的影响. 植物营养与肥料学报, 2016,22(4):1118-1125.
CHENG S, LI P C, LIU Z G, ZHAO L F, MI G H . Effect of plant density and nitrogen supply on nodal root number of maize of different varieties. Journal of Plant Nutrition and Fertilizer, 2016,22(4):1118-1125. (in Chinese)
[7] ALI M L, LUETCHENS J, NASCIMENTO J, SHAVER T M, KRUGER G R, LORENZ A J . Genetic variation in seminal and nodal root angle and their association with grain yield of maize under water-stressed field conditions. Plant Soil, 2015,397(1/2):213-225.
doi: 10.1007/s11104-015-2554-x
[8] UGA Y, SUGIMOTO K, OGAWA S, RANE J, ISHITANI M, HARA N, KITOMI Y, INUKAI Y, ONO K, KANNO N, INOUE H, TAKEHISA H, MOTOYAMA R, NAGAMURA Y, WU J Z, MATSUMOTO T, TAKAI T, OKUNO K, YANO M . Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013,45(9):1097-1102.
[9] COMAS L H, BECKER S R, CRUZ V M V, BYRNE P F, DIERIG D A . Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 2013,4(2):442.
[10] GAO Y Z, LYNCH J P . Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). Journal of Experimental Botany, 2016,67(15):4545-4557.
[11] BURTON A L, JOHNSON J M, FOERSTER J M, HIRSCH C N, BUELL C R, HANLON M T, KAEPPLER S M, BROWN K M, LYNCH J P . QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theoretical and Applied Genetics, 2014,127(11):2293-2311.
[12] KUMAR B, ABDEL-GHANI A H, PACE J, REYES-MATAMOROS J, HOCHHOLDINGER F, LÜBBERSTEDT T . Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. Plant Science, 2014,224(13):9-19.
[13] PACE J, GARDNER C, ROMAY C, GANAPATHYSUBRAMANIAN B, LÜBBERSTEDT T . Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics, 2015,16(1):47.
[14] HOCHHOLDINGER F . The maize root system: Morphology, anatomy, and genetics//Handbook of Maize: Its Biology. New York: Springer, 2009: 145-160.
[15] ZHANG F L, NIU X K, ZHANG Y M, XIE R Z, LIU X, LI S K, GAO S J . Studies on the root characteristics of maize varieties of different eras. Journal of Integrative Agriculture, 2013,12(3):426-435.
doi: 10.1016/S2095-3119(13)60243-9
[16] ZAIDI P H, SEETHARAM K, KRISHNA G, KRISHNAMURTHY L, GAJANAN S, BABU R, ZERKA M, VINAYAN M T, VIVEK B S . Genomic regions associated with root traits under drought stress in tropical maize (Zea mays L.). PLoS ONE, 2016,11(10):e0164340.
[17] ZHANG Z H, ZHANG X, LIN Z L, WANG J, XU M L, LAI J S, YU J M, LIN Z W . The genetic architecture of nodal root number in maize. The Plant Journal, 2018,93(6):1032-1044.
doi: 10.1111/tpj.2018.93.issue-6
[18] ALI M L, LUETCHENS J, SINGH A, SHAVER T M, KRUGER G R, LORENZ A J . Greenhouse screening of maize genotypes for deep root mass and related root traits and their association with grain yield under water-deficit conditions in the field. Euphytica, 2016,207(1):79-94.
doi: 10.1007/s10681-015-1533-x
[19] LANDI P, GIULIANI S, SALVI S, FERRI M, TUBEROSA R, SANGUINETI M C . Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. Journal of Experimental Botany, 2010,61(13):3553-3562.
[20] 蔡红光, 刘建超, 米国华, 袁力行, 陈晓辉, 陈范骏, 张福锁 . 田间条件下控制玉米开花前后根系性状的QTL定位. 植物营养与肥料学报, 2011,17(2):317-324.
doi: 10.11674/zwyf.2011.0179
CAI H G, LIU J C, MI G H, YUAN L X, CHEN X H, CHEN F J, ZHANG F S . QTL mapping for root traits around flowering stage of maize under field condition. Journal of Plant Nutrition and Fertilizer, 2011,17(2):317-324. (in Chinese)
doi: 10.11674/zwyf.2011.0179
[21] KU L X, SUN Z H, WANG C L, ZHANG J, ZHAO R F, LIU H Y, TAI G Q, CHEN Y H . QTL mapping and epistasis analysis of brace root traits in maize. Molecular Breeding, 2012,30(2):697-708.
doi: 10.1007/s11032-011-9655-x
[22] GU D D, MEI X P, YU T T, SUN N N, XU D, LIU C X, CAI Y L . QTL identification for brace-root traits of maize in different generations and environments. Crop Science, 2017,57:13-21.
doi: 10.2135/cropsci2016.01.0031
[23] GUO J, CHEN L, LI Y X, SHI Y S, SONG Y C, ZHANG D F, LI Y, WANG T Y, YANG D G, LI C H . Meta-QTL analysis and identification of candidate genes related to root traits in maize. Euphytica, 2018,214(12):223.
doi: 10.1007/s10681-018-2283-3
[24] SANCHEZ D L, LIU S S, IBRAHIM R, BLANCO M, LUBBERSTEDT T . Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Science, 2018,268:30-38.
[25] LIU X, HUANG M, FAN B, BUCKLER E S, ZHANG Z . Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genetics, 2016,12(2):e1005767.
doi: 10.1371/journal.pgen.1005767
[26] 刘志斋, 吴迅, 刘海利, 李永祥, 李清超, 王凤格, 石云素, 宋燕春, 宋伟彬, 赵久然, 赖锦盛, 黎裕, 王天宇 . 基于40个核心SSR标记揭示的820份中国玉米重要自交系的遗传多样性与群体结构. 中国农业科学, 2012,45(11):2107-2138.
doi: 10.3864/j.issn.0578-1752.2012.11.001
LIU Z Z, WU X, LIU H L, LI Y X, LI Q C, WANG F G, SHI Y S, SONG Y C, SONG W B, ZHAO J R, LAI J S, LI Y, WANG T Y . Genetic diversity and population structure of important Chinese maize inbred lines revealed by 40 core simple sequence repeats (SSRs). Scientia Agricultura Sinica, 2012,45(11):2107-2138. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.11.001
[27] 刘梅, 吴广俊, 路笃旭, 徐振和, 董树亭, 张吉旺, 赵斌, 李耕, 刘鹏 . 不同年代玉米品种氮素利用效率与其根系特征的关系. 植物营养与肥料学报, 2017,23(1):71-82.
LIU M, WU K J, LU Y X, XU Z H, DONG S T, ZHANG J W, ZHAO B, LI G, LIU P . Improvement of nitrogen use efficiency and the relationship with root system characters of maize cultivars in different years. Journal of Plant Nutrition and Fertilizer, 2017,23(1):71-82. (in Chinese)
[28] 修文雯, 田晓东, 陈传晓, 彭正萍, 李少昆, 张凤路 . 充足灌水条件下不同年代玉米品种根系性状比较研究. 玉米科学, 2013,21(2):78-82.
XIU W W, TIAN X D, CHEN C X, PENG Z P, LI S K, ZHANG F L . Comparative study on the characteristics of maize root under the conditions of saturated irrigation in different eras. Journal of Maize Science, 2013,21(2):78-82. (in Chinese)
[29] YORK L M, LYNCH J P . Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition. Journal of Experimental Botany, 2015,66(18):5493-505.
[30] SAENGWILAI P, NORD E A, CHIMUNGU J G, BROWN K M, LYNCH J P . Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiology, 2014,166(2):726-735.
doi: 10.1104/pp.114.241711
[31] 赵久然, 李春辉, 宋伟, 王元东, 张如养, 王继东, 王凤格, 田红丽, 王蕊 . 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018,51(4):626-634.
ZHAO J R, LI C H, SONG W, WANG Y D, ZHANG R Y, WANG J D, WANG F G, TIAN H L, WANG R . Genetic diversity and population structure of important Chinese maize breeding germplasm revealed by SNP-Chips. Scientia Agricultura Sinica, 2018,51(4):626-634. (in Chinese)
[32] 贺文姝, 张海波, 孙宏蕾, 阮燕晔, 崔震海, 张立军 . 不同类群玉米自交系苞叶性状的差异分析. 华中农业大学学报, 2018,37(4):30-35.
HE W S, ZHANG H B, SUN H L, RUAN Y Y, CUI Z H, ZHANG L J . Variation analysis of husk traits in different maize heterotic groups. Journal of Huazhong Agricultural University, 2018,37(4):30-35. (in Chinese)
[33] 郭晋杰, 赵永锋, 张冬梅, 祝丽英, 黄亚群, 陈景堂 . 不同杂种优势群玉米子粒脱水速率分析. 植物遗传资源学报, 2018,19(1):39-48.
GUO J J, ZHAO Y F, ZHANG D M, ZHU L Y, HUANG Y Q, CHEN J T . Analysis of grain dehydration rate in different maize heterotic groups. Journal of Plant Genetic Resources, 2018,19(1):39-48. (in Chinese)
[34] TENAILLON M I, SAWKINS M C, LONG A D, GAUT R L, DOEBLEY J F, GAUT B S . Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proceedings of the National Academy of Sciences of the United States of America, 2001,98(16):9161-9166.
[35] LEACH K A, TRAN T M, SLEWINSKI T L, MEELEY R B, BRAUN D M . Sucrose transporter2 contributes to maize growth, development, and crop yield. Journal of Integrative Plant Biology, 2017,59(6):390-408.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[6] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[7] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[8] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[9] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
[10] HE KeWei,CHEN JiaFa,ZHOU ZiJian,WU JianYu. Fusarium verticillioides Resistant Maize Inbred Line Development Using Host-Induced Gene Silencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(9): 1835-1845.
[11] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[12] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[13] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[14] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[15] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!