Scientia Agricultura Sinica ›› 2009, Vol. 42 ›› Issue (11): 3940-3946 .doi: 10.3864/j.issn.0578-1752.2009.11.022

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Phosphate Fertilizer Applied to Topsoil on the Movement and Residual Effect of Nitrate Accumulated in Deep Soil Profile

YUAN Li-jin, JU Xiao-tang, LIU Xin-yu, ZHANG Li-juan, WANG Jue
  

  1. (河北农业大学资源与环境学院)

  • Received:2009-02-12 Revised:1900-01-01 Online:2009-11-10 Published:2009-11-10
  • Contact: ZHANG Li-juan

Abstract:

【Objective】 The purpose of this study was to indicate the effects of phosphate fertilizer applied to topsoil on the movement and residual effect of nitrate which was accumulated in deep soil profile in North China Plain. 【Method】 The injection technique of labeled NO3--N was adopted in a field micro-plot experiment. Three phosphate fertilizer treatments were desigred at each experimental site. The labeled NO3--N was injected in 110 cm soil profile. 【Result】 At this condition, the distribution of residual amount of 15N in each soil profile after wheat harvest was: P60<P120<P0. The labeled NO3--N moved at vertical distance. It moved 50 cm to the topper soil profile and 70 cm to the lower.The peak appeared in the depth of 120-140 cm where it was 30 cm below the labeled place. After maize harvest , most 15N was detected in 100-180 cm. The peak moved to 140-160 cm. Maize could absorb the residual 15N with the utilization ratio of nitrate 1.2%, 2.5%, and 2.2% for the treatments of P0, P60, and P120, respectively. The phosphate fertilizer which was applied to topsoil in wheat season made the roots of maize grow better with more root length density and dry root weight than without phosphate fertilizer. The phosphate fertilizer improved the proportion of root length density and dry root weight in 80-150 cm. More deep soil nitrate could be used by maize, so the utilization ratio of nitrate improved.【Conclusion】The residual effect of 15N was influenced by phosphate fertilizer which was applied to wheat. Phosphate fertilizer made the maize roots grow better in 80-150 cm soil profile. So the utilization ratio of nitrate was improved. The accumulation of 15N in soil profile was reduced.

Key words: 15N movement, maize, nitrate, residual effect, roots

[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!