Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4660-4670.doi: 10.3864/j.issn.0578-1752.2023.23.008

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Regulation of Single-Seed Sowing and Phosphorus Application on Interspecific Competition and Growth of Intercropping Peanut

JIANG WenYang1(), CHEN JunNan1, ZAN ZhiMan1, WANG JiangTao1, ZHENG Bin1, LIU Ling1, LIU Juan2, JIAO NianYuan1()   

  1. 1 College of Agriculture, Henan University of Science and Technology, Luoyang 471000, Henan
    2 Industrial Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
  • Received:2023-03-07 Accepted:2023-03-31 Online:2023-12-04 Published:2023-12-04
  • Contact: JIAO NianYuan

Abstract:

【Background】Maize (Zea mays) intercropping with peanut (Arachis hypogaea) (maize||peanut) has outstanding interspecific effects between aboveground and underground, and the intercropping advantage in yield is prominent, which plays an important role in alleviating the conflict between oil and grain in our country. However, peanut is at the disadvantage of interspecific competition, which becomes the bottleneck restricting the further improvement of intercropping advantage.【Objective】The objective of this study is to explore the regulation measures and mechanism of enhancing peanut interspecific competition in maize||peanut system, and to provide theoretical basis and technical support for maize||peanut high-yield cultivation.【Method】Maize ‘Zhengdan 958’ and peanut ‘Huayu 16’ were used as test materials in the experimental farm of Henan University of Science and Technology from 2021 to 2022. A completely randomized block experiment with three factors: planting pattern, peanut sowing method and phosphorus application rate was set up. In other words, planting patterns were peanut monoculture and maize||peanut, peanut seeding methods were single-seed sowing and double-seed sowing, and phosphorus application rates were 0 (P0) and 180 kg P2O5·hm-2 (P180). Peanut double-seed sowing of maize||peanut was used as control, effects of peanut single-seed sowing on interspecific competitiveness of intercropping peanut over maize, net photosynthetic rate, maximum growth rate, dry matter accumulation and distribution, and yield advantage of intercropping were studied.【Result】Compared to the strong and weak plants with double-seed sowing peanut, single-seed sowing significantly increased the aggressivity and crowding coefficient of intercropping peanut over maize, the aggressivity increased by 29.72%-80.85% and 38.91%-87.07%, respectively, and the crowding coefficient increased by 76.59%-172.02% and 244.43%-308.70%, respectively. The net photosynthetic rate of intercropping peanut with single-seed sowing was significantly higher than that with double-seed sowing, and the maximum growth rate was significantly higher than that of strong and weak plants with double-seed sowing, respectively. The dry matter in the later growth period was significantly increased, dry matter distribution ratio to pod was increased, the contribution rate of stem and leaf dry matter to pod was improved, compared to the strong and weak plants with double-seed sowing peanut. The yield and advantage of intercropping with single seeding were higher than those with double seeding, and the yield was 18.84%-33.32% higher, the difference was significant. Compared with no phosphorus fertilizer, phosphorus application significantly increased the net photosynthetic rate and maximum growth rate of intercropping peanut, and promoted the dry matter accumulation and increased yield of intercropping peanut.【Conclusion】Peanut single-seed sowing can improve intercropping peanut yield and intercropping advantage, the key lies in the fact that single-seed sowing can enhance interspecific competitiveness of intercropping peanut compare with double-seed sowing, significantly increase the net photosynthetic rate, and promote the accumulation of dry matter and distribution to the pod. Phosphorus application promotes the growth and development of intercropping peanut under single-seed sowing.

Key words: maize, peanut, interspecific competition, strong plant and weak plant, maximum growth rate, yield, single-seed sowing, phosphorus fertilizer

Fig. 1

Illustration of maize and peanut intercropping in the field"

Fig. 2

Effects of peanut single-seed sowing and phosphorous application on interspecific aggressivity of intercropping peanut"

Fig. 3

Effects of peanut single-seed sowing and phosphorous application on interspecific crowding coefficient of intercropping peanut"

Table 1

Effects of peanut single-seed sowing and phosphorous application on photosynthetic performance in functional leaves of intercropping peanut"

生育时期
Growth stage
P水平
P level
种植模式
Plant pattern
净光合速率Pn
(μmol·m-2·s-1)
气孔导度Gs
(mmol·m-2·s-1)
胞间CO2浓度Ci
(mmol·mol-1)
蒸腾速率Tr
(mmol·m-2·s-1)
结荚期
Pod-setting stage
P0 SDSP 21.72e 1.026d 317.53c 14.54e
WDSP 20.09f 1.017d 353.49b 11.15g
SSP 23.93d 1.079c 299.34d 16.12c
SDIP 20.46f 0.977e 357.08b 10.87g
WDIP 19.15g 0.925f 368.69a 8.35h
SIP 21.61e 1.063c 312.66c 12.91f
P180 SDSP 27.21b 1.161b 300.15d 19.57b
WDSP 25.40c 1.083c 320.96c 17.07c
SSP 29.46a 1.294a 279.75f 21.46a
SDIP 25.29c 0.993e 302.16d 15.68d
WDIP 23.57d 0.932f 319.38c 13.09f
SIP 26.88b 1.061c 290.37e 16.66c
饱果期
Pod-filling stage
P0 SDSP 20.94c 0.436d 284.48c 5.17f
WDSP 18.77d 0.390e 314.31a 3.32g
SSP 22.13b 0.467c 275.11d 6.00e
SDIP 19.14d 0.387e 301.20b 4.34f
WDIP 17.40e 0.327f 313.45a 2.94g
SIP 20.49c 0.420d 290.71bc 5.35ef
P180 SDSP 22.09b 0.654b 268.53d 9.72b
WDSP 20.77c 0.473c 282.19c 8.46c
SSP 23.44a 0.723a 258.72e 11.58a
SDIP 20.31c 0.472c 272.86d 7.39d
WDIP 18.59d 0.435d 288.43bc 6.12e
SIP 22.01b 0.599b 269.01d 9.11b

Fig. 4

Effects of peanut single-seed sowing and phosphorous application on dry matter and maximum growth rate of intercropping peanut Maximum growth rate of peanut"

Table 2

Effects of peanut single-seed sowing and phosphorous application on dry matter accumulation and distribution of intercropping peanut"

P水平
P level
种植模式
Plant pattern
干物质积累量 Dry matter accumulation (g/plant) 干物质分配比例 Dry matter distribution ratio (%)
茎Stem 叶Leaf 荚果Pod 茎Stem 叶Leaf 荚果Pod
P0 SDSP 17.11d 9.83d 21.78d 35.12b 20.18c 44.70b
WDSP 12.17f 8.19e 11.79g 37.87a 25.47a 36.67d
SSP 18.41c 10.31d 25.70c 33.84c 18.94e 47.22a
SDIP 14.28e 9.21d 17.51f 34.83c 22.46b 41.28c
WDIP 10.74g 7.22f 11.46g 36.50b 24.54a 38.95d
SIP 17.43d 12.15c 22.86d 33.88c 21.68b 44.44b
P180 SDSP 22.49b 15.13b 31.18b 32.69c 21.99b 45.32b
WDSP 15.14e 9.96d 14.02g 38.70a 25.46a 35.85e
SSP 24.68a 16.10a 37.14a 31.67d 20.66c 47.67a
SDIP 17.36d 11.92c 19.85e 35.33b 24.26a 40.40d
WDIP 12.95f 8.30e 12.53g 38.34a 24.57a 37.09d
SIP 18.95c 12.83c 36.32c 32.61c 22.08b 45.31b

Table 3

Effects of single-seed sowing and phosphorous application on dry matter transfer and contribution rate of intercropping peanut"

P水平
P level
种植模式
Plant pattern
转移量
Dry matter transfer (g/plant)
转移率
Dry matter transfer ratio (%)
贡献率
Contribution rate to seed (%)
茎Stem 叶Leaf 茎Stem 叶Leaf 茎Stem 叶Leaf 茎+叶Stem+Leaf
P0 SDSP 0.55e 2.97ab 2.94g 21.51b 2.64g 14.29c 16.93e
WDSP 0.24f 0.22e 1.91h 2.62h 2.01g 1.87h 3.87h
SSP 1.54c 3.77a 7.01e 22.76b 6.63f 16.27b 22.90c
SDIP 1.62c 2.55b 9.02d 21.70b 9.22d 14.57c 23.79c
WDIP 1.06d 1.25c 8.80d 15.30d 9.20d 10.91d 20.11d
SIP 2.37b 4.11a 11.41c 25.27a 10.86c 18.80a 29.65a
P180 SDSP 2.36b 1.48c 9.88d 10.14f 7.56e 4.75g 12.31f
WDSP 0.99d 0.70d 5.61f 7.20g 6.58f 4.63g 11.21g
SSP 4.13a 2.57b 14.34b 13.78e 11.13c 6.93f 18.05e
SDIP 2.89b 1.70c 13.59b 15.16d 14.54b 8.57e 23.12c
WDIP 1.15d 0.31e 7.13e 3.67h 9.16d 2.43h 11.60fg
SIP 4.02a 2.69b 17.50a 17.33c 15.87a 10.62d 26.48b

Table 4

Effects of peanut single-seed sowing and phosphorous application on yield composition and LERP of intercropping peanut"

年份
Year
P水平
P level
种植模式
Cropping
system
单株果数
Number of pods per plant
百果重
100-pods weight
(g)
株数
Number of plant
(×105/hm2)
产量
Yield
(kg·hm-2)
偏土地当量比
LERP
2021 P0 DSP 20.5d (23.2/17.8) 96.6d (119.1/74.0) 2.64a (1.42+1.22) 3886d (2500+1386)
SSP 31.0b 123.1b 1.72c 4301c
DIP 13.2f (14.8/11.5) 75.0f (76.1/73.9) 1.54b (0.82+0.72) 1267h (711+556) 0.327
SIP 21.3d 82.2e 1.03d 1506g 0.350
P180 DSP 24.4c (26.7/22.0) 115.6c (119.7/111.6) 2.66a (1.43+1.23) 5172b (3153+2019)
SSP 35.2a 134.9a 1.73c 5514a
DIP 15.8e (18.3/13.3) 80.4g (80.2/80.7) 1.55b (0.83+0.73) 2070f (1210+860) 0.400
SIP 25.5c 94.5d 1.03d 2460e 0.446
2022 P0 DSP 19.3f (22.2/16.5) 123.1d (125.6/120.6) 2.68a (1.43+1.25) 5631d (3120+2511)
SSP 38.7c 128.5c 1.76c 7131b
DIP 14.7g (17.3/12.0) 143.6b (146.4/140.8) 1.57b (0.84+0.73) 2915h (1746+1169) 0.517
SIP 28.3d 153.0a 1.04d 3828f 0.536
P180 DSP 24.4e (27.0/21.7) 120.2d (121.9/118.5) 2.78a (1.47+1.31) 6531c (3521+3010)
SSP 47.8a 127.2c 1.82c 8391a
DIP 18.4f (21.8/15.0) 128.7c (132.5/124.8) 1.67b (0.88+0.79) 3455g (2018+1437) 0.528
SIP 45.3b 153.6a 1.09d 4600e 0.548
P水平P level 165.10**
种植模式Cropping system 1588.03**
P水平×种植模式P level×Cropping system 14.77**
年份×P水平×种植模式Year×P level×Cropping system 0.229NS
[1]
ZHAO X H, DONG Q Q, HAN Y, ZHANG K Z, SHI X L, YANG X, YUAN Y, ZHOU D Y, WANG K, WANG X G, JIANG C J, LIU X B, ZHANG H, ZHANG Z M, YU H Q. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity. BMC Microbiology, 2022, 22: 14.

doi: 10.1186/s12866-021-02425-6 pmid: 34996375
[2]
焦念元, 宁堂原, 赵春, 王芸, 史忠强, 侯连涛, 付国占, 江晓东, 李增嘉. 玉米花生间作复合体系光合特性的研究. 作物学报, 2006, 32(6): 917-923.
JIAO N Y, NING T Y, ZHAO C, WANG Y, SHI Z Q, HOU L T, FU G Z, JIANG X D, LI Z J. Characters of photosynthesis in intercropping system of maize and peanut. Acta Agronomica Sinica, 2006, 32(6): 917-923. (in Chinese)
[3]
焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013, 37(11): 1010-1017.

doi: 10.3724/SP.J.1258.2013.00104
JIAO N Y, YANG M K, NING T Y, YIN F, XU G W, FU G Z, LI Y J. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chinese Journal of Plant Ecology, 2013, 37(11): 1010-1017. (in Chinese)

doi: 10.3724/SP.J.1258.2013.00104
[4]
WANG Q, SUN Z X, BAI W, ZHANG D S, ZHANG Y, WANG R N, VAN DER WERF W, EVERS J B, STOMPH T J, GUO J P, ZHANG L Z. Light interception and use efficiency differ with maize plant density in maize-peanut intercropping. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 432-446.
[5]
ZHANG D S, DU G J, SUN Z X, BAI W, WANG Q, FENG L S, ZHENG J M, ZHANG Z, LIU Y, YANG S, YANG N, FENG C, CAI Q, EVERS J B, VAN DER WERF W, ZHANG L Z. Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate. European Journal of Agronomy, 2018, 94: 1-11.

doi: 10.1016/j.eja.2018.01.001
[6]
唐秀梅, 黄志鹏, 吴海宁, 刘菁, 蒋菁, 唐荣华. 玉米/花生间作条件下土壤环境因子的相关性和主成分分析. 生态环境学报, 2020, 29(2): 223-230.

doi: 10.16258/j.cnki.1674-5906.2020.02.002
TANG X M, HUANG Z P, WU H N, LIU J, JIANG J, TANG R H. Correlation and principal component analysis of the soil environmental factors in maize/peanut intercropping conditions. Ecology and Environmental Sciences, 2020, 29(2): 223-230. (in Chinese)
[7]
REN J H, ZHANG L Z, DUAN Y, ZHANG J, EVERS J B, ZHANG Y, SU Z C, VAN DER WERF W. Intercropping potato (Solanum tuberosum L.) with hairy vetch (Vicia villosa) increases water use efficiency in dry conditions. Field Crops Research, 2019, 240: 168-176.

doi: 10.1016/j.fcr.2018.12.002
[8]
HAGE-AHMED K, KRAMMER J, STEINKELLNER S. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato. Mycorrhiza, 2013, 23(7): 543-550.

doi: 10.1007/s00572-013-0495-x
[9]
ZHANG Y, DUAN Y, NIE J Y, YANG J, REN J H, VAN DER WERF W, EVERS J B, ZHANG J, SU Z C, ZHANG L Z. A lack of complementarity for water acquisition limits yield advantage of oats/vetch intercropping in a semi-arid condition. Agricultural Water Management, 2019, 225: 105778.

doi: 10.1016/j.agwat.2019.105778
[10]
王飞, 刘领, 武岩岩, 李雪, 孙增光, 尹飞, 焦念元, 付国占. 玉米花生间作改善花生铁营养提高其光合特性的机理. 植物营养与肥料学报, 2020, 26(5): 901-913.
WANG F, LIU L, WU Y Y, LI X, SUN Z G, YIN F, JIAO N Y, FU G Z. Mechanism of maize intercropping peanut improving iron nutrition to increase photosynthetic performance of peanut. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 901-913. (in Chinese)
[11]
JIAO N Y, WANG F, MA C, ZHANG F S, JENSEN E S. Interspecific interactions of iron and nitrogen use in peanut (Arachis hypogaea L.)-maize (Zea mays L.) intercropping on a calcareous soil. European Journal of Agronomy, 2021, 128: 126303.

doi: 10.1016/j.eja.2021.126303
[12]
JIAO N Y, WANG J T, MA C, ZHANG C C, GUO D Y, ZHANG F S, JENSEN E S. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping. The Crop Journal, 2021, 9(6): 1460-1469.

doi: 10.1016/j.cj.2020.12.004
[13]
张佳蕾, 郭峰, 苗昊翠, 李利民, 杨莎, 耿耘, 孟静静, 李新国, 万书波. 单粒精播对高产花生株间竞争缓解效应研究. 花生学报, 2018, 47(2): 52-58.
ZHANG J L, GUO F, MIAO H C, LI L M, YANG S, GENG Y, MENG J J, LI X G, WAN S B. Study on relieving inter-plant competition by single seed sowing of high yield peanut. Journal of Peanut Science, 2018, 47(2): 52-58. (in Chinese)
[14]
LIANG X Y, GUO F, FENG Y, ZHANG J L, YANG S, MENG J J, LI X G, WAN S B. Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of Arachis hypogaea. Journal of Integrative Agriculture, 2020, 19(4): 1019-1032.

doi: 10.1016/S2095-3119(19)62712-7
[15]
梁晓艳, 郭峰, 张佳蕾, 孟静静, 李林, 万书波, 李新国. 单粒精播对花生冠层微环境、光合特性及产量的影响. 应用生态学报, 2015, 26(12): 3700-3706.
LIANG X Y, GUO F, ZHANG J L, MENG J J, LI L, WAN S B, LI X G. Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca). Chinese Journal of Applied Ecology, 2015, 26(12): 3700-3706. (in Chinese)
[16]
CHEN T, ZHANG J, WANG X, ZENG R, CHEN Y, ZHANG H, WAN S, ZHANG L. Monoseeding increases peanut (Arachis hypogaea L.) yield by regulating shade-avoidance responses and population density. Plants, 2021, 10(11): 2405.

doi: 10.3390/plants10112405
[17]
YANG S, ZHANG J, GENG Y, TANG Z, WANG J, GUO F, MENG J, WANG Q, WAN S, LI X. Transcriptome analysis reveals the mechanism of improving erect-plant-type peanut yield by single- seeding precision sowing. PeerJ, 2021, 9: e10616.

doi: 10.7717/peerj.10616
[18]
万书波, 张佳蕾, 张智猛. 花生种植技术的重大变革——单粒精播. 中国油料作物学报, 2020, 42(6): 927-933.
WAN S B, ZHANG J L, ZHANG Z M. Great change of peanut planting technology: Single seed sowing. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 927-933. (in Chinese)

doi: 10.19802/j.issn.1007-9084.2020208
[19]
ADLER P B, SMULL D, BEARD K H, CHOI R T, FURNISS T, KULMATISKI A, MEINERS J M, TREDENNICK A T, VEBLEN K E. Competition and coexistence in plant communities: Intraspecific competition is stronger than interspecific competition. Ecology Letters, 2018, 21(9): 1319-1329.

doi: 10.1111/ele.13098 pmid: 29938882
[20]
崔党群. Logistic曲线方程的解析与拟合优度测验. 数理统计与管理, 2005, 24(1): 112-115.
CUI D Q. Analysis and making good fitting degree test for Logistic curve regression equation. Mathematical Statistics and Management, 2005, 24(1): 112-115. (in Chinese)
[21]
GHOSH P K. Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Research, 2004, 88(2/3): 227-237.

doi: 10.1016/j.fcr.2004.01.015
[22]
赵建华, 孙建好, 李伟绮. 玉米播期对大豆/玉米间作产量及种间竞争力的影响. 中国生态农业学报, 2018, 26(11): 1634-1642.
ZHAO J H, SUN J H, LI W Q. Effect of maize sowing date on yield and interspecific competition in soybean/maize intercropping system. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1634-1642. (in Chinese)
[23]
WU K X, FULLEN M A, AN T X, FAN Z W, ZHOU F, XUE G F, WU B Z. Above- and below-ground interspecific interaction in intercropped maize and potato: A field study using the ‘target’ technique. Field Crops Research, 2012, 139: 63-70.

doi: 10.1016/j.fcr.2012.10.002
[24]
KOKKORIS G D, TROUMBIS A Y, LAWTON J H. Patterns of species interaction strength in assembled theoretical competition communities. Ecology Letters, 1999, 2: 70-74.

doi: 10.1046/j.1461-0248.1999.22058.x
[25]
REN Y, ZHANG L, YAN M, ZHANG Y, CHEN Y, PALTA J A, ZHANG S. Effect of sowing proportion on above- and below-ground competition in maize-soybean intercrops. Scientific Reports, 2021, 11(1): 15760.

doi: 10.1038/s41598-021-95242-w pmid: 34344978
[26]
CALLAWAY R M, WALKER L R. Competition and facilitation: A synthetic approach to interactions in plant communities. Ecology, 1997, 78(7): 1958-1965.

doi: 10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2
[27]
赵建华, 孙建好, 陈亮之. 三种豆科作物与玉米间作对玉米生产力和种间竞争的影响. 草业学报, 2020, 29(1): 86-94.

doi: 10.11686/cyxb2019119
ZHAO J H, SUN J H, CHEN L Z. Productivity and interspecific competition of maize intercropped with faba bean, soybean or pea. Acta Prataculturae Sinica, 2020, 29(1): 86-94. (in Chinese)
[28]
焦念元, 汪江涛, 尹飞, 李亚辉, 付国占, 李友军. 化学调控与施磷肥对玉米花生间作光合物质积累和产量的影响. 江苏农业科学, 2016, 44(4): 99-104.
JIAO N Y, WANG J T, YIN F, LI Y H, FU G Z, LI Y J. Effects of chemical regulation and phosphorus fertilization on photosynthetic material accumulation and yield of intercropped maize and peanut. Jiangsu Agricultural Sciences, 2016, 44(4): 99-104. (in Chinese)
[29]
ROBAKOWSKI P, BIELINIS E, SENDALL K. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy. Journal of Plant Research, 2018, 131(3): 505-523.

doi: 10.1007/s10265-018-1009-x
[30]
GAO L, XU H, BI H, XI W, BAO B, WANG X, BI C, CHANG Y. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China. PLoS ONE, 2013, 8(7): e70739.

doi: 10.1371/journal.pone.0070739
[31]
程彬, 刘卫国, 王莉, 许梅, 覃思思, 卢俊吉, 高阳, 李淑贤, RAZA A, 张熠, AHMAD I, 敬树忠, 刘然金, 杨文钰. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响. 中国农业科学, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021.19.005.
CHENG B, LIU W G, WANG L, XU M, QIN S S, LU J J, GAO Y, LI S X, RAZA A, ZHANG Y, AHMAD I, JING S Z, LIU R J, YANG W Y. Effects of planting density on photosynthetic characteristics, yield and stem lodging resistance of soybean in maize-soybean strip intercropping system. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021.19.005. (in Chinese)
[32]
ZHANG J L, GENG Y, GUO F, LI X G, WAN S B. Research progress on the mechanism of improving peanut yield by single-seed precision sowing. Journal of Integrative Agriculture, 2020, 19(8): 1919-1927.

doi: 10.1016/S2095-3119(19)62763-2
[1] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[2] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[3] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[4] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[5] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[6] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[7] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[8] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[9] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[10] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[11] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[12] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[13] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[14] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[15] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!