Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (8): 1515-1530.doi: 10.3864/j.issn.0578-1752.2023.08.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield

LIU MengJie1,2(), LIANG Fei1,3(), LI QuanSheng1, TIAN YuXin1,4, WANG GuoDong1, JIA HongTao2()   

  1. 1 Institute of Farmland Water Conservancy and Soil-Fertilizer, Xinjiang Academy of Agricultural Reclamation Science, Shihezi 832000, Xinjiang
    2 College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052
    3 College of Biology and Geography Sciences, Yili Normal University, Yili 835000, Xinjiang
    4 College of Grassland, Xinjiang Agricultural University, Urumqi 830052
  • Received:2022-03-19 Accepted:2022-06-02 Online:2023-04-16 Published:2023-04-23

Abstract:

【Objective】The aim of this study was to investigate the effects of drip irrigation and trickle furrow irrigation on maize growth, yield and water use efficiency. 【Method】 Taking Zhengdan 958 as the research object, a field experiment was conducted from 2015 to 2021. The soil water content of 0-50 cm under narrow row, root zone and wide row was measured by a tubular moisture meter to study the effects of drip irrigation and trickle furrow irrigation under film on soil water distribution and its effects on maize plant height, leaf area index, chlorophyll content, biomass, yield and water use efficiency.【Result】Drip irrigation under mulch gave priority to supplement soil moisture in narrow row and root zone, while trickle furrow irrigation gave priority to supplement surface moisture in wide row. The water consumption of maize was mainly concentrated in 0-30 cm soil layer, and the soil water content in narrow row and 0-30 cm root zone of drip irrigation under mulch was higher than that of trickle furrow irrigation; with the increase of depth, the effect of irrigation on soil water content decreased, and the 40-50 cm water dynamics was less affected by irrigation methods. Drip irrigation under mulch could significantly promote the growth of maize at flowering and maturation stages, and increase leaf area index compared with trickle furrow irrigation. Compared with trickle irrigation, the plant height and leaf area index of drip irrigation under mulch increased by 4.3% and 8.3% at flowering stage, and increased by 4.9% and 15.1% at maturation stage, respectively. The total biomass of maize at flowering stage and maturation stage was drip irrigation under mulch>trickle furrow irrigation treatment, with an increase of 12.2% at flowering stage, and the maturation stage increased by 11.5%. The amount of dry matter transfer, the rate of dry matter transfer and the contribution rate of dry matter transfer of maize under drip irrigation were significantly higher than those under trickle irrigation, with increasing by 17.8%, 3.8% and 3.5% respectively. Drip irrigation under mulch significantly increased maize yield and irrigation water utilization efficiency, with an average yield increase of 14.4%, and irrigation water utilization efficiency increased by 14.6%.【Conclusion】Under the condition of equal irrigation volume, the drip irrigation under mulch could increase the water content in maize root zone, promote the growth of maize, facilitate the accumulation and transportation of dry matter of maize, improve the yield, and achieve water saving and efficiency increasing. Compared with trickle furrow irrigation, the average yield increased by 2 131.68 kg·hm-2, and the irrigation water use efficiency increased by 8.8%-24.1%. Therefore, the drip irrigation under plastic mulch was a high-yield and efficient irrigation method for maize planting in Northern Xinjiang.

Key words: drip irrigation under mulch, trickle furrow irrigation, maize, water use efficiency, yield, growth index, Xinjiang

Fig. 1

Changes in temperature and precipitation during the maize growing period from 2015 to 2021"

Table 1

Fertilization and irrigation"

处理
Treatment
出苗期 Seedling stage 拔节期 Jointing stage 小喇叭口期 Small bell- mouth stage 大喇叭口期 Big bell- mouth stage 抽雄期 Heading stage 开花期 Flowering stage 吐丝期
Silking stage
籽粒建成期
Grain formation stage
乳熟期
Milk-ripe stage
总计
Total
MDI 灌水量
Irrigation quantity
(m3·hm-2)
163.6 600.0 600.0 600.0 600.0 600.0 600.0 563.6 472.8 4800.0
尿素
Urea (kg·hm-2)
0.0 81.8 81.8 90.9 81.8 81.8 72.7 54.5 0.0 545.3
磷酸一铵
Monoammonium
phosphate (kg·hm-2)
36.4 36.4 45.5 45.5 45.5 27.3 18.2 18.2 0.0 273.0
硫酸钾
Potassium sulphate (kg·hm-2)
0.0 18.2 27.3 27.3 36.4 22.7 18.2 13.6 0.0 163.7
TFI 灌水量
Irrigation quantity
(m3·hm-2)
163.6 1200.0 1200.0 1200.0 1036.4 4800.0
尿素Urea
(kg·hm-2)
0.0 163.6 172.7 154.5 54.5 545.3
磷酸一铵
Monoammonium phosphate (kg·hm-2)
36.4 81.8 90.9 45.5 18.4 273.0
硫酸钾
Potassium sulphate (kg·hm-2)
0.0 45.5 63.6 40.9 13.7 163.7

Fig. 2

Schematic diagram of cultivation mode of drip irrigation and trickle furrow irrigation under maize film ● in the figure is the position of moisture meter, which is in the narrow row, root zone and wide row respectively; In addition, the drip irrigation belt in trickle ditch irrigation treatment is only used in seedling emergence water and removed after seedling emergence"

Fig. 3

Dynamic diagram of soil moisture at different sites of drip irrigation under film in 2021"

Fig. 4

Dynamic diagram of soil moisture at different locations of trickle furrow irrigation in 2021"

Table 2

Water distribution of drip irrigation and trickle furrow irrigation under 0-50 cm (%)"

深度
Depth (cm)
位点
Site
处理
Treatment
大喇叭口期
Great trumpet stage
开花期
Flowering stage
籽粒建成期
Grain completion period
成熟期
Maturation stage
0-10 N MDI 6.73±3.54a 9.76±3.16a 10.67±4.89a 9.42±3.96a
TFI 5.82±2.60a 6.01±2.95b 7.43±3.12b 9.72±3.39a
R MDI 8.64±4.12a 10.52±2.75a 10.51±2.33a 10.72±3.35a
TFI 7.13±3.76a 7.20±3.36b 8.46±2.53b 8.96±2.41b
W MDI 6.78±3.10a 8.11±3.01a 8.82±4.43a 10.25±4.80a
TFI 6.94±3.95a 7.62±2.68a 8.34±4.01a 9.25±4.30a
10-20 N MDI 12.11±4.59a 13.42±5.60a 14.95±6.25a 16.53±5.18a
TFI 9.42±2.92b 12.18±2.11a 14.71±3.15a 13.91±3.60b
R MDI 14.79±4.49a 15.53±4.87a 15.53±2.67a 17.96±4.30a
TFI 13.71±2.28a 14.59±1.73a 15.22±3.22a 17.64±4.78a
W MDI 9.78±4.32a 11.65±4.29b 11.92±5.03b 13.24±3.30b
TFI 13.94±6.74b 14.43±4.84a 16.88±3.89a 19.40±1.83a
20-30 N MDI 13.51±5.37a 16.48±5.92a 17.43±5.87a 18.64±4.01a
TFI 12.12±4.02a 16.12±2.72a 17.16±3.99a 16.72±4.60b
R MDI 14.29±2.29a 16.95±2.27a 17.52±2.47a 19.63±4.71a
TFI 14.79±2.54a 15.68±2.81a 16.52±4.47a 15.85±4.93b
W MDI 11.04±5.69b 13.40±6.23b 13.23±6.05b 14.44±4.89b
TFI 15.86±2.29a 16.98±4.56a 18.56±3.12a 20.64±1.74a
30-40 N MDI 16.82±6.25a 20.22±5.64a 21.20±4.12a 20.70±3.77a
TFI 15.41±5.59a 19.45±3.41a 19.50±4.17b 20.28±4.11a
R MDI 18.49±3.66a 19.79±5.04a 22.16±2.71a 21.48±4.98a
TFI 16.37±2.60b 20.11±3.45a 20.27±4.65b 21.72±4.38a
W MDI 14.70±5.62b 17.99±6.35b 18.13±5.85b 19.31±5.78b
TFI 18.43±2.73a 20.28±2.45a 21.83±3.28a 23.12±3.12a
40-50 N MDI 20.12±6.08a 22.70±5.30a 23.78±4.44a 24.28±3.98a
TFI 18.10±5.45b 21.89±4.16a 22.28±4.37b 22.31±4.56b
R MDI 20.49±3.45a 20.86±5.26a 23.21±4.13a 24.64±5.12a
TFI 19.31±5.61a 20.37±3.84a 21.87±4.37a 24.51±4.27a
W MDI 18.67±5.61a 21.43±6.13a 22.09±5.51a 23.41±3.88a
TFI 19.55±6.85a 22.02±4.14a 22.64±2.85a 24.25±2.88a

Fig. 5

Comparison of SPAD value between drip irrigation under mulch and trickle furrow irrigation at flowering stage of maize Different lowercase letters on the column chart indicate significant difference between treatments (P<0.05). The same below"

Fig. 6

Comparison of plant height between drip irrigation under mulch and trickle furrow irrigation at flowering and maturation stages of maize"

Fig. 7

Comparison of leaf area index between drip irrigation under mulch and trickle furrow irrigation at flowering and maturation stages of maize"

Fig. 8

Comparison of aboveground biomass between drip irrigation under mulch and trickle furrow irrigation at flowering stage of maize"

Fig. 9

Comparison of aboveground biomass between drip irrigation under mulch and trickle furrow irrigation at maturation stage of maize"

Table 3

Comparison of yield and yield’s component of maize between drip irrigation under mulch and trickle furrow irrigation"

年份
Year
处理
Treatment
穗粗
Ear diameter (mm)
穗行数(行)
Row number per ear
行粒数(粒)
Kernel number per row
千粒重
1000-kernel weight (g)
产量
Yield (kg·hm-2)
2015 TFI 47.22±1.34b 12.60±0.95a 29.50±3.09b 335.58±34.03b 14916.40±2026.18b
MDI 48.05±3.19a 12.80±0.98a 33.35±1.95a 393.92±21.86a 16515.66±2617.32a
2016 TFI 44.30±1.97a 13.65±1.00a 30.85±1.09a 337.29±17.84b 14288.22±1632.62b
MDI 44.00±1.61a 14.75±1.41a 33.30±1.14a 365.43±26.76a 16843.50±1634.13a
2017 TFI 46.51±1.78b 14.70±1.45a 34.05±1.84b 306.18±15.16b 15428.78±2809.12b
MDI 49.00±3.49a 15.50±1.68a 38.20±2.73a 326.75±27.56a 18225.88±1973.58a
2018 TFI 44.85±1.17b 13.60±0.33a 32.65±3.91b 305.20±18.91b 14041.35±1399.99b
MDI 46.85±2.73a 14.30±0.50a 36.45±2.25a 330.91±25.04a 15278.19±3218.16a
2019 TFI 45.50±0.43a 14.60±0.86a 33.05±2.83a 324.94±72.73b 15991.53±2714.84b
MDI 46.75±0.77a 14.30±0.69a 34.75±2.52a 346.35±31.95a 17397.55±3352.87a
2020 TFI 48.55±1.75a 14.40±0.50a 31.60±0.75a 356.14±33.57b 14587.73±1668.32b
MDI 49.55±1.54a 14.80±0.53a 31.40±0.21a 369.91±59.09a 18103.98±2863.82a
2021 TFI 43.42±1.36a 13.43±0.43a 29.75±2.69a 380.88±21.07a 14754.67±1369.82b
MDI 43.98±1.83a 13.78±0.13a 30.33±2.09a 384.35±19.05a 16565.66±1056.69a
平均
Mean
TFI 45.76a 13.85a 31.64a 335.17b 14858.38b
MDI 46.88a 14.32a 33.97a 359.66a 16990.06a

Table 4

Effects of drip irrigation under mulch and trickle furrow irrigation on dry matter accumulation and transfer in maize at flowering stage"

年份
Year
处理
Treatment
开花期干物质
Dry matter at flowering stage (kg·hm-2)
成熟期干物质
Dry matter at maturation stage (kg·hm-2)
干物质转移量
Dry matter transshipment (kg·hm-2)
干物质转移率
Dry matter transport rate (%)
对籽粒贡献率
Grain contribution
rate (%)
2015 TFI 18493.49a 27382.16a 5162.69a 40.08a 34.61a
MDI 19859.40a 30110.85a 5870.70a 43.76a 35.55a
2016 TFI 20213.96a 27909.20b 6580.82a 47.50a 42.89a
MDI 21811.50a 30948.75a 7224.32a 48.40a 46.06a
2017 TFI 20313.63a 28281.96b 7354.98a 53.43a 43.13a
MDI 21291.66a 31395.20a 7860.65a 54.61a 47.67a
2018 TFI 19459.31b 26063.78b 7263.27b 53.64b 51.73a
MDI 21476.24a 28190.16a 8335.34a 55.92a 54.56a
2019 TFI 17185.16b 27676.69b 4978.46b 42.82b 31.13a
MDI 19605.22a 30021.84a 6602.87a 51.17a 37.95a
2020 TFI 17173.31b 27439.78b 4270.48b 35.39a 29.27a
MDI 20855.56a 32706.41a 6352.09a 43.73a 35.09a
2021 TFI 19819.49b 26768.55b 7515.79b 58.41a 50.94a
MDI 22340.09a 30223.80a 8534.99a 60.10a 51.52a
平均 Mean TFI 18951.19b 27360.30b 6160.93b 47.32a 40.53a
MDI 21034.24a 30513.86a 7254.42a 51.10a 44.06a

Table 5

Comparison of irrigation water utilization efficiency between drip irrigation under mulch and trickle furrow irrigation for maize"

年份
Year
处理
Treatment
玉米生育期灌水量
Irrigation amount in maize growth period(m3·hm-2)
产量
Yield
(kg·hm-2)
灌溉水利用效率
Irrigation water utilization rate (kg·m-3)
2015 TFI 4800 14916.40b 2.83b
MDI 4800 16515.66a 3.13a
2016 TFI 4800 14288.22b 2.71b
MDI 4800 16843.50a 3.19a
2017 TFI 4800 15428.78b 2.92b
MDI 4800 18225.88a 3.45a
2018 TFI 4800 14041.35b 2.66a
MDI 4800 15278.19a 2.89a
2019 TFI 4800 15991.53b 3.03a
MDI 4800 17397.55a 3.29a
2020 TFI 4800 14587.73b 2.76b
MDI 4800 18103.98a 3.43a
2021 TFI 4800 14754.67b 2.79b
MDI 4800 16565.66a 3.14a
平均 Mean TFI 4800 14858.38b 2.81b
MDI 4800 16990.06a 3.22a
[1]
金巍, 刘双双, 张可, 孔伟. 农业生产效率对农业用水量的影响. 自然资源学报, 2018, 33(8): 1326-1339.

doi: 10.31497/zrzyxb.20170690
JIN W, LIU S S, ZHANG K, KONG W. Influence of agricultural production efficiency on agricultural water consumption. Journal of Natural Resources, 2018, 33(8): 1326-1339. (in Chinese)

doi: 10.31497/zrzyxb.20170690
[2]
国家统计局. 中国第三产业统计年鉴-2019. 北京: 中国统计出版社, 2020.
National Bureau of Statistics. China Statistical Yearbook of the Tertiary Industry-2019. Beijing: China Statistics Press, 2020. (in Chinese)
[3]
范兴科, 李援农. 渠灌区节水灌溉技术的筛选组装和集成. 水土保持研究, 2002, 9(2): 37-40, 96.
FAN X K, LI Y N. Sifting, combination and collection of the technology of water saving irrigation in canal irrigation region. Research of Soil and Water Conservation, 2002, 9(2): 37-40, 96. (in Chinese)
[4]
李毅, 王文焰, 王全九. 论膜下滴灌技术在干旱-半干旱地区节水抑盐灌溉中的应用. 灌溉排水, 2001, 20(2): 42-46.
LI Y, WANG W Y, WANG Q J. A Breakthrough thought for water saving and salinity control in arid and semi-arid area—under-film trickle irrigation. Irrigation and Drainage, 2001, 20(2): 42-46. (in Chinese)
[5]
WHITE S C R, STEVEN R. Identifying the potential to apply deficit irrigation strategies in cotton using large mobile irrigation machines. The 4th International Crop Science Congress. New Directions for a Diverse Planet, 26 Sep-1 Oct 2004, Brisbane, Australia.
[6]
李明思, 郑旭荣, 贾宏伟, 扬国跃. 棉花膜下滴灌灌溉制度试验研究. 中国农村水利水电, 2001(11): 13-15.
LI M S, ZHENG X R, JIA H W, YANG G Y. Experimental research on under-mulch drip irrigation regime for cotton. China Rural Water and Hydropower, 2001(11): 13-15. (in Chinese)
[7]
刘新永, 田长彦. 棉花膜下滴灌盐分动态及平衡研究. 水土保持学报, 2005, 19(6): 82-85.
LIU X Y, TIAN C Y. Study on dynamic and balance of salt for cotton under plastic mulch in South Xinjiang. Journal of Soil Water Conservation, 2005, 19(6): 82-85. (in Chinese)
[8]
张伟, 吕新, 李鲁华, 刘建国, 孙肇君, 张小伟, 杨忠平. 新疆棉田膜下滴灌盐分运移规律. 农业工程学报, 2008, 24(8): 15-19.
ZHANG W, X, LI L H, LIU J G, SUN Z J, ZHANG X W, YANG Z P. Salt transfer law for cotton field with drip irrigation under the plastic mulch in Xinjiang Region. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(8): 15-19. (in Chinese)
[9]
赵靓, 侯振安, 黄婷, 张扬, 柴颖, 毛家双. 新疆石河子地区玉米产量及氮素平衡的施氮量阈值研究. 植物营养与肥料学报, 2014, 20(4): 860-869.
ZHAO J, HOU Z A, HUANG T, ZHANG Y, CHAI Y, MAO J S. Study on the nitrogen rate threshhold of maize yield and nitrogen balance in Shihezi, Xinjiang. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 860-869. (in Chinese)
[10]
夏文豪, 刘涛, 唐诚, 王进, 褚贵新. 北疆滴灌玉米施氮量估算及减氮增铵效应. 干旱地区农业研究, 2017, 35(1): 79-84, 102.
XIA W H, LIU T, TANG C, WANG J, CHU G X. N recommendation and decreasing usage of nitrogen and enhanced ammonium for maize under drip irrigation condition. Agricultural Research in the Arid Areas, 2017, 35(1): 79-84, 102. (in Chinese)
[11]
刘洋, 栗岩峰, 李久生. 东北黑土区膜下滴灌施氮管理对玉米生长和产量的影响. 水利学报, 2014, 45(5): 529-536.
LIU Y, LI Y F, LI J S. Effects of nitrogen management on the growth and yield of mulched and drip-irrigated maize in Northeast Black Soil Regions. Journal of Hydraulic Engineering, 2014, 45(5): 529-536. (in Chinese)
[12]
曹玉军, 魏雯雯, 徐国安, 王晓慧, 王洪君, 刘春光, 边少锋, 刘慧涛, 王永军. 半干旱区不同地膜覆盖滴灌对土壤水、温变化及玉米生长的影响. 玉米科学, 2013, 21(1): 107-113.
CAO Y J, WEI W W, XU G A, WANG X H, WANG H J, LIU C G, BIAN S F, WANG Y J. Effects of different films on soil water, temperature and corn growth characteristics under drip-irrigation conditions in semi-arid region. Journal of Maize Sciences, 2013, 21(1): 107-113. (in Chinese)
[13]
张国强, 王克如, 肖春华, 谢瑞芝, 侯鹏, 李健, 徐文娟, 初振东, 刘广周, 刘朝巍, 李少昆. 滴灌量对新疆高产春玉米产量和水分利用效率的影响研究. 玉米科学, 2015, 23(4): 117-123.
ZHANG G Q, WANG K R, XIAO C H, XIE R Z, HOU P, LI J, XU W J, CHU Z D, LIU G Z, LIU C W, LI S K. Effect of drip irrigation on yield and water use efficiency of spring maize with high yield in Xinjiang. Journal of Maize Sciences, 2015, 23(4): 117-123. (in Chinese)
[14]
贾琼, 史海滨, 李瑞平, 冯亚阳, 王宁, 李经纬. 西辽河平原覆膜和浅埋对滴灌玉米生长的影响. 水土保持学报, 2021, 35(3): 296-303, 311.
JIA Q, SHI H B, LI R P, FENG Y Y, WANG N, LI J W. Effects of mulched and soil covered drip irrigation on growth of maize in West Liaohe plain. Journal of Soil and Water Conservation, 2021, 35(3): 296-303, 311. (in Chinese)
[15]
范雅君, 吕志远, 田德龙, 郭克贞, 徐冰, 李介钧. 河套灌区玉米膜下滴灌灌溉制度研究. 干旱地区农业研究, 2015, 33(1): 123-129.
FAN Y J, Z Y, TIAN D L, GUO K Z, XU B, LI J J. Irrigation regime for corn production with drip irrigation and plastic mulching in Hetao irrigation region. Agricultural Research in the Arid Areas, 2015, 33(1): 123-129. (in Chinese)
[16]
邹宇锋, 蔡焕杰, 张体彬, 王云霏, 徐家屯. 河套灌区不同灌溉方式春玉米耗水特性与经济效益分析. 农业机械学报, 2020, 51(9): 237-248.
ZOU Y F, CAI H J, ZHANG T B, WANG Y F, XU J T. Water use characteristics and profit analysis of spring maize production with different irrigation methods in Hetao irrigation district. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 237-248. (in Chinese)
[17]
贾国燏, 骆洪义, 褚屿, 林举梅, 王志远, 陈堂鑫, 徐震. 不同灌溉方式下水肥一体化对玉米养分吸收规律的影响. 节水灌溉, 2022(2): 40-47.
JIA G Y, LUO H Y, CHU Y, LIN J M, WANG Z Y, CHEN T X, XU Z. Effects of water and fertilizer integration on nutrient absorption of maize under different irrigation modes. Water Saving Irrigation, 2022(2): 40-47. (in Chinese)
[18]
SURYAVANSHI P, BUTTAR G S. Influence of different irrigation methods and schedules on water productivity of wheat. Journal of Soil and Water Conservation, 2020, 19(4): 398-403.

doi: 10.5958/2455-7145.2020.00053.3
[19]
ZHANG T B, ZOU Y F, KISEKKA I, BISWAS A, CAI H J. Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area. Agricultural Water Management, 2021, 243: 106497.

doi: 10.1016/j.agwat.2020.106497
[20]
曹言, 王杰, 张雷, 宋兆鹏, 李建查, 戚娜. 智墒在云南省农业用水效率监测中的应用研究. 节水灌溉, 2018(9): 78-82, 86.
CAO Y, WANG J, ZHANG L, SONG Z P, LI J C, QI N. Application of cloud intelligent soil moisture in agricultural water efficiency monitoring in Yunnan Province. Water Saving Irrigation, 2018(9): 78-82, 86. (in Chinese)
[21]
COX M C, QUALSET C O, RAINS D W. Genetic variation for nitrogen assimilation and translocation in wheat. II. nitrogen assimilation in relation to grain yield and Protein1. Crop Science, 1985, 25(3): 435-440.

doi: 10.2135/cropsci1985.0011183X002500030003x
[22]
魏欢欢, 王仕稳, 杨文稼, 孙海妮, 殷俐娜, 邓西平. 免耕及深松耕对黄土高原地区春玉米和冬小麦产量及水分利用效率影响的整合分析. 中国农业科学, 2017, 50(3): 461-473. doi: 10.3864/j.issn.0578-1752.2017.03.005.

doi: 10.3864/j.issn.0578-1752.2017.03.005
WEI H H, WANG S W, YANG W J, SUN H N, YIN L N, DENG X P. Meta analysis on impact of no-tillage and subsoiling tillage on spring maize and winter wheat yield and water use efficiency on the Loess Plateau. Scientia Agricultura Sinica, 2017, 50(3): 461-473. doi: 10.3864/j.issn.0578-1752.2017.03.005. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.03.005
[23]
梁飞, 曾胜和, 王国栋, 郭斌, 陈云, 张磊. 滴头压力对玉米生长发育及产量的影响. 西北农业学报, 2016, 25(2): 215-219.
LIANG F, ZENG S H, WANG G D, GUO B, CHEN Y, ZHANG L. Effect of emitter pressure on growth and yield in maize. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(2): 215-219. (in Chinese)
[24]
高金花, 周庆瑜, 柏宇, 王莉, 廉冀宁. DSSAT模型在玉米膜下滴灌模式下的应用研究. 水利水电技术, 2016, 47(4): 145-149.
GAO J H, ZHOU Q Y, BAI Y, WANG L, LIAN J N. Study on application of DSSAT model to maize under mulching drip-irrigation. Water Resources and Hydropower Engineering, 2016, 47(4): 145-149. (in Chinese)
[25]
宁莎莎, 徐利岗, 张林, 王怀博. 限制入渗域下滴灌土壤水分时空变异特征研究. 节水灌溉, 2021(3): 51-57.
NING S S, XU L G, ZHANG L, WANG H B. Study of spatiotemporal variability characteristics of soil moisture under restricted infiltration area condition. Water Saving Irrigation, 2021(3): 51-57. (in Chinese)
[26]
侯刚. 膜下滴灌棉田土壤水分动态化研究. 安徽农业科学, 2007, 35(26): 8287-8289.
HOU G. Dynamic study on soil moisture in differents soil texture of cotton field using drip irrigation under film. Journal of Anhui Agricultural Sciences, 2007, 35(26): 8287-8289. (in Chinese)
[27]
何平如, 张富仓, 侯翔皓, 刘蓝骄, 孟晓琛, 张晨阳, 成厚亮. 土壤水分调控对南疆滴灌棉花产量及土壤水盐分布的影响. 水土保持研究, 2020, 27(2): 84-92.
HE P R, ZHANG F C, HOU X H, LIU L J, MENG X C, ZHANG C Y, CHENG H L. Effects of soil water regulation on cotton yield and soil water-salt distribution under drip irrigation in southern Xinjiang. Research of Soil and Water Conservation, 2020, 27(2): 84-92. (in Chinese)
[28]
姚名泽. 南疆机采棉膜下滴灌土壤水分运移特征、耗水规律及产量品质研究[D]. 兰州: 甘肃农业大学, 2013.
YAO M Z. Research on water-salt migration’s characterization, water consuming law, yield and quality of machine-picking cotton under drip irrigation with film mulch in South Xinjiang[D]. Lanzhou: Gansu Agricultural University, 2013. (in Chinese)
[29]
王增丽, 董平国, 樊晓康, 王天任. 膜下滴灌不同灌溉定额对土壤水盐分布和春玉米产量的影响. 中国农业科学, 2016, 49(12): 2343-2352. doi: 10.3864/j.issn.0578-1752.2016.12.010.

doi: 10.3864/j.issn.0578-1752.2016.12.010
WANG Z L, DONG P G, FAN X K, WANG T R. Effects of irrigation quota on distribution of soil water-salt and yield of spring maize with drip irrigation under mulch. Scientia Agricultura Sinica, 2016, 49(12): 2343-2352. doi: 10.3864/j.issn.0578-1752.2016.12.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.12.010
[30]
丁运韬, 程煜, 张体彬, 姬祥祥, 乔若楠, 冯浩. 利用HYDRUS-2D模拟膜下滴灌玉米农田深层土壤水分动态与根系吸水. 干旱地区农业研究, 2021, 39(3): 23-32.
DING Y T, CHENG Y, ZHANG T B, JI X X, QIAO R N, FENG H. Modeling of dynamics of deep soil water and root uptake of maize with mulched drip irrigations using HYDRUS-2D. Agricultural Research in the Arid Areas, 2021, 39(3): 23-32. (in Chinese)
[31]
熊若愚, 解嘉鑫, 谭雪明, 杨陶陶, 潘晓华, 曾勇军, 石庆华, 张俊, 才硕, 曾研华. 不同灌溉方式对南方优质食味晚籼稻产量及品质的影响. 中国农业科学, 2021, 54(7): 1512-1524. doi: 10.3864/j.issn.0578-1752.2021.07.015.

doi: 10.3864/j.issn.0578-1752.2021.07.015
XIONG R Y, XIE J X, TAN X M, YANG T T, PAN X H, ZENG Y J, SHI Q H, ZHANG J, CAI S, ZENG Y H. Effects of irrigation management on grain yield and quality of high-quality eating late-season indica rice in South China. Scientia Agricultura Sinica, 2021, 54(7): 1512-1524. doi: 10.3864/j.issn.0578-1752.2021.07.015. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.07.015
[32]
王传娟, 张彦群, 王建东, 许迪, 龚时宏, 吴忠东. 东北典型区覆膜滴灌春玉米节水增产的光合生理响应. 农业工程学报, 2019, 35(24): 90-97.
WANG C J, ZHANG Y Q, WANG J D, XU D, GONG S H, WU Z D. Photosynthetic response of water-saving and yield-increasing of mulched drip irrigation for spring maize (Zea mays L.) in northeast China. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 90-97. (in Chinese)
[33]
孙仕军, 杨金鑫, 万博, 谷健, 刘泳圻, 赵旺, 尹光华. 不同滴灌方式对辽西半干旱区春玉米生长及产量的影响. 沈阳农业大学学报, 2021, 52(1): 32-39.
SUN S J, YANG J X, WAN B, GU J, LIU Y Q, ZHAO W, YIN G H. Effects of different drip irrigation methods on the growth and yield of spring maize in semi-arid areas of western Liaoning. Journal of Shenyang Agricultural University, 2021, 52(1): 32-39. (in Chinese)
[34]
向友珍, 张富仓, Mohamed A Rashad, 强生才, 邹海洋, Ahmed Ali Hassanain. 灌溉施肥对尼罗河三角洲玉米产量和水分利用率的影响. 农业机械学报, 2015, 46(10): 116-126.
XIANG Y Z, ZHANG F C, RASHAD M A, QIANG S C, ZOU H Y, HASSANAIN A A. Effects of different irrigation and fertilization strategies on yield and water use efficiency of maize in Nile delta. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 116-126. (in Chinese)
[35]
EL-HENDAWY S E, SCHMIDHALTER U. Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil. Agricultural Water Management, 2010, 97(3): 439-448.

doi: 10.1016/j.agwat.2009.11.002
[36]
魏子涵, 魏占民, 李春强, 边新洋, 李志红. 不同灌溉方式对玉米植株生长参数及产量的影响. 水土保持研究, 2017, 24(3): 183-187.
WEI Z H, WEI Z M, LI C Q, BIAN X Y, LI Z H. Effects of different irrigation methods on maize plant growth parameters and yield. Research of Soil and Water Conservation, 2017, 24(3): 183-187. (in Chinese)
[37]
牛文全, 吕望, 古君, 梁博惠, 郭丽丽, 官雅辉. 微润管埋深与间距对日光温室番茄土壤水盐运移的影响. 农业工程学报, 2017, 33(19): 131-140.
NIU W Q, W, GU J, LIANG B H, GUO L L, GUAN Y H. Effects of moistube depth and spacing on soil water and salt transports of tomato in solar greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 131-140. (in Chinese)
[38]
刘戈, 王凯, 刘延, 汪强. 不同灌溉模式对黄淮海平原区夏玉米生产性状及水分利用率的影响. 节水灌溉, 2021(4): 48-54.
LIU G, WANG K, LIU Y, WANG Q. The effects of different irrigation modes on yield traits and water use efficiency of summer maize in Huang-Huai-Hai plain. Water Saving Irrigation, 2021(4): 48-54. (in Chinese)
[39]
戚迎龙, 史海滨, 李瑞平, 赵举, 李彬, 李敏. 滴灌水肥一体化条件下覆膜对玉米生长及土壤水肥热的影响. 农业工程学报, 2019, 35(5): 99-110.
QI Y L, SHI H B, LI R P, ZHAO J, LI B, LI M. Effects of film mulching on maize growth and soil water, fertilizer and heat under fertigation of drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 99-110. (in Chinese)
[40]
姬景红, 李玉影, 刘双全, 佟玉欣. 覆膜滴灌对玉米光合特性、物质积累及水分利用效率的影响. 玉米科学, 2015, 23(1): 128-133.
JI J H, LI Y Y, LIU S Q, TONG Y X. Effect of drip irrigation under plastic film mulch on photosynthetic, dry matter accumulation and water use efficiency. Journal of Maize Sciences, 2015, 23(1): 128-133. (in Chinese)
[41]
杨恒山, 薛新伟, 张瑞富, 李金琴, 王宇飞, 邰继承, 刘晶. 灌溉方式对西辽河平原玉米产量及水分利用效率的影响. 农业工程学报, 2019, 35(21): 69-77.
YANG H S, XUE X W, ZHANG R F, LI J Q, WANG Y F, TAI J C, LIU J. Effects of irrigation methods on yield and water use efficiency of maize in the West Liaohe Plain. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21): 69-77. (in Chinese)
[42]
张彦群, 王建东, 龚时宏, 许迪, 隋娟, 吴忠东. 基于液流计估测蒸腾分析覆膜滴灌玉米节水增产机理. 农业工程学报, 2018, 34(21): 89-97.
ZHANG Y Q, WANG J D, GONG S H, XU D, SUI J, WU Z D. Analysis of water saving and yield increasing mechanism in maize field with drip irrigation under film mulching based on transpiration estimated by sap flow meter. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 89-97. (in Chinese)
[43]
王雯, 张雄. 榆林沙区不同灌溉方式对春玉米生长及产量的影响. 水土保持通报, 2015, 35(4): 213-217, 222.
WANG W, ZHANG X. Effects of different irrigation methods on growth and yield of spring maize in sandy area of Yulin city. Bulletin of Soil and Water Conservation, 2015, 35(4): 213-217, 222. (in Chinese)
[44]
TIAN Y X, LIANG F, LI Q S, WANG G D, ZENG S H. Effects of drip irrigation on root distribution and yield of maize in the milk stage. Water Resources and Hydropower Engineering, 2021, 52(12): 212-220.
[1] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[4] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[5] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[6] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[7] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[8] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[9] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[10] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[11] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[12] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[13] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[14] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[15] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!