Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4648-4659.doi: 10.3864/j.issn.0578-1752.2023.23.007

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effect of Different Strip Distances on Light Energy Utilization in Strip Intercropping Maize

WU Jing1(), CHEN Meng1, WANG ZhiHua1, YANG JiZhi1, LI YanLi2, WU YuShan1(), YANG WenYu1()   

  1. 1 College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130
    2 Education Station of Ziyang Agriculture and Rural Bureau, Ziyang 641399, Sichuan
  • Received:2023-04-30 Accepted:2023-07-10 Online:2023-12-04 Published:2023-12-04
  • Contact: WU YuShan, YANG WenYu

Abstract:

【Objective】The objective of this study is to investigate the effect of different strip distances on light energy utilization of maize in maize-soybean strip intercropping, when the single maize plant was grown in the same environment.【Method】This experiment was conducted in 2021-2022 with traditional intercropping (1M1S, 2M1S) and maize-soybean strip intercropping (2M2S, 2M3S, 2M4S) as research objects, five maize strip distance treatments at 1 m (1M1S, 1 row maize﹕1 row soybean), 1.2 m (2M1S, 2 rows maize﹕1 row soybean), 1.6 m (2M2S, 2 rows maize﹕2 rows soybean), 2 m (2M3S, 2 rows maize﹕3 rows soybean), 2.4 m (2M4S, 2 rows maize﹕4 rows soybean) were set, and two monocropping maize treatments were conducted as controls with a row spacing of 80 cm (M80) and 40 cm (M40), respectively. The effect of the difference of light environment on light energy interception and radiation use efficiency (RUE) of maize was analyzed.【Result】Compared to monocropping maize, strip intercropping improved the light transmission at the lower and middle part of the maize canopy, which significantly increased the leaf area and light energy utilization of maize, increased the accumulation of maize dry matter, maintained a higher net photosynthetic rate of maize leaves, and promoted the increase of yield. With the increasing distance between maize strip, the light transmittance in the lower and middle part of maize increased by 30.67%, 20.62%, 10.10% and 112.70%, 96.35% and 79.23% for the 2M2S, 2M3S and 2M4S treatments, respectively. Compared to the monocropping M80 and M40 treatments, 2M4S treatment showed the 44.72% and 53.54% lower light energy interception of maize per unit land area due to the least occupied planting area, respectively, while the RUE of 2M4S treatment was 1.14 times higher than that of M80 and 2.16 times higher than that of M40. The yield of strip intercropping 2M2S, 2M3S and 2M4S treatments increased by 4.97%, 10.47%, 13.43% and 50.05%, 57.08% and 61.31% compared to that of M80 and M40 treatments, respectively.【Conclusion】When the growth environment of each single maize is consistent, the increase of the distance between maize strip improved the light transmission in the lower and middle part of the maize canopy, increased the leaf area of maize, and maintained a higher net photosynthetic rate and photosynthetic product accumulation in the leaves, which leads to the increase of maize RUE. The 2M4S treatment showed the highest light transmission in the lower and middle part of the maize, and the highest net photosynthetic rate and dry matter accumulation in maize, resulting in the highest light energy utilization and yield.

Key words: strip intercropping, maize, strip distance, light energy utilization, yield

Fig. 1

Plan for the field configuration"

Table 1

Field configuration density, row distance and plant distance"

处理
Treatment
密度 Density (plants/667 m2) 行距 Row distance (cm) 株距 Plant distance (cm) 玉米-大豆间距
Maize and soybean distance (cm)
玉米Maize 大豆<BOLD>S</BOLD>oybean 玉米Maize 大豆<BOLD>S</BOLD>oybean 玉米Maize 大豆<BOLD>S</BOLD>oybean
1M1S 6667 13334 40 40 10 10 50
2M1S 8333 8333 40 40 10 10 60
2M2S 6667 13334 40 40 10 10 60
2M3S 5555 16666 40 40 10 10 60
2M4S 4761 19047 40 40 10 10 60
M40 16667 40 10
M80 8333 80 10

Fig. 2

Map of photosynthetically active radiation measurement sites"

Fig. 3

Spatial distribution of photosynthetically active radiation"

Fig. 4

Light transmittance and leaf angle of maize under different strip distances Values within a group followed by different lowercases indicate significantly different at P<0.05 level. The same as below"

Fig. 5

Intercepted PAR fraction of maize per unit area under different strip distances"

Fig. 6

Maize plant height and leaf area under different strip distances"

Fig. 7

Maize net photosynthetic rate under different strip distances"

Fig. 8

Maize dry matter under different strip distances"

Fig. 9

Maize RUE under different strip distances"

Table 2

Maize single yield and components of yield under different strip distances"

年份
Year
处理
Treatment
单株产量
Single yield (g)
穗粒数
Number of spikes
千粒重
1000-grain weight (g)
有效株数
Effective plants
2021 1M1S 106.61±3.16c 369.55±5.57a 284.22±2.10e 5778.07±203.68cd
2M1S 110.82±2.14bc 368.23±7.13a 300.95±0.66cd 7499.70±333.32b
2M2S 112.99±0.61ab 372.98±2.01a 302.96±3.39bc 5689.17±76.98d
2M3S 114.37±0.70ab 374.58±3.25a 306.64±0.70ab 4703.23±61.14de
2M4S 117.56±0.76a 381.57±2.47a 308.11±0.90a 4030.98±109.95e
M40 68.04±0.81d 228.41±2.74b 297.87±0.83d 12778.03±1387.81a
M80 111.70±2.60bc 369.35±8.58a 302.42±0.45bc 7277.49±254.58bc
2022 1M1S 85.91±0.74d 368.14±3.16bc 233.37±0.51bc 4916.91±83.34c
2M1S 93.38±2.72bc 390.71±11.37ab 239.01±3.19b 6527.52±573.68b
2M2S 95.51±2.66b 395.02±10.98ab 241.80±4.53b 4583.56±166.68cd
2M3S 104.09±2.42a 396.59±9.21ab 262.45±7.06a 4166.25±185.87cd
2M4S 106.78±2.88a 399.76±10.79a 267.12±0.09a 3293.03±240.52d
M40 71.26±2.67e 354.61±13.27c 200.96±7.93d 8333.50±1041.69a
M80 87.80±3.00cd 390.74±13.34ab 224.70±4.81c 6978.89±312.49b
[1]
杨文钰, 杨峰. 发展玉豆带状复合种植, 保障国家粮食安全. 中国农业科学, 2019, 52(21): 3748-3750. doi: 10.3864/j.issn.0578-1752.2019.21.003.
YANG W Y, YANG F. Developing maize-soybean strip intercropping for demand security of national food. Scientia Agricultura Sinica, 2019, 52(21): 3748-3750. doi: 10.3864/j.issn.0578-1752.2019.21.003. (in Chinese)
[2]
杨文钰. 玉米-大豆带状复合种植技术体系的创建与应用//第十九届中国作物学会学术年会论文摘要集, 2020: 64.
YANG W Y. Creation and application of maize-soybean ribbon composite planting technology system//Abstract Collection of the 19th Annual Meeting of the Chinese Crop Society, 2020: 64. (in Chinese)
[3]
罗华, 王杰, 宋勇, 欧小球, 赵志坚, 唐玲玲, 罗琳. 玉米-大豆间套作模式研究现状及其展望. 作物研究, 2020, 34(5): 502-506.
LUO H, WANG J, SONG Y, OU X Q, ZHAO Z J, TANG L L, LUO L. Research status and prospect of maize and soybean intercropping model. Crop Research, 2020, 34(5): 502-506. (in Chinese)
[4]
WANG R N, SUN Z X, ZHANG L Z, YANG N, FENG L S, BAI W, ZHANG D S, WANG Q, EVERS J B, LIU Y, REN J H, ZHANG Y, VAN DER WER F W. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Research, 2020, 253: 107819.

doi: 10.1016/j.fcr.2020.107819
[5]
WANG Z K, ZHAO X, WU P, HE J Q, CHEN X L, GAO Y, CAO X C. Radiation interception and utilization by wheat/maize strip intercropping systems. Agricultural and Forest Meteorology, 2015, 204: 58-66.

doi: 10.1016/j.agrformet.2015.02.004
[6]
WU Y S, HE D, WANG E L, LIU X, HUTH N, ZHAO Z G, GONG W Z, YANG F, WANG X C, YONG T W, LIU J, LIU W G, DU J B, PU T, LIU C Y, YU L, VAN DER WERF W, YANG W Y. Modelling soybean and maize growth and grain yield in strip intercropping systems with different row configurations. Field Crops Research, 2021, 265: 108122.

doi: 10.1016/j.fcr.2021.108122
[7]
RAZA M A, FENG L Y, VAN DER WERF W, GAO R C, KHALID M H, IQBAL N, HASSAN M J, MERAJ T A, NAEEM M, KHAN I, REHMAN S U, ANSAR M, AHMED M, YANG F, YANG W Y. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food and Energy Security, 2019, 8(3): e170.

doi: 10.1002/fes3.2019.8.issue-3
[8]
LIU X, RAHMAN T, SONG C, YANG F, SU B Y, CUI L, BU W Z, YANG W Y. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Research, 2018, 224: 91-101.

doi: 10.1016/j.fcr.2018.05.010
[9]
陈国鹏, 王小春, 蒲甜, 曾红, 陈诚, 彭霄, 丁国辉, 王锐, 杨文钰. 玉米-大豆带状套作中田间小气候与群体产量的关系. 浙江农业学报, 2016, 28(11): 1812-1821.

doi: 10.3969/j.issn.1004-1524.2016.11.02
CHEN G P, WANG X C, PU T, ZENG H, CHEN C, PENG X, DING G H, WANG R, YANG W Y. Relationship of field microclimate and population yield in maize-soybean relay strip inter-cropping system. Acta Agriculturae Zhejiangensis, 2016, 28(11): 1812-1821. (in Chinese)
[10]
YANG F, WANG X, LIAO D, LU F Z, GAO R C, LIU W G, YONG T W, WU X L, DU J B, LIU J, YANG W Y. Yield response to different planting geometries in maize-soybean relay strip intercropping systems. Agronomy Journal, 2015, 107(1): 296-304.

doi: 10.2134/agronj14.0263
[11]
GAO Y, DUAN A W, QIU X Q, SUN J S, ZHANG J P, LIU H, WANG H Z. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agronomy Journal, 2010, 102(4): 1149-1157.

doi: 10.2134/agronj2009.0409
[12]
KEATING B A, CARBERRY P S. Resource capture and use in intercropping: Solar radiation. Field Crops Research, 1993, 34: 273-301.

doi: 10.1016/0378-4290(93)90118-7
[13]
GOU F, VAN ITTERSUM M K, SIMON E, LEFFELAAR P, VAN DER PUTTEN P E, ZHANG L Z, VAN DER WERF W. Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE. European Journal of Agronomy, 2017, 84: 125-139.

doi: 10.1016/j.eja.2016.10.014
[14]
LI R, ZHANG Z X, TANG W, HUANG Y F, NAN Z B. Effect of row configuration on yield and radiation use of common vetch-oat strip intercropping on the Qinghai-Tibetan Plateau. European Journal of Agronomy, 2021, 128: 126290.

doi: 10.1016/j.eja.2021.126290
[15]
GONG X, FERDINAND U, DANG K, LI J, CHEN G H, LUO Y, YANG P, FENG B L. Boosting proso millet yield by altering canopy light distribution in proso millet/mung bean intercropping systems. The Crop Journal, 2020, 8(2): 365-377.

doi: 10.1016/j.cj.2019.09.009
[16]
ZHANG L, VAN DER WERF W, BASTIAANS L, ZHANG S, LI B, SPIERTZ J H. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research, 2008, 107(1): 29-42.

doi: 10.1016/j.fcr.2007.12.014
[17]
LUO C S, GUO Z P, XIAO J X, DONG K, DONG Y. Effects of applied ratio of nitrogen on the light environment in the canopy and growth, development and yield of wheat when intercropped. Frontiers in Plant Science, 2021, 12: 719850.

doi: 10.3389/fpls.2021.719850
[18]
WANG Q, SUN Z X, BAL W, ZHANG D S, ZHANG Y, WANG R N, VAN DER WERF W, EVERS J B, STOMPH T J, GUO J P, ZHANG L Z. Light interception and use efficiency differ with maize plant density in maize-peanut intercropping. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 432-446.
[19]
FAN Z, CHAI Q, YU A Z, ZHAO C, YIN W, HU F L, CHEN G D, CAO W D, COULTER J A. Water and radiation use in maize-pea intercropping is enhanced with increased plant density. Agronomy Journal, 2020, 112(1): 257-273.

doi: 10.1002/agj2.v112.1
[20]
LIU X, RAHMAN T, YANG F, SONG C, YONG T W, LIU J, ZHANG C Y, YANG W Y. PAR interception and utilization in different maize and soybean intercropping patterns. PLoS ONE, 2017, 12(1): e0169218.

doi: 10.1371/journal.pone.0169218
[21]
NWOKORO C C, KREYE C, NECPALOVA M, ADEYEMI O, BARTHEL M, PYPERS P, HAUSER S, SIX J. Cassava-maize intercropping systems in southern Nigeria: Radiation use efficiency, soil moisture dynamics, and yields of component crops. Field Crops Research, 2022, 283: 108550.

doi: 10.1016/j.fcr.2022.108550
[22]
TAO Z Q, WANG D M, MA S K, YANG Y S, ZHAO G C, CHANG X H. Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat. Journal of Integrative Agriculture, 2018, 17(3): 566-578.

doi: 10.1016/S2095-3119(17)61715-5
[23]
CHAPEPA B, MUDADA N, MAPURANGA R. The impact of plant density and spatial arrangement on light interception on cotton crop and seed cotton yield: An overview. Journal of Cotton Research, 2020, 3(3): 210-215.
[24]
LI Y C, DAI H Y, CHEN H. Effects of plant density on the aboveground dry matter and radiation-use efficiency of field corn. PLoS ONE, 2022, 17(11): e0277547.

doi: 10.1371/journal.pone.0277547
[25]
HARRISON M T, EVANS J R, DOVE H, MOORE A D. Recovery dynamics of rainfed winter wheat after livestock grazing 2. Light interception, radiation-use efficiency and dry-matter partitioning. Crop and Pasture Science, 2011, 62(11): 960-971.

doi: 10.1071/CP11235
[26]
王辉, 张晓祥, 王平喜, 张怀胜, 陈士林. 玉米产量构成要素的通径分析. 河南科技学院学报(自然科学版), 2022, 50(4): 17-22.
WANG H, ZHANG X X, WANG P X, ZHANG H S, CHEN S L. Path analysis of the constituent elements of maize yield. Journal of Henan Institute of Science and Technology (Natural Science Edition), 2022, 50(4): 17-22. (in Chinese)
[27]
李同梅. 行距对玉米干物质积累和产量的影响. 农业工程技术, 2022, 42(20): 20-21.
LI T M. Effect of row spacing on dry matter accumulation and yield of maize. Agricultural Engineering Technology, 2022, 42(20): 20-21. (in Chinese)
[1] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[2] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[3] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[4] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[5] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[6] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[7] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[8] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[9] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[10] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[11] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[12] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[13] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[14] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[15] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!