Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (9): 1646-1657.doi: 10.3864/j.issn.0578-1752.2023.09.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel

LU MengLi1,2(), ZHANG YaTing1, REN Hong2, WANG TuJin2, HAN YiMing2, LI WenYang1(), LI CongFeng2()   

  1. 1 College of Agriculture, Anhui University of Science and Technology, Fengyang 233100, Anhui
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2022-08-16 Accepted:2022-12-05 Online:2023-05-01 Published:2023-05-10

Abstract:

【Objective】Dense planting is one of the main measures to improve the high yield cultivation of maize, and density has a significant effect on the formation of maize starch. Therefore, this study analyzed the granule size distribution and viscosity parameters of different types of spring maize kernels under different increasing density conditions for improving the quality of maize starch. 【Method】 The field experiments were conducted at the Gongzhuling experimental base in Jilin province in 2019 and 2020. In the present experiments, eight main maize varieties in Northeast China, such as Xianyu 335, Zhengdan 958 and Nonghua 101, etc, were selected as experimental materials, and two planting densities of 67 500 and 97 500 plants/hm2 were set. The granule size distribution and viscosity parameters of starch in different treatments were measured by diffraction particle size analyzer and viscosity analyzer, and the relative quality of maize was measured by near-infrared analyzer, and the correlation analysis was conducted to clarify the effects of increasing density on the granule size distribution and viscosity parameters of endosperm starch in spring maize.【Result】The results showed that with the increase of planting density, maize grain yield and starch content increased significantly, and the increase of density significantly increased the volume, surface area and number percentage of large (>17 μm) starch granules, while the opposite trend was observed in the volume, surface area and number percentage of small (<3 μm) starch granules. It could be seen that with the increase of planting density, the volume and number percentage of small starch granules in maize kernels decreased significantly, and the volume and number percentage of large starch granules increased, indicating that increasing density was beneficial to the increase of the volume ratio of large starch granules, that is, increasing density promoted the accumulation of starch and increased the number of large starch granules and the formation of individual volume. At the same time, it was found that the peak viscosity, trough viscosity, breakdown and final viscosity of maize starch were significantly increased after increasing density. The results of correlation analysis showed that the starch content, yield and viscosity parameters of maize grain were negatively correlated with the volume percentage of small starch granules, significantly or extremely significantly negatively correlated with the volume percentage of medium (3-17 μm) starch granules, and significantly or extremely significantly positively correlated with large (>17 μm) starch granules.【Conclusion】Increasing planting density could increase maize grain yield, starch content and its viscosity parameters by mainly affecting the granule size distribution of endosperm starch, namely increasing the proportion of large starch granules and reducing the proportion of small and medium-sized ones.

Key words: maize, starch content, particle size distribution, viscosity parameter, plant density

Table 1

Effects of densification on yield and quality of spring maize"

年份
Year
密度
Density
品种
Cultivar
产量
Yield (kg·hm-2)
淀粉含量
Starch content (%)
蛋白质含量
Protein content (%)
淀粉产量
Starch yield (kg·hm-2)
蛋白质产量
Protein yield (kg·hm-2)
2019 ND XY335 14542.72±199.21 76.62±0.47 7.25±0.03 11142.80±183.67 1054.81±12.31
ZD958 13118.24±252.36 74.75±0.31 8.25±0.08 9806.83±228.92 1082.56±10.78
NH101 12310.72±991.79 75.37±0.55 8.07±0.08 9281.93±805.05 992.57±70.36
BX809 9151.25±514.72 73.11±0.68 7.71±0.29 6691.60±409.98 705.34±49.36
XY368 10798.55±990.03 75.08±0.58 8.41±0.19 8107.94±751.07 907.86±87.25
JNY719 12880.92±201.19 73.21±0.82 7.72±0.12 9431.59±250.26 994.26±6.58
XY696 11351.73±864.96 71.64±0.21 7.28±0.12 8132.19±623.33 827.38±74.70
FM985 11687.08±935.30 74.90±0.59 7.61±0.19 8757.11±769.27 888.20±48.00
AV 11980.15 74.34 7.79 8919.00 931.62
HD XY335 16505.05±1214.83 76.37±0.41 6.84±0.05 12603.01±888.80 1128.60±75.74
ZD958 14512.7±211.56 76.81±0.90 6.67±0.38 11145.57±71.16 967.95±40.39
NH101 12976.84±254.71 75.94±0.35 7.51±0.12 9853.62±151.81 974.32±34.21
BX809 14465.65±180.01 75.58±0.72 7.86±0.05 10933.00±201.55 1136.47±9.00
XY368 13127.79±1008.59 73.23±0.46 9.12±0.17 9610.28±682.54 1196.58±80.34
JNY719 14145.47±120.22 75.88±0.49 7.37±0.19 10733.80±68.74 1042.07±29.75
XY696 13829.01±687.88 75.20±0.22 7.79±0.20 10399.44±532.14 1076.25±43.30
FM985 14361.26±1179.53 73.96±0.50 7.69±0.07 10618.48±824.02 1104.13±86.25
AV 14240.47 75.37 7.61 10737.15 1078.30
2020 ND XY335 12083.23±241.20 73.85±0.77 7.57±0.18 8921.87±92.68 914.69±28.12
ZD958 12493.99±179.65 73.11±0.25 8.41±0.06 9134.23±162.10 1051.14±14.43
NH101 11832.48±956.84 72.61±0.18 8.84±0.03 8592.72±715.15 1045.53±83.48
BX809 12495.70±808.13 73.57±0.89 7.84±0.27 9189.16±499.37 980.67±95.75
XY368 11444.96±593.52 74.93±0.57 7.82±0.19 8575.19±445.57 894.33±29.57
JNY719 10743.34±536.40 73.88±0.63 7.86±0.21 7935.40±334.59 845.45±62.42
XY696 12122.54±662.37 73.31±0.62 7.42±0.27 8883.97±415.32 901.04±79.97
FM985 12066.79±550.79 72.01±0.55 7.90±0.11 8687.68±328.62 953.33±47.29
AV 11910.38 73.41 7.96 8740.03 948.27
HD XY335 15301.08±981.53 75.21±0.32 7.26±0.2 11508.48±763.42 1109.15±45.94
ZD958 14916.35±800.14 74.28±0.56 8.41±0.06 11080.43±615.97 1254.87±65.21
NH101 15297.94±423.61 74.64±0.18 7.88±0.24 11418.55±326.59 1206.14±54.87
BX809 14353.95±120.33 73.66±0.49 7.95±0.16 10573.34±67.02 1140.66±24.74
XY368 14996.18±209.28 74.76±0.42 7.65±0.06 11211.41±143.89 1147.29±25.01
JNY719 14157.89±227.39 75.19±0.21 7.49±0.13 10644.62±151.61 1059.81±13.52
XY696 14306.67±207.41 74.32±0.72 7.35±0.30 10632.70±136.50 1052.19±51.72
FM985 13563.27±355.49 72.16±0.94 6.80±0.01 9785.83±165.71 922.76±24.70
AV 14611.67 74.29 7.60 10856.92 1111.61
F
F value
Y 1.24 88.15** 5.53* 0.09 5.07*
D 336.76** 78.39** 59.79** 392.47** 195.35**
C 12.62** 21.68** 48.45** 17.26** 8.81**
Y×D 2.66 0.58 6.34** 2.26 0.56
Y×C 9.57** 16.76** 36.57** 11.51** 9.70**
D×C 2.09 14.43** 18.54** 2.08 8.61**
Y×D×C 6.95** 9.019** 17.89** 8.28** 11.56**

Table 2

Effect of densification on volume distribution of spring maize starch granules"

年份
Year
密度
Density
品种
Cultivar
淀粉粒粒径 Diameter of starch granule (%) D (4,3)
(μm)
峰值粒径
Peak diameter (μm)
<3 μm 3-17 μm >17 μm
2019 ND XY335 6.79±0.03 52.62±0.48 40.59±0.51 15.45±0.08 16.65±0.05
ZD958 6.44±0.07 48.54±0.31 45.02±0.35 15.93±0.06 17.42±0.02
NH101 6.77±0.02 51.03±0.09 42.20±0.11 15.58±0.03 17.10±0.02
BX809 4.64±0.02 43.88±0.28 51.48±0.27 16.98±0.04 18.04±0.05
XY368 6.74±0.03 49.41±0.01 43.85±0.03 15.76±0.01 17.40±0.01
JNY719 6.29±0.06 46.17±0.39 47.54±0.44 18.13±0.17 17.25±0.05
XY696 4.60±0.27 40.83±0.58 54.57±0.82 18.18±0.28 18.28±0.03
FM985 5.59±1.09 53.55±0.29 40.86±0.86 15.63±0.23 16.63±0.07
AV 5.98 48.25 45.76 16.45 17.35
HD XY335 6.78±0.04 51.54±0.09 41.68±0.07 15.71±0.15 16.82±0.09
ZD958 4.54±0.01 45.17±0.04 50.29±0.05 16.87±0.01 17.96±0.02
NH101 6.30±0.03 44.62±0.10 49.08±0.13 17.86±0.04 17.89±0.01
BX809 6.10±0.05 44.62±0.50 49.28±0.55 17.57±0.18 17.32±0.04
XY368 5.91±1.04 49.00±0.16 45.09±1.15 16.08±0.26 17.28±0.01
JNY719 4.35±0.01 41.24±0.02 54.42±0.02 17.37±0.01 18.39±0.01
XY696 4.44±0.01 43.22±0.14 52.34±0.15 17.14±0.02 18.06±0.04
FM985 4.94±0.01 55.52±0.10 39.54±0.11 15.61±0.01 16.26±0.03
AV 5.42 46.87 47.71 16.77 17.50
2020 ND XY335 4.71±0.02 46.27±0.10 49.02±0.10 16.68±0.02 17.73±0.04
ZD958 6.66±0.01 48.95±0.10 44.39±0.09 15.86±0.01 17.50±0.04
NH101 6.45±0.03 45.64±0.14 47.91±0.14 17.45±0.06 17.77±0.01
BX809 6.09±0.07 40.19±0.11 53.72±0.04 17.56±0.23 18.83±0.07
XY368 6.59±0.05 49.99±0.09 43.42±0.14 15.77±0.03 17.14±0.01
JNY719 4.57±0.01 46.69±0.12 48.74±0.13 16.62±0.01 17.66±0.03
XY696 6.26±0.02 43.36±0.12 50.38±0.14 16.67±0.03 18.30±0.04
FM985 6.69±0.02 51.77±0.03 41.54±0.05 15.52±0.01 16.92±0.01
AV 6.00 46.61 47.39 16.52 17.73
HD XY335 6.12±0.06 42.90±0.16 50.98±0.10 17.06±0.04 18.25±0.03
ZD958 6.47±0.03 50.34±0.07 43.19±0.07 15.73±0.01 17.23±0.03
NH101 6.11±0.07 41.85±0.31 52.04±0.24 17.27±0.04 18.62±0.09
BX809 4.37±0.01 40.67±0.18 54.96±0.16 17.44±0.01 18.71±0.09
XY368 4.50±0.02 47.32±0.06 48.18±0.07 16.61±0.01 17.51±0.02
JNY719 5.54±0.02 35.73±0.12 58.73±0.14a 19.36±0.07 19.10±0.01
XY696 5.52±0.06 36.35±0.10 58.13±0.15 19.10±0.16 19.12±0.09
FM985 4.65±0.05 48.30±0.44 47.05±0.49 16.28±0.32 17.45±0.01
AV 5.41 42.93 51.66 17.36 18.25
F
F value
Y 0.0069 3384.58** 1434.05** 165.06** 4028.41**
D 110.57** 2787.48** 1784.81** 534.95** 1391.87**
C 36.36** 3419.09** 1643.97** 562.35** 1838.64**
Y×D 0.08 569.31** 248.10** 107.25** 411.52**
Y×C 34.37** 500.32** 306.14** 54.34** 432.36**
D×C 20.51** 407.98** 171.02** 18.94** 418.09**
Y×D×C 40.37** 295.88** 154.57** 217.54** 128.56**

Table 3

Effect of densification on surface area distribution of spring maize starch granules"

年份
Year
密度
Density
品种
Cultivars
淀粉粒粒径 Diameter of starch granule (%)
<3 μm 3-17 μm >17 μm
2019 ND XY335 44.48±0.12 38.95±0.29 16.57±0.22
ZD958 43.53±0.06 37.54±0.30 18.94±0.34
NH101 44.53±0.13 38.31±0.07 17.16±0.09
BX809 36.98±0.09 37.50±0.17 25.52±0.13
XY368 44.22±0.15 37.95±0.09 17.83±0.07
JNY719 44.18±0.04 36.74±0.07 19.08±0.04
XY696 43.49±0.07 34.83±0.59 21.68±0.52
FM985 37.20±0.07 43.17±0.17 19.62±0.22
AV 42.33 38.13 19.55
HD XY335 44.51±0.26 38.53±0.14 16.96±0.16
ZD958 36.03±0.11 39.08±0.08 24.89±0.04
NH101 43.93±0.10 36.29±0.05 19.77±0.15
BX809 43.65±0.03 37.02±0.11 19.33±0.09
XY368 43.67±0.05 37.63±0.11 18.70±0.15
JNY719 35.63±0.06 36.43±0.05 27.93±0.02
XY696 36.15±0.01 37.33±0.06 26.52±0.06
FM985 36.93±0.04 44.08±0.05 18.99±0.08
AV 40.06 38.30 21.64
2020 ND XY335 36.79±0.07 39.20±0.07 24.01±0.02
ZD958 44.86±0.06 37.23±0.01 17.90±0.06
NH101 45.10±0.38 35.91±0.59 18.99±0.22
BX809 43.94±0.12 32.87±0.11 23.19±0.18
XY368 44.67±0.16 37.62±0.06 17.71±0.14
JNY719 35.85±0.06 40.13±0.08 24.02±0.08
XY696 43.68±0.07 34.91±0.07 21.41±0.09
FM985 43.88±0.49 39.14±0.64 16.98±0.16
AV 42.35 37.13 20.53
HD XY335 43.91±0.73 34.41±0.50 21.68±0.23
ZD958 43.10±0.05 38.95±0.05 17.95±0.04
NH101 43.78±0.77 34.22±0.60 22.00±0.23
BX809 35.95±0.10 35.99±0.03 28.07±0.11
XY368 35.28±0.04 40.70±0.04 24.02±0.07
JNY719 42.58±0.07 31.31±0.02 26.11±0.09
XY696 41.94±0.07 32.73±0.89 25.34±0.84
FM985 36.37±0.14 40.32±0.08 23.31±0.06
AV 40.36 36.08 23.56
F
F value
Y 10.95** 711.35** 1078.40**
D 1921.53** 52.26** 3366.24**
C 697.73** 621.16** 1290.18**
Y×D 8.14** 102.44** 114.65**
Y×C 526.37** 93.08** 557.08**
D×C 462.36** 180.84** 329.90**
Y×D×C 1316.48** 154.55** 646.63**

Table 4

Effect of densification on number distribution of spring maize starch granules"

年份
Year
密度
Density
品种
Cultivar
淀粉粒粒径 Diameter of starch granule (%)
<3 μm 3-17 μm >17 μm
2019 ND XY335 98.49±0.02 1.41±0.03 0.10±0.01
ZD958 98.39±0.02 1.49±0.02 0.12±0.01
NH101 98.47±0.01 1.42±0.01 0.11±0.01
BX809 98.31±0.01 1.50±0.01 0.19±0.00
XY368 98.35±0.02 1.54±0.02 0.11±0.00
JNY719 98.50±0.01 1.39±0.01 0.11±0.00
XY696 98.33±0.01 1.54±0.01 0.13±0.00
FM985 98.28±0.01 1.55±0.01 0.16±0.01
AV 98.39 1.48 0.13
HD XY335 98.46±0.04 1.44±0.03 0.10±0.01
ZD958 98.17±0.03 1.64±0.03 0.19±0.00
NH101 98.42±0.01 1.47±0.01 0.12±0.01
BX809 98.40±0.01 1.49±0.01 0.11±0.00
XY368 98.41±0.01 1.47±0.01 0.12±0.01
JNY719 98.22±0.01 1.56±0.01 0.22±0.00
XY696 98.31±0.01 1.48±0.01 0.21±0.00
FM985 98.31±0.01 1.54±0.01 0.15±0.00
AV 98.34 1.51 0.15
2020 ND XY335 98.65±0.01 1.22±0.01 0.13±0.01
ZD958 98.55±0.01 1.35±0.01 0.10±0.00
NH101 98.59±0.14 1.31±0.14 0.10±0.00
BX809 98.52±0.01 1.35±0.01 0.14±0.01
XY368 98.50±0.01 1.40±0.01 0.10±0.00
JNY719 97.97±0.01 1.84±0.01 0.19±0.00
XY696 98.33±0.02 1.54±0.02 0.13±0.00
FM985 98.22±0.01 1.67±0.01 0.11±0.00
AV 98.42 1.46 0.12
HD XY335 98.25±0.01 1.57±0.00 0.18±0.01
ZD958 98.31±0.00 1.57±0.00 0.12±0.00
NH101 98.46±0.02 1.41±0.02 0.13±0.01
BX809 98.25±0.04 1.56±0.08 0.19±0.04
XY368 98.04±0.01 1.76±0.01 0.20±0.00
JNY719 98.45±0.01 1.39±0.01 0.16±0.00
XY696 98.36±0.01 1.47±0.01 0.17±0.01
FM985 98.23±0.04 1.61±0.08 0.16±0.03
AV 98.29 1.54 0.16
F
F value
Y 2.1162 0.8098 1.2905
D 219.76** 69.54** 201.65**
C 86.50** 46.37** 36.75**
Y×D 33.06** 14.74** 12.94**
Y×C 35.00** 20.23** 26.28**
D×C 50.18** 38.12** 14.50**
Y×D×C 134.23** 65.98** 50.18**

Table 5

Effects of densification on viscosity parameters of spring maize starch (cP)"

年份
Year
密度
Density
品种
Cultivar
峰值黏度
Peak viscosity (cP)
稀懈值
Breakdown viscosity (cP)
低谷黏度
Hold viscosity (cP)
最终黏度
Final viscosity (cP)
2019 ND XY335 1702.00±56.35 590.00±15.62 1112.00±40.73 2268.67±31.13
ZD958 1454.00±53.81 498.67±40.07 955.67±16.26 2226.33±48.79
NH101 1731.00±62.23 620.67±18.61 1110.33±56.15 2327.00±73.18
BX809 1545.33±26.16 600.67±61.78 976.33±20.55 2105.67±27.50
XY368 1354.67±31.02 426.33±72.60 983.00±11.27 2105.33±41.26
JNY719 1623.33±10.97 578.67±63.54 1082.67±11.50 2242.00±25.00
XY696 1854.33±21.08 534.33±26.03 1123.33±14.05 2257.33±41.20
FM985 1341.67±26.54 437.33±69.01 969.33±22.50 1876.33±50.66
AV 1575.79 535.83 1039.08 2176.08
HD XY335 1788.33±38.28 598.67±6.03 1189.67±43.98 2504.33±73.66
ZD958 1658.33±48.17 564.67±38.63 1093.67±11.93 2299.67±48.64
NH101 1745.67±65.61 617.00±24.06 1128.67±41.55 2302.00±68.94
BX809 1736.00±30.45 680.00±52.00 1115.67±25.03 2395.33±51.54
XY368 1383.67±18.58 416.33±26.69 967.33±8.62 2101.67±13.32
JNY719 1743.33±30.89 612.67±16.26 1130.67±17.93 2306.33±31.21
XY696 1488.33±19.30 731.00±24.06 954.00±17.06 1973.67±19.66
FM985 1379.00±53.51 448.00±44.93 931.00±10.15 1895.00±38.43
AV 1615.33 583.54 1063.83 2222.25
2020 ND XY335 1081.67±15.28 201.00±17.35 880.67±6.66 1903.00±3.61
ZD958 813.33±9.07 19.33±4.16 794.00±13.00 1554.00±28.93
NH101 1087.67±40.07 164.00±18.03 923.67±22.59 1923.33±56.87
BX809 1298.67±16.77 325.67±36.17 973.00±31.19 2016.67±20.03
XY368 787.00±17.52 163.33±9.61 623.67±8.33 1295.00±18.33
JNY719 902.67±10.41 185.67±13.05 717.00±6.08 1566.67±17.24
XY696 1168.00±28.48 328.00±19.08 840.00±11.36 1676.33±25.42
FM985 907.33±7.02 131.33±11.93 776.00±5.20 1437.67±13.01
AV 1005.79 189.79 816.00 1671.58
HD XY335 1211.33±15.89 126.33±12.42 1085.00±3.61 2091.33±16.80
ZD958 792.67±31.01 70.67±29.14 722.00±9.17 1426.00±25.24
NH101 1177.67±88.27 221.33±41.40 956.33±47.01 1833.67±21.55
BX809 1003.67±16.86 182.00±8.72 821.67±8.14 1606.67±25.15
XY368 1018.00±31.43 113.33±20.11 904.67±39.15 1773.67±78.65
JNY719 1097.33±51.60 348.67±31.82 748.67±20.60 1664.33±56.41
XY696 1280.33±23.12 393.00±6.56 887.33±17.39 1897.67±17.93
FM985 1140.00±27.84 405.67±15.50 734.33±12.86 1450.00±27.62
AV 1090.13 232.63 857.50 1717.92
F
F value
Y 5270.71** 2487.43** 1907.41** 3711.13**
D 67.43** 41.98** 45.40** 31.20**
C 152.82** 58.81** 119.66** 198.39**
Y×D 8.82** 0.12 2.90 0.0001
Y×C 41.17** 27.15** 27.92** 40.95**
D×C 22.23** 13.87** 27.62** 25.96**
Y×D×C 46.40** 15.14** 51.32** 66.76**

Fig. 1

Correlation analysis of starch granule volume distribution with viscosity parameters, starch content and yield SSG: The volume percentage of small starch granules; MSG: The volume percentage of medium starch granules; LSG: The volume percentage of large starch granules; SC: Starch content; GY: Grain yield; PV: Peak viscosity; HV: Hold viscosity; BV: Breakdown viscosity; FV: Final viscosity"

[1]
尹彩侠, 李前, 孔丽丽, 秦裕波, 王蒙, 于雷, 刘春光, 王立春, 侯云鹏. 控释氮肥减施对春玉米产量、氮素吸收及转运的影响. 中国农业科学, 2018, 51(20): 3941-3950.

doi: 10.3864/j.issn.0578-1752.2018.20.012
YIN C X, LI Q, KONG L L, QIN Y B, WANG M, YU L, LIU C G, WANG L C, HOU Y P. Effect of reduced controlled-release nitrogen fertilizer application on yield, nitrogen absorption and transportation of spring maize. Scientia Agricultura Sinica, 2018, 51(20): 3941-3950. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.20.012
[2]
ZHAO J, YANG X G, LIU Z J, S, WANG J, DAI S W. Variations in the potential climatic suitability distribution patterns and grain yields for spring maize in Northeast China under climate change. Climatic Change, 2016, 137(1/2): 29-42.

doi: 10.1007/s10584-016-1652-y
[3]
陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36(7): 1153-1160.
CHEN C Y, HOU Y H, SUN R, ZHU P, DONG Z Q, ZHAO M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agronomica Sinica, 2010, 36(7): 1153-1160. (in Chinese)

doi: 10.3724/SP.J.1006.2010.01153
[4]
杨振芳, 顾万荣, 魏湜, 李丽杰, 张倩, 李晶, 陈喜昌, 杨德光. 化控对不同种植密度下东北春玉米光合特性及产量的影响. 玉米科学, 2015, 23(5): 66-74.
YANG Z F, GU W R, WEI S, LI L J, ZHANG Q, LI J, CHEN X C, YANG D G. Effects of chemical regulation on photosynthetic characteristics and yield of spring maize under different plant densities in Northeast China. Journal of Maize Sciences, 2015, 23(5): 66-74. (in Chinese)
[5]
LI W Y, WU P J, YAN S H. Effects of phosphorus fertilizer on starch granule size distribution in corn kernels. Brazilian Journal of Botany, 2019, 42(2): 201-207.

doi: 10.1007/s40415-019-00531-4
[6]
张家桦, 杨恒山, 张玉芹, 李从锋, 张瑞富, 邰继承, 周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响. 中国农业科学, 2022, 55(7): 1332-1345.

doi: 10.3864/j.issn.0578-1752.2022.07.006
ZHANG J H, YANG H S, ZHANG Y Q, LI C F, ZHANG R F, TAI J C, ZHOU Y C. Effects of different drip irrigation modes on starch accumulation and activities of starch synthesis-related enzyme of spring maize grain in Northeast China. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.07.006
[7]
CUI L N, DONG S T, ZHANG J W, LU P. Starch granule size distribution and morphogenesis in maize (Zea mays L.) grains with different endosperm types. Australian Journal of Crop Science, 2014, 8(11): 1560-1565.
[8]
LIU N, ZHANG Z H, XUE Y D, MENG S J, HUANG Y B, LI W H, HUANG J H, TANG J H. Identification of quantitative trait loci and candidate genes for maize starch granule size through association mapping. Scientific Reports, 2018, 8(1): 1-11.
[9]
崔丽娜, 张红, 孟佳佳, 石德杨, 董树亭. 不同胚乳类型玉米籽粒淀粉粒的粒度分布特征. 作物学报, 2012, 38(9): 1723-1727.
CUI L N, ZHANG H, MENG J J, SHI D Y, DONG S T. Starch granule size distribution in maize kernel with different endosperm types. Acta Agronomica Sinica, 2012, 38(9): 1723-1727. (in Chinese)

doi: 10.3724/SP.J.1006.2012.01723
[10]
LI H Y, XU M H, YAN S, LIU R X, MA Z C, WEN Y Y, WANG J, SUN B G. Insights into waxy maize starch degradation by sulfuric acid: Impact on starch structure, pasting, and rheological property. International Journal of Biological Macromolecules, 2020, 165: 214-221.

doi: 10.1016/j.ijbiomac.2020.09.148 pmid: 32980409
[11]
贺江, 付立冬, 李文阳. 磷肥对玉米子粒淀粉粒度分布特性与黏度参数的影响. 玉米科学, 2019, 27(6): 153-159.
HE J, FU L D, LI W Y. Effects of phosphate fertilizer on starch size distribution and viscosity parameters of maize kernel. Journal of Maize Sciences, 2019, 27(6): 153-159. (in Chinese)
[12]
ELLIS R P, COCHRANE M P, DALE M F B, DUFFUS C M, LYNN A, MORRISON I M, PRENTICE R D M, SWANSTON J S, TILLER S A. Starch production and industrial use. Journal of the Science of Food and Agriculture, 1998, 77(3): 289-311.

doi: 10.1002/(ISSN)1097-0010
[13]
陆大雷, 郭换粉, 陆卫平. 播期、品种和拔节期追氮量对糯玉米淀粉粒分布的影响. 中国农业科学, 2011, 44(2): 263-270.
LU D L, GUO H F, LU W P. Effects of sowing date, variety and nitrogen top-dressing at jointing stage on starch granule size distribution of waxy maize. Scientia Agricultura Sinica, 2011, 44(2): 263-270. (in Chinese)
[14]
徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017, 50(13): 2463-2475.

doi: 10.3864/j.issn.0578-1752.2017.13.006
XU Z G, SUN L, WANG H, WANG S L, WANG X L, LI J. Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Scientia Agricultura Sinica, 2017, 50(13): 2463-2475. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.13.006
[15]
崔丽娜, 刘吉强, 王立静, 王明友, 董树亭. 不同种植密度对夏玉米胚乳细胞淀粉粒分布及形态的影响. 中国粮油学报, 2021, 36(7): 84-88.
CUI L N, LIU J Q, WANG L J, WANG M Y, DONG S T. Effect of different planting density on distribution and morphology of starch granules in endosperm cells of summer maize. Journal of the Chinese Cereals and Oils Association, 2021, 36(7): 84-88. (in Chinese)
[16]
孔令平, 张海艳, 赵延明. 播期和密度对不同玉米品种淀粉糊化特性和子粒品质的影响. 玉米科学, 2014, 22(3):98-102, 108.
KONG L P, ZHANG H Y, ZHAO Y M. Effects of sowing date and planting density on starch RVA properties and kernel quality of two maize varieties. Journal of Maize Sciences, 2014, 22(3):98-102, 108. (in Chinese)
[17]
PENG M, GAO M, ABDEL-AAL E S M, HUCL P, CHIBBAR R N. Separation and characterization of A- and B-type starch granules in wheat endosperm. Cereal Chemistry Journal, 1999, 76(3): 375-379.

doi: 10.1094/CCHEM.1999.76.3.375
[18]
ZHENG B, GUO X B, TANG Y K, CHEN L, XIE F W. Development changes in multi-scale structure and functional properties of waxy corn starch at different stages of kernel growth. International Journal of Biological Macromolecules, 2021, 191: 335-343.

doi: 10.1016/j.ijbiomac.2021.09.120
[19]
YANG Z, SWEDLUND P, HEMAR Y, MO G, WEI Y R, LI Z H, WU Z H. Effect of high hydrostatic pressure on the supramolecular structure of corn starch with different amylose contents. International Journal of Biological Macromolecules, 2016, 85: 604-614.

doi: 10.1016/j.ijbiomac.2016.01.018 pmid: 26778159
[20]
SOMAVAT P, LIU W, SINGH V. Wet milling characteristics of corn mutants using modified processes and improving starch yields from high amylose corn. Food and Bioproducts Processing, 2021, 126: 104-112.

doi: 10.1016/j.fbp.2020.12.015
[21]
QU J Z, ZHONG Y Y, DING L, LIU X X, XU S T, GUO D W, BLENNOW A, XUE J Q. Biosynthesis, structure and functionality of starch granules in maize inbred lines with different kernel dehydration rate. Food Chemistry, 2022, 368: 130796.

doi: 10.1016/j.foodchem.2021.130796
[22]
ZHAO F C, JING L Q, WANG D C, BAO F, LU W P, WANG G Y. Author Correction: Grain and starch granule morphology in superior and inferior kernels of maize in response to nitrogen. Scientific Reports, 2018, 8(1): 7767.

doi: 10.1038/s41598-018-25859-x pmid: 29760426
[23]
徐云姬, 李银银, 钱希旸, 王志琴, 杨建昌. 三种禾谷类作物强、弱势粒淀粉粒形态与粒度分布的比较. 作物学报, 2016, 42(1): 70-81.
XU Y J, LI Y Y, QIAN X Y, WANG Z Q, YANG J C. Comparison of starch granule morphology and size distribution in superior and inferior grains of three cereal crops. Acta Agronomica Sinica, 2016, 42(1): 70-81. (in Chinese)

doi: 10.3724/SP.J.1006.2016.00070
[24]
戴忠民, 王振林, 张敏, 李文阳, 闫素辉, 蔡瑞国, 尹燕枰. 不同品质类型小麦籽粒淀粉粒度的分布特征. 作物学报, 2008, 34(3): 465-470.
DAI Z M, WANG Z L, ZHANG M, LI W Y, YAN S H, CAI R G, YIN Y P. Starch granule size distribution in grains of strong and weak gluten wheat cultivars. Acta Agronomica Sinica, 2008, 34(3): 465-470. (in Chinese)

doi: 10.3724/SP.J.1006.2008.00465
[25]
李文阳, 尹燕枰, 闫素辉, 戴忠民, 李勇, 梁太波, 耿庆辉, 王振林. 小麦花后弱光对籽粒淀粉积累和相关酶活性的影响. 作物学报, 2008, 34(4): 632-640.
LI W Y, YIN Y P, YAN S H, DAI Z M, LI Y, LIANG T B, GENG Q H, WANG Z L. Effect of shading after anthesis on starch accumulation and activities of the related enzymes in wheat grain. Acta Agronomica Sinica, 2008, 34(4): 632-640. (in Chinese)

doi: 10.3724/SP.J.1006.2008.00632
[26]
石德杨, 张海艳, 董树亭. 补充灌溉和施氮对玉米籽粒淀粉粒粒度分布的影响. 中国农业科学, 2014, 47(4): 633-643.

doi: 10.3864/j.issn.0578-1752.2014.04.003
SHI D Y, ZHANG H Y, DONG S T. Effects of supplemental irrigation and nitrogen application on starch granule size distribution of maize grain. Scientia Agricultura Sinica, 2014, 47(4): 633-643. (in Chinese)
[27]
张丽, 张吉旺, 刘鹏, 董树亭. 不同淀粉含量玉米籽粒淀粉粒度的分布特性. 中国农业科学, 2011, 44(8): 1596-1602.

doi: 10.3864/j.issn.0578-1752.2011.08.007
ZHANG L, ZHANG J W, LIU P, DONG S T. Starch granule size distribution in grains of maize with different starch contents. Scientia Agricultura Sinica, 2011, 44(8): 1596-1602. (in Chinese)
[28]
PARK S H, WILSON J D, SEABOURN B W. Starch granule size distribution of hard red winter and hard red spring wheat: Its effects on mixing and breadmaking quality. Journal of Cereal Science, 2009, 49(1): 98-105.

doi: 10.1016/j.jcs.2008.07.011
[29]
王瑾, 王长进, 武德功, 黄伟东, 余海兵, 李文阳. 种植密度对玉米籽粒淀粉粒分布及相关酶活性的影响. 湖南农业大学学报(自然科学版), 2019, 45(5):456-460.
WANG J, WANG C J, WU D G, HUANG W D, YU H B, LI W Y. Effects of planting density on starch granule size distribution and related enzyme activities in maize kernel. Journal of Hunan Agricultural University (Natural Sciences), 2019, 45(5): 456-460. (in Chinese)
[30]
LI W Y, TAN Z, LI R, YUAN J X, YAN S H, LI C F. Starch accumulation, size distribution and related enzyme activity in superior and inferior kernels of maize under different nitrogen rates. Pakistan Journal of Botany, 2021, 53(1): 105-111.
[31]
李文阳, 闫素辉, 尹燕枰, 李勇, 梁太波, 耿庆辉, 戴忠民, 王振林. 小麦花后弱光引起籽粒淀粉的粒度分布及组分含量的变化. 生态学报, 2009, 29(1): 298-306.
LI W Y, YAN S H, YIN Y P, LI Y, LIANG T B, GENG Q H, DAI Z M, WANG Z L. Starch granule size distribution and starch component content in wheat grain in relation to shading stress after anthesis. Acta Ecologica Sinica, 2009, 29(1): 298-306. (in Chinese)
[32]
LEI N Y, CHAI S, XU M H, JI J Y, MAO H J, YAN S, GAO Y, LI H Y, WANG J, SUN B G. Effect of dry heating treatment on multi-levels of structure and physicochemical properties of maize starch: A thermodynamic study. International Journal of Biological Macromolecules, 2020, 147:109-116.

doi: S0141-8130(19)39618-7 pmid: 31923514
[33]
崔丽娜, 李庆方, 董树亭. 追氮对夏玉米淀粉含量及其糊化特性的影响. 中国粮油学报, 2018, 33(3): 43-47.
CUI L N, LI Q F, DONG S T. The effects of nitrogen fertilize topdressing on starch content and starch pasting properties in summer maize. Journal of the Chinese Cereals and Oils Association, 2018, 33(3): 43-47. (in Chinese)
[34]
石德杨, 李艳红, 袁堂玉, 矫岩林, 赵健, 董树亭, 夏德君. 种植密度与施氮量对夏玉米淀粉粒分布及糊化特性的影响. 安徽农业科学, 2021, 49(8): 35-38.
SHI D Y, LI Y H, YUAN T Y, JIAO Y L, ZHAO J, DONG S T, XIA D J. Effects of planting density and nitrogen application rate on the starch granule size distribution and pasting properties of summer maize. Journal of Anhui Agricultural Sciences, 2021, 49(8): 35-38. (in Chinese)
[35]
郭爱良, 周湘寒, 姚亚亚, 赵国民, 刘孟宜, 周晨霞, 李慧静. 不同玉米品种理化特性及淀粉品质的研究. 中国粮油学报, 2022, 37(5): 39-47.
GUO A L, ZHOU X H, YAO Y Y, ZHAO G M, LIU M Y, ZHOU C X, LI H J. Physicochemical properties and starch quality of different corn varieties. Journal of the Chinese Cereals and Oils Association, 2022, 37(5): 39-47. (in Chinese)
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[3] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[4] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[5] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[6] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[7] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[8] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[9] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[10] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[11] LI Yan, TAO KeYu, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, HE GuanHua, SONG YanChun, SHI YunSu, LI Yu, WANG TianYu, ZOU HuaWen, LIU XuYang. Function of Maize ZCN7 in Regulating Drought Resistance at Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(16): 3051-3061.
[12] LIU ShuJun, LI DongChu, HUANG Jing, QU XiaoLin, MA ChangBao, WANG HuiYing, YU ZiKun, ZHANG Lu, HAN TianFu, LIU KaiLou, SHEN Zhe, ZHANG HuiMin. Spatial-Temporal Variation Characteristics of Wheat and Maize Stalk Resources and Chemical Fertilizer Reduction Potential of Returning to Farmland in Recent 30 Years in China [J]. Scientia Agricultura Sinica, 2023, 56(16): 3140-3155.
[13] LIU GaoYuan, HE AiLing, DU Jun, LÜ JinLing, NIE ShengWei, PAN XiuYan, XU JiDong, LI Jue, YANG ZhanPing. Effect of Organic Fertilizer Replacing Chemical Fertilizer on Nitrous Oxide Emission from Wheat-Maize Rotation System in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(16): 3156-3167.
[14] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[15] MU XinYuan, LÜ ShanShan, LU LiangTao, LIU TianXue, LI ShuYan, XUE ChangYing, WANG HongWei, ZHAO Xia, XIA LaiKun, TANG BaoJun. Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination [J]. Scientia Agricultura Sinica, 2023, 56(15): 2880-2894.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!