Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (8): 1503-1514.doi: 10.3864/j.issn.0578-1752.2023.08.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application

HAN ZiXuan1(), FANG JingJing2(), WU XuePing1(), JIANG Yu3(), SONG XiaoJun1, LIU XiaoTong1   

  1. 1 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 College of Resource Environment and Tourism, Capital Normal University, Beijing 100048
    3 Heilongjiang Academy of Agricultural Sciences/ Heihe Branch National Soil Quality Aihui Observation and Testing Station, Heihe 164300, Heilongjiang
  • Received:2022-03-24 Accepted:2022-04-19 Online:2023-04-16 Published:2023-04-23

Abstract:

【Objective】The effects of long-term straw combined application of chemical fertilizers on the content of aggregates, distributions of aggregate-associated organic carbon and nitrogen, and soil microbial biomass were studied to reveal the promotion of soil fertility and productivity. 【Method】Soil samples were collected from a 40-year long-term experiment. The research was conducted with 4 treatments: pure chemical fertilizer (NP), straw with chemical fertilizer (S+NP), straw with 1/2 chemical fertilizer (S+1/2NP), and straw with 1/4 chemical fertilizer (S+1/4NP), and the straw was returned with the amount of 3 000 kg·hm-2, chemical fertilizer NP was pure N 150 kg·hm-2 and P2O5 150 kg·hm-2 conducted. All soils samples were separated into four aggregate-size classes (>2 mm, 0.25-2 mm, 0.053-0.25 mm, and <0.053 mm) by wet sieving. Organic carbon and total nitrogen content of aggregates and soil microbial biomass content were measured. 【Result】(1) Long-term application of chemical fertilizers with straw reduced soil bulk density, while improved the stability of aggregates. Compared with NP, the bulk density of S+NP decreased by 4.7%, while the proportion of aggregates >2 mm in size, the average weight diameter (MWD) and geometric weight diameter (GWD) increased by 254.4%, 76.5% and 91.3%, respectively. (2) In the three chemical fertilizers combined with straw return, the percentage of aggregates >2 mm, MWD and GWD under S+NP and S+1/2NP were significantly increased by 49.1%-52.4%, 19.43%-22.4% and 24.2%-33.3%, compared with S+1/4NP, respectively. (3) Compared with NP, S+NP, S+1/2NP and S+1/4NP increased the contribution rate of aggregates >2 mm and >0.25 mm to SOC and total nitrogen, and significantly improved the SOC, SMBC and SMBN content in bulk soil. Among them, the SOC content was the highest under S+NP, which was 6.3% and 12.6% higher than that under S+1/2NP and S+1/4NP, respectively. (4) The yield was showed that S+NP>NP>S+1/2NP>S+1/4NP, and S+NP increased wheat yield by 5.83%-83.6% compared with other treatments. (5) Positive correlation was revealed between soil aggregate stability, carbon and nitrogen content and crop yield, and >2 mm aggregate content, while MWD and GWD were significantly or extremely significant with the total soil SOC, SMBC content and wheat yield, respectively.【Conclusion】In the dark brown soil area, the long-term straw returning and fertilizer application of 150 kg N·hm-2 and 150 kg P2O5·hm-2 could improve aggregate stability, soil organic carbon content, microbial biomass and yield, and achieve the synergistic effect of soil structure improvement, fertility improvement and crop yield increase.

Key words: straw returned, chemical fertilizer, dark brown soil, water-stable aggregates, carbon and nitrogen content, microbial biomass, wheat yield

Table 1

The soil bulk density, distribution and stability index of water-stable aggregates under different fertilization treatments"

处理
Treatment
容重
Bulk density (g·cm-3)
团聚体质量百分比 Proportion of soil aggregates (%) MWD
(mm)
GWD
(mm)
>2 mm 0.25-2 mm 0.053-0.25 mm <0.053 mm
NP 1.34 ± 0.09 a 9.21 ± 0.23 c 52.79 ± 2.49 a 25.06 ± 1.84 a 12.94 ± 0.78 a 1.96 ± 0.07 c 0.46 ± 0.01 c
S+NP 1.28 ± 0.11 c 32.63 ± 1.43 a 45.95 ± 1.35 c 12.53 ± 1.04 c 8.89 ± 0.39 c 3.46 ± 0.09 a 0.88 ± 0.02 a
S+1/2NP 1.30 ± 0.08 b 33.32 ± 1.49 a 41.77 ± 2.35 d 14.05 ± 0.94 bc 10.86 ± 0.78 b 3.38 ± 0.09 a 0.82 ± 0.03 a
S+1/4NP 1.31 ± 0.10 b 21.87 ± 1.58 b 49.75 ± 3.49 b 16.33 ± 1.01 b 12.06 ± 1.04 a 2.83 ± 0.06 b 0.66 ± 0.01 b

Fig. 1

The contents of SOC and TN under different fertilization treatments Different lowercase letters indicate significant differences among treatments (P<0.05). The same below"

Fig. 2

The contents and distributions of SOC and TN in soil water-stable aggregate size fractions under different long-term fertilization treatments"

Table 2

Microbial biomass and wheat yield under different fertilization treatments"

处理
Treatment
SMBC
(mg·kg-1)
SMBN
(mg·kg-1)
SMBC/SMBN SMBC/SOC
(%)
小麦产量
Grain yield (t·hm-2)
NP 178.21 ± 1.10 c 36.27 ± 0.71 c 4.91 ± 0.13 b 1.02 ± 0.13 c 2.87 ± 0.17 b
S+NP 365.34 ± 0.51 b 42.21 ± 0.34 b 8.66 ± 0.11 a 1.74 ± 0.12 b 2.97 ± 0.21 a
S+1/2NP 400.86 ± 0.92 b 46.41 ± 0.73 a 8.64 ± 0.16 a 2.04 ± 0.22 ab 2.12 ± 0.16 c
S+1/4NP 463.74 ± 1.21 a 46.54 ± 0.36 a 9.96 ± 0.18 a 2.46 ± 0.43 a 1.56 ± 0.09 d

Fig. 3

Correlation between water-stable aggregates proportion with SOC, TN content, and wheat yield under chemical fertilizer and combined application of chemical fertilizer with straw return In the Spearman correlation analysis, the individual variable distribution is shown on the diagonal line. Diagonal line Lower left corner Scatter plot. Diagonal upper right-up correlation, among which“·”Means P<0.1,“*”Means significant correlation (P<0.05), “**”and “***”Means extremely significant correlation (P<0.01 and P<0.001). The same as below"

Fig. 4

Correlation between water-stable aggregates proportion with SOC, TN content, and wheat yield under straw return combined with different quantitative chemical fertilizer treatments"

[1]
郑凤君, 王雪, 李景, 王碧胜, 宋霄君, 张孟妮, 武雪萍, 刘爽, 席吉龙, 张建诚, 李永山. 免耕条件下施用有机肥对冬小麦土壤酶及活性有机碳的影响. 中国农业科学, 2020, 53(6): 1202-1213. doi: 10.3864/j.issn.0578-1752.2020.06.012.

doi: 10.3864/j.issn.0578-1752.2020.06.012
ZHENG F J, WANG X, LI J, WANG B S, SONG X J, ZHANG M N, WU X P, LIU S, XI J L, ZHANG J C, LI Y S. Effect of no-tillage with manure on soil enzyme activities and soil active organic carbon. Scientia Agricultura Sinica, 2020, 53(6): 1202-1213. doi: 10.3864/j.issn.0578-1752.2020.06.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.06.012
[2]
陈晓芬, 李忠佩, 刘明, 江春玉. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响. 中国农业科学, 2013, 46(5): 950-960. doi: 10.3864/j.issn.0578-1752.2013.05.010.

doi: 10.3864/j.issn.0578-1752.2013.05.010
CHEN X F, LI Z P, LIU M, JIANG C Y. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China. Scientia Agricultura Sinica, 2013, 46(5): 950-960. doi: 10.3864/j.issn.0578-1752.2013.05.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2013.05.010
[3]
LI L D, WILSON C B, HE H B, ZHANG X D, ZHOU F, SCHAEFFER S M. Physical, biochemical, and microbial controls on amino sugar accumulation in soils under long-term cover cropping and no-tillage farming. Soil Biology and Biochemistry, 2019, 135: 369-378.

doi: 10.1016/j.soilbio.2019.05.017
[4]
ZHANG A F, CHENG G, HUSSAIN Q, ZHANG M, FENG H, DYCK M, SUN B H, ZHAO Y, CHEN H X, CHEN J, WANG X D. Contrasting effects of straw and straw-derived biochar application on net global warming potential in the Loess Plateau of China. Field Crops Research, 2017, 205: 45-54.

doi: 10.1016/j.fcr.2017.02.006
[5]
孙汉印, 姬强, 王勇, 王旭东. 不同秸秆还田模式下水稳性团聚体有机碳的分布及其氧化稳定性研究. 农业环境科学学报, 2012, 31(2): 369-376.
SUN H Y, JI Q, WANG Y, WANG X D. The distribution of water-stable aggregate-associated organic carbon and its oxidation stability under different straw returning modes. Journal of Agro- Environment Science, 2012, 31(2): 369-376. (in Chinese)
[6]
刘恩科, 赵秉强, 梅旭荣, HWAT Bing-So, 李秀英, 李娟. 不同施肥处理对土壤水稳定性团聚体及有机碳分布的影响. 生态学报, 2010, 30(4): 1035-1041.
LIU E K, ZHAO B Q, MEI X R, BINGSO H, LI X Y, LI J. Distribution of water-stable aggregates and organic carbon of arable soils affected by different fertilizer application. Acta Ecologica Sinica, 2010, 30(4): 1035-1041. (in Chinese)
[7]
陈轩敬, 赵亚南, 柴冠群, 张珍珍, 张跃强, 石孝均. 长期不同施肥下紫色土综合肥力演变及作物产量响应. 农业工程学报, 2016, 32(S1): 139-144.
CHEN X J, ZHAO Y N, CHAI G Q, ZHANG Z Z, ZHANG Y Q, SHI X J. Integrated soil fertility and yield response to long-term different fertilization in purple soil. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S1): 139-144. (in Chinese)
[8]
XU X, PANG D W, CHEN J, LUO Y L, ZHENG M J, YIN Y P, LI Y X, LI Y, WANG Z L. Straw return accompany with low nitrogen moderately promoted deep root. Field Crops Research, 2018, 221: 71-80.

doi: 10.1016/j.fcr.2018.02.009
[9]
葛选良, 钱春荣, 李梁, 姜宇博, 宫秀杰, 吕国依. 秸秆还田配合施肥措施对玉米产量及耕层土壤质量的影响. 中国土壤与肥料, 2021(1): 131-136.
GE X L, QIAN C R, LI L, JIANG Y B, GONG X J, G Y. Effects of straw returning cooperated with fertilizer practice on yield of maize and soil quality of tillage layer. Soil and Fertilizer Sciences in China, 2021(1): 131-136. (in Chinese)
[10]
汪军, 王德建, 张刚, 王灿. 连续全量秸秆还田与氮肥用量对农田土壤养分的影响. 水土保持学报, 2010, 24(5): 40-44, 62.
WANG J, WANG D J, ZHANG G, WANG C. Effects of different nitrogen fertilizer rate with continuous full amount of straw incorporated on paddy soil nutrients. Journal of Soil and Water Conservation, 2010, 24(5): 40-44, 62. (in Chinese)
[11]
胡诚, 曹志平, 叶钟年, 吴文良. 不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响. 生态学报, 2006, 26(3): 808-814.
HU C, CAO Z P, YE Z N, WU W L. Impact of soil fertility maintaining practice on soil microbial biomass carbon in low production agro-ecosystem in Northern China. Acta Ecologica Sinica, 2006, 26(3): 808-814. (in Chinese)
[12]
LU F, WANG X K, HAN B, OUYANG Z Y, DUAN X N, ZHENG H, MIAO H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Global Change Biology, 2009, 15(2): 281-305.

doi: 10.1111/gcb.2009.15.issue-2
[13]
乔丹丹, 吴名宇, 张倩, 韩燕来, 张毅博, 李培培, 李慧. 秸秆还田与生物炭施用对黄褐土团聚体稳定性及有机碳积累的影响. 中国土壤与肥料, 2018(3): 92-99.
QIAO D D, WU M Y, ZHANG Q, HAN Y L, ZHANG Y B, LI P P, LI H. Effect of boichar and straw with chemical fertilizers on soil aggregate distribution and organic carbon content in yellow cinnamon soil. Soil and Fertilizer Sciences in China, 2018(3): 92-99. (in Chinese)
[14]
刘多森, 李伟波. 土壤容重和孔隙度的简易测定法. 土壤通报, 1983, 14(4): 44-47.
LIU D S, LI W B. Simple determination method of soil bulk density and porosity. Chinese Journal of Soil Science, 1983, 14(4): 44-47. (in Chinese)
[15]
中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1978.
Nanjing Institute of Soil Science, Chinese Academy of Sciences. Physical and Chemical Analysis of Soil. Shanghai: Shanghai Scientific & Technical Publishers, 1978. (in Chinese)
[16]
CAMBARDELLA C A, ELLIOTT E T. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Science Society of America Journal, 1994, 58(1): 123-130.

doi: 10.2136/sssaj1994.03615995005800010017x
[17]
VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707.
[18]
周虎, 吕贻忠, 杨志臣, 李保国. 保护性耕作对华北平原土壤团聚体特征的影响. 中国农业科学, 2007, 40(9): 1973-1979.
ZHOU H, Y Z, YANG Z C, LI B G. Effects of conservation tillage on soil aggregates in Huabei plain, China. Scientia Agricultura Sinica, 2007, 40(9): 1973-1979. (in Chinese)
[19]
WANG X B, DAI K, ZHANG D C, ZHANG X M, WANG Y, ZHAO Q S, CAI D X, HOOGMOED W B, OENEMA O. Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. Field Crops Research, 2011, 120(1): 47-57.

doi: 10.1016/j.fcr.2010.08.010
[20]
SINGH M, SARKAR B, BISWAS B, BOLAN N S, CHURCHMAN G J. Relationship between soil clay mineralogy and carbon protection capacity as influenced by temperature and moisture. Soil Biology and Biochemistry, 2017, 109: 95-106.

doi: 10.1016/j.soilbio.2017.02.003
[21]
AMÉZKETA E. Soil aggregate stability: a review. Journal of Sustainable Agriculture, 1999, 14(2/3): 83-151.

doi: 10.1300/J064v14n02_08
[22]
姜灿烂, 何园球, 刘晓利, 陈平帮, 王艳玲, 李辉信. 长期施用有机肥对旱地红壤团聚体结构与稳定性的影响. 土壤学报, 2010, 47(4): 715-722.
JIANG C L, HE Y Q, LIU X L, CHEN P B, WANG Y L, LI H X. Effect of long-term application of organic manure on structure and stability of aggregate in upland red soil. Acta Pedologica Sinica, 2010, 47(4): 715-722. (in Chinese)
[23]
周孟椋, 高焕平, 刘世亮, 李慧, 刘芳, 姜桂英, 赵颖. 秸秆与氮肥配施对潮土微生物活性及团聚体分布的影响. 水土保持学报, 2022, 36(1): 340-345.
ZHOU M L, GAO H P, LIU S L, LI H, LIU F, JIANG G Y, ZHAO Y. Effects of combined application of straw and nitrogen fertilizer on microbial activity and aggregate distribution in fluvo aquic soil. Journal of Soil and Water Conservation, 2022, 36(1): 340-345. (in Chinese)
[24]
顾炽明, 郑险峰, 黄婷苗, 侯仰毅, 王朝辉. 秸秆还田配施氮肥对冬小麦产量及氮素调控的影响. 干旱地区农业研究, 2013, 31(5): 48-53, 73.
GU C M, ZHENG X F, HUANG T M, HOU Y Y, WANG Z H. Effects of straw returning combined with nitrogen fertilizer application on yield of winter wheat and nitrogen regulation. Agricultural Research in the Arid Areas, 2013, 31(5): 48-53, 73. (in Chinese)
[25]
CZACHOR H, CHARYTANOWICZ M, GONET S, NIEWCZAS J, JOZEFACIUK G, LICHNER L. Impact of long‐term mineral and organic fertilizer application on the water stability, wettability and porosity of aggregates obtained from two loamy soils. European Journal of Soil science, 2015, 66(3): 577-588.

doi: 10.1111/ejss.2015.66.issue-3
[26]
HUANG T, YANG H, HUANG C, JU X. Effects of nitrogen management and straw return on soil organic carbon sequestration and aggregate-associated carbon. European Journal of Soil Science, 2018, 69(5): 913-923.

doi: 10.1111/ejss.2018.69.issue-5
[27]
PUGET P, CHENU C, BALESDENT J. Total and young organic matter distributions in aggregates of silty cultivated soils. European Journal of Soil Science, 1995, 46(3): 449-459.

doi: 10.1111/ejs.1995.46.issue-3
[28]
JASTROW J D, MILLER R M, BOUTTON T W. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Science Society of America Journal, 1996, 60(3): 801-807.

doi: 10.2136/sssaj1996.03615995006000030017x
[29]
KAN Z R, VIRK A L, HE C, LIU Q Y, QI J Y, DANG Y P, ZHAO X, ZHANG H L. Characteristics of carbon mineralization and accumulation under long-term conservation tillage. Catena, 2020, 193: 104636.

doi: 10.1016/j.catena.2020.104636
[30]
BIMÜLLER C, KREYLING O, KÖLBL A, VON LÜTZOW M, KÖGEL-KNABNER I. Carbon and nitrogen mineralization in hierarchically structured aggregates of different size. Soil and Tillage Research, 2016, 160: 23-33.

doi: 10.1016/j.still.2015.12.011
[31]
HENRIKSEN T M, BRELAND T A. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biology and Biochemistry, 1999, 31(8): 1121-1134.

doi: 10.1016/S0038-0717(99)00030-9
[32]
YANG J, GAO W, REN S R. Long-term effects of combined application of chemical nitrogen with organic materials on crop yields, soil organic carbon and total nitrogen in fluvo-aquic soil. Soil and Tillage Research, 2015, 151: 67-74.

doi: 10.1016/j.still.2015.03.008
[33]
王碧胜, 于维水, 武雪萍, 高丽丽, 李景, 李生平, 宋霄君, 刘彩彩, 李倩, 梁国鹏, 蔡典雄, 张继宗. 添加玉米秸秆对旱作土壤团聚体及其有机碳含量的影响. 中国农业科学, 2019, 52(9): 1553-1563. doi: 10.3864/j.issn.0578-1752.2019.09.007.

doi: 10.3864/j.issn.0578-1752.2019.09.007
WANG B S, YU W S, WU X P, GAO L L, LI J, LI S P, SONG X J, LIU C C, LI Q, LIANG G P, CAI D X, ZHANG J Z. Effect of straw addition on the formation of aggregates and accumulation of organic carbon in dryland soil. Scientia Agricultura Sinica, 2019, 52(9): 1553-1563. doi: 10.3864/j.issn.0578-1752.2019.09.007. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.09.007
[34]
SINGH B, SINGH Y, LADHA J K, BRONSON K F, BALASUBRAMANIAN V, SINGH J, KHIND C S. Chlorophyll meter-and leaf color chart-based nitrogen management for rice and wheat in northwestern India. Agronomy Journal, 2002, 94(4): 821-829.

doi: 10.2134/agronj2002.8210
[35]
张婷, 孔云, 修伟明, 李刚, 赵建宁, 杨殿林, 张贵龙, 王丽丽. 施肥措施对华北潮土区小麦-玉米轮作体系土壤微生物群落特征的影响. 生态环境学报, 2019, 28(6): 1159-1167.

doi: 10.16258/j.cnki.1674-5906.2019.06.011
ZHANG T, KONG Y, XIU W M, LI G, ZHAO J N, YANG D L, ZHANG G L, WANG L L. Effects of fertilization treatments on soil microbial community characteristics under the wheat-maize rotation system in fluvo-aquic soil region in North China. Ecology and Environmental Sciences, 2019, 28(6): 1159-1167. (in Chinese)
[36]
肖新, 朱伟, 肖靓, 邓艳萍, 赵言文, 汪建飞. 适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮. 农业工程学报, 2013, 29(21): 91-98.
XIAO X, ZHU W, XIAO L, DENG Y P, ZHAO Y W, WANG J F. Suitable water and nitrogen treatment improves soil microbial biomass carbon and nitrogen and enzyme activities of paddy field. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(21): 91-98. (in Chinese)
[37]
许仁良, 王建峰, 张国良, 戴其根. 秸秆、 有机肥及氮肥配合使用对水稻土微生物和有机质含量的影响. 生态学报, 2010, 30(13): 3584-3590.
XU R L, WANG J F, ZHANG G L, DAI Q G. Changes of microbe and organic matter content in paddy soil applied with straw, manure and nitrogen fertilizer. Acta Ecologica Sinica, 2010, 30(13): 3584-3590. (in Chinese)
[38]
王士超, 闫志浩, 王瑾瑜, 槐圣昌, 武红亮, 邢婷婷, 叶洪龄, 卢昌艾. 秸秆还田配施氮肥对稻田土壤活性碳氮动态变化的影响. 中国农业科学, 2020, 53(4): 782-794. doi: 10.3864/j.issn.0578-1752.2020.04.010.

doi: 10.3864/j.issn.0578-1752.2020.04.010
WANG S C, YAN Z H, WANG J Y, HUAI S C, WU H L, XING T T, YE H L, LU C A. Nitrogen fertilizer and its combination with straw affect soil labile carbon and nitrogen fractions in paddy fields. Scientia Agricultura Sinica, 2020, 53(4): 782-794. doi: 10.3864/j.issn.0578-1752.2020.04.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.04.010
[39]
TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils. Journal of Soil Science, 1982, 33(2): 141-163.

doi: 10.1111/ejs.1982.33.issue-2
[40]
GAO L L, WANG B S, LI S P, WU H J, WU X P, LIANG G P, GONG D Z, ZHANG X M, CAI D X, DEGRÉ A. Soil wet aggregate distribution and pore size distribution under different tillage systems after 16 years in the Loess Plateau of China. Catena, 2019, 173: 38-47.

doi: 10.1016/j.catena.2018.09.043
[41]
ZHOU Z H, WANG C K, ZHENG M H, JIANG L F, LUO Y Q. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology and Biochemistry, 2017, 115: 433-441.

doi: 10.1016/j.soilbio.2017.09.015
[42]
YANG H S, FANG C, MENG Y, DAI Y J, LIU J. Long-term ditch-buried straw return increases functionality of soil microbial communities. Catena, 2021, 202: 105316.

doi: 10.1016/j.catena.2021.105316
[43]
赵亚丽, 郭海斌, 薛志伟, 穆心愿, 李潮海. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响. 应用生态学报, 2015, 26(6): 1785-1792.
ZHAO Y L, GUO H B, XUE Z W, MU X Y, LI C H. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield. Chinese Journal of Applied Ecology, 2015, 26(6): 1785-1792. (in Chinese)
[44]
李玮, 乔玉强, 陈欢, 曹承富, 杜世州, 赵竹. 玉米秸秆还田配施氮肥对冬小麦土壤氮素表观盈亏及产量的影响. 植物营养与肥料学报, 2015, 21(3): 561-570.
LI W, QIAO Y Q, CHEN H, CAO C F, DU S Z, ZHAO Z. Effects of combined maize straw and N application on soil nitrogen surplus amount and yield of winter wheat. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 561-570. (in Chinese)
[45]
李涛, 葛晓颖, 何春娥, 欧阳竹. 豆科秸秆、 氮肥配施玉米秸秆还田对秸秆矿化和微生物功能多样性的影响. 农业环境科学学报, 2016, 35(12): 2377-2384.
LI T, GE X Y, HE C E, OUYANG Z. Effects of straw retention with mixing maize straw by alfalfa straw or N fertilizer on carbon and nitrogen mineralization and microbial functional diversity. Journal of Agro-Environment Science, 2016, 35(12): 2377-2384. (in Chinese)
[1] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[2] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[6] XIONG ShuPing,GAO Ming,ZHANG ZhiYong,QIN BuTan,XU SaiJun,FU XinLu,WANG XiaoChun,MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[7] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[8] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[9] TANG MingYao,SHEN ChongYang,CHEN ShuHuang,TANG GuangMu,LI QingJun,YAN CuiXia,GENG QingLong,FU GuoHai. Yield of Wheat and Maize and Utilization Efficiency of Nitrogen, Phosphorus and Potassium in Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(14): 2762-2774.
[10] WEI Lei,MI XiaoTian,SUN LiQian,LI ZhaoMin,SHI Mei,HE Gang,WANG ZhaoHui. Current Status of Chemical Fertilizers, Pesticides, and Irrigation Water and Their Reducing Potentials in Wheat Production of Northern China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2584-2597.
[11] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[12] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[13] GONG Liang,JIN DanDan,NIU ShiWei,WANG Na,XU JiaYi,SUI ShiJiang. Analysis of Chemical Fertilizer Application Reduction Potential for Paddy Rice in Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(9): 1926-1936.
[14] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[15] XU JiuKai,YUAN Liang,WEN YanChen,ZHANG ShuiQin,LIN ZhiAn,LI YanTing,LI HaiYan,ZHAO BingQiang. Phosphorus Fertilizer Replacement Value of Livestock Manure in Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(22): 4826-4839.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!