Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (9): 1708-1717.doi: 10.3864/j.issn.0578-1752.2023.09.008


Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau

WEI YaNan1(), BO QiFei1, TANG An1, GAO JiaRui1, MA Tian1, WEI XiongXiong1, ZHANG FangFang1, ZHOU XiangLi3, YUE ShanChao1,2(), LI ShiQing1,2()   

  1. 1 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi
    2 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi
    3 College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2022-03-31 Accepted:2022-06-24 Online:2023-05-01 Published:2023-05-10


【Objective】The aim of this study was to investigate the effects of long-term film mulching and application of organic fertilizer on yield, quality, dry matter accumulation and nitrogen uptake of spring maize through long-term localized field experiments. 【Method】 The long-term experiment began in 2009 at the Changwu Agri-Ecological Station, and the samples were collected in 2020 and 2021. The field experiments were conducted with four treatments: mulching, no N (F), no mulching, N 225 kg·hm-2 (N), mulching, N 225 kg·hm-2 (FN), and mulching, N 225 kg·hm-2 and apply organic fertilizer (FSN). Plant samples for measuring total biomass were collected at silking stage (R1) and harvest stage (R6). The samples were divided into different parts as required, and the total N content was determined. Crude protein, crude fat and crude amylum concentrations of maize grain were determined at harvest. 【Result】(1) Mulching under nitrogen application significantly increased the yield of spring maize, while additional application of organic fertilizer under mulching further increased the yield. Compared with the control, the N treatment increased the yield by 106%-176%. The FN treatment increased the yield by 21%-75% on this basis, and the FSN treatment was further increased by 5.6%-8.4%. (2) Mulching under nitrogen application significantly increased the dry matter accumulation and N uptake of spring maize, and the two indicators were further improved after the application of organic fertilizer. (3) The crude protein content under N treatment was 8.67%-8.94%, while the crude protein content under FN treatment increased to 8.99%-9.34%. The crude protein content of the FSN treatment was not further improved. There were no significant differences in crude fat and crude amylum content between the treatments. 【Conclusion】FN treatment significantly increased the yield and crude protein content of spring maize. The application of organic fertilizer under FSN further increased the yield on the basis of maintaining the crude protein content of the grain, and realized the high yield and high quality of spring maize.

Key words: spring maize, plastic mulching, organic fertilizer, yield, crude protein, crude fat, crude amylum

Table 1

Basic soil physiochemical properties"

SOM (g·kg-1
Total N (g·kg-1)
Mineral N (mg·kg-1)
Available P (mg·kg-1)
Available K (mg·kg-1)
11.8 0.87 3.15 14.4 144.6

Fig. 1

Precipitation and air temperature in the experimental site in 2020 and 2021"

Table 2

Grain yield and crude protein, crude fat and crude amylum yield of spring maize"

Grain yield (t·hm-2)
Crude protein yield (kg·hm-2)
Crude fat yield (kg·hm-2)
Crude amylum yield (kg·hm-2)
2020 F 4.24±0.12c 288.03±4.01c 176.97±9.50c 3225.54±83.98c
N 11.74±0.46b 1049.63±56.59b 416.14±71.59b 8936.72±247.03b
FN 14.19±0.85a 1324.72±73.28a 525.79±41.35a 10724.82±672.24a
FSN 15.04±0.62a 1381.88±67.18a 568.47±22.15a 11413.28±453.80a
2021 F 4.94±0.31d 304.45±31.53d 249.34±17.81d 3777.38±227.24d
N 10.24±0.43c 887.67±37.97c 486.72±39.63c 7822.29±339.45c
FN 17.84±0.33b 1603.88±45.30b 781.28±50.38b 13613.83±123.91b
FSN 19.34±0.17a 1791.63±76.01a 917.89±64.56a 14688.10±264.55a

Fig. 2

Biomass (pre-silking and post-silking) and harvest index of spring maize for each treatment in 2020 and 2021 Different letters above columns indicate significant difference at the 0.05 level among treatments. In Figures a and b, different capital letters indicate significant difference at the 0.05 level of the total biomass accumulation; different lowercase letters indicate significant difference at the 0.05 level of pre-silking and post-silking biomass accumulation. The same as below"

Fig. 3

N uptake (pre-silking and post-silking) and nitrogen harvest index of spring maize for each treatment in 2020-2021"

Fig. 4

Crude protein, crude fat and crude amylum content of spring maize for each treatment in 2020 and 2021"

Table 3

Correlation analysis between grain quality and N uptake of spring maize"

Pre-silking N uptake
Post-silking N uptake
Total N uptake
Crude protein content
Crude fat content
Crude amylum content
吐丝前吸氮量Pre-silking N uptake 1
吐丝后吸氮量Post-silking N uptake 0.489 1
总吸氮量Total N uptake 0.866** 0.860** 1
粗蛋白含量Crude protein content 0.807* 0.736* 0.894** 1
粗脂肪含量Crude fat content -0.511 0.082 -0.252 -0.480 1
粗淀粉含量Crude amylum content -0.632 -0.236 -0.505 -0.575 0.626 1
国家统计局. 中国统计年鉴2021. 北京: 中国统计出版社, 2021.
National Bureau of Statistics. China Statistical Yearbook 2021. Beijing: China Statistics Press, 2021. (in Chinese)
CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486-489.

doi: 10.1038/nature13609
CIAMPITTI I A, VYN T J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research, 2012, 133: 48-67.

doi: 10.1016/j.fcr.2012.03.008
LIU B H, CHEN X P, MENG Q F, YANG H S, VAN WART J. Estimating maize yield potential and yield gap with agro-climatic zones in China-distinguish irrigated and rainfed conditions. Agricultural and Forest Meteorology, 2017, 239: 108-117.

doi: 10.1016/j.agrformet.2017.02.035
TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264.
TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264.
TROYER A F. Adaptedness and heterosis in corn and mule hybrids. Crop Science, 2006, 46(2): 528-543.

doi: 10.2135/cropsci2005.0065
THOMPSON L M. Climatic change, weather variability, and corn Production1. Agronomy Journal, 1986, 78(4): 649-653.

doi: 10.2134/agronj1986.00021962007800040019x
GRAYBILL J S, COX W J, OTIS D J. Yield and quality of forage maize as influenced by hybrid, planting date, and plant density. Agronomy Journal, 1991, 83(3): 559-564.

doi: 10.2134/agronj1991.00021962008300030008x
WEBER V S, ARAUS J L, CAIRNS J E, SANCHEZ C, MELCHINGER A E, ORSINI E. Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crops Research, 2012, 128: 82-90.

doi: 10.1016/j.fcr.2011.12.016
陈先敏, 梁效贵, 赵雪, 高震, 吴巩, 申思, 林珊, 周丽丽, 周顺利. 历年国审玉米品种产量和品质性状变化趋势分析. 中国农业科学, 2018, 51(21): 4020-4029. doi: 10.3864/j.issn.0578-1752.2018.21.002.

doi: 10.3864/j.issn.0578-1752.2018.21.002
CHEN X M, LIANG X G, ZHAO X, GAO Z, WU G, SHEN S, LIN S, ZHOU L L, ZHOU S L. Analysis on the trends of yield and quality related traits for maize hybrids released in China over the past years. Scientia Agricultura Sinica, 2018, 51(21): 4020-4029. doi: 10.3864/j.issn.0578-1752.2018.21.002. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.21.002
张世煌, 田清震, 李新海, 李明顺, 谢传晓. 玉米种质改良与相关理论研究进展. 玉米科学, 2006, 14(1): 1-6.
ZHANG S H, TIAN Q Z, LI X H, LI M S, XIE C X. Advancement of maize germplasm improvement and relevant research. Journal of Maize Sciences, 2006, 14(1): 1-6. (in Chinese)
李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001.

doi: 10.3864/j.issn.0578-1752.2017.11.001
LI S K, ZHAO J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C, WANG P, LU W P, WANG J H, YANG Q F, WANG Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.11.001
MIAO Y X, MULLA D J, ROBERT P C, HERNANDEZ J A. Within-field variation in corn yield and grain quality responses to nitrogen fertilization and hybrid selection. Agronomy Journal, 2006, 98(1): 129-140.

doi: 10.2134/agronj2005.0120
RIZZO G, MONZON J P, TENORIO F A, HOWARD R, CASSMAN K G, GRASSINI P. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(4): e2113629119.
郑伟. 小麦品质性状及其调优技术研究进展. 耕作与栽培, 2001(1): 10-12.
ZHENG W. Research progress on wheat quality traits and their optimization techniques. Tillage and Cultivation, 2001(1): 10-12. (in Chinese)
SUN D B, LI H G, WANG E L, HE W Q, HAO W P, YAN C R, LI Y Z, MEI X R, ZHANG Y Q, SUN Z X, JIA Z K, ZHOU H P, FAN T L, ZHANG X C, LIU Q, WANG F J, ZHANG C C, SHEN J B, WANG Q S, ZHANG F S. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. National Science Review, 2020, 7(10): 1523-1526.

doi: 10.1093/nsr/nwaa146 pmid: 34691485
朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19(2): 259-273.
ZHU Z L, JIN J Y. Fertilizer use and food security in China. Plant Nutrition and Fertilizer Science, 2013, 19(2): 259-273. (in Chinese)
王泽林, 白炬, 李阳, 岳善超, 李世清. 氮肥施用和地膜覆盖对旱作春玉米氮素吸收及分配的影响. 植物营养与肥料学报, 2019, 25(1): 74-84.
WANG Z L, BAI J, LI Y, YUE S C, LI S Q. Effects of nitrogen application and plastic film mulching on nitrogen uptake and allocation in dry-land spring maize. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 74-84. (in Chinese)
LIU J L, BU L D, ZHU L, LUO S S, CHEN X P, LI S Q. Optimizing plant density and plastic film mulch to increase maize productivity and water-use efficiency in semiarid areas. Agronomy Journal, 2014, 106(4): 1138-1146.

doi: 10.2134/agronj13.0582
张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中. 覆膜时期和施氮量对陇东旱塬玉米产量和水氮利用效率的影响. 中国农业科学, 2022, 55(3): 479-490. doi: 10.3864/j.issn.0578-1752.2022.03.005.

doi: 10.3864/j.issn.0578-1752.2022.03.005
ZHANG J J, DANG Y, ZHAO G, WANG L, FAN T L, LI S Z. Influences of mulching periods and nitrogen application rates on maize yield as well as water and nitrogen use efficiencies in Loess Plateau of eastern Gansu Province. Scientia Agricultura Sinica, 2022, 55(3): 479-490. doi: 10.3864/j.issn.0578-1752.2022.03.005. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.03.005
LI H, FENG W T, HE X H, ZHU P, GAO H J, SUN N, XU M G. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. Journal of Integrative Agriculture, 2017, 16(4): 937-946.

doi: 10.1016/S2095-3119(16)61559-9
HARRIS J. Soil microbial communities and restoration ecology: Facilitators or followers? Science, 2009, 325(5940): 573-574.

doi: 10.1126/science.1172975 pmid: 19644111
GRASSINI P, ESKRIDGE K M, CASSMAN K G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 2013, 4(1): 1-11.
刘建亮. 旱地高产高效玉米栽培体系水氮管理及调控[D]. 杨凌: 西北农林科技大学, 2014.
LIU J L. Management and regulation of water and nitrogen for high-yield and high-efficiency dryland maize system[D]. Yangling: Northwest A & F University, 2014. (in Chinese)
吕丽华, 董志强, 张经廷, 张丽华, 梁双波, 贾秀领, 姚海坡. 水氮对冬小麦-夏玉米产量及氮利用效应研究. 中国农业科学, 2014, 47(19): 3839-3849. doi: 10.3864/j.issn.0578-1752.2014.19.012.

doi: 10.3864/j.issn.0578-1752.2014.19.012
L H, DONG Z Q, ZHANG J T, ZHANG L H, LIANG S B, JIA X L, YAO H P. Effect of water and nitrogen on yield and nitrogen utilization of winter wheat and summer maize. Scientia Agricultura Sinica, 2014, 47(19): 3839-3849. doi: 10.3864/j.issn.0578-1752.2014. 19.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2014. 19.012
徐洪敏, 朱琳, 刘毅, 陈新平, 李世清. 黄土旱塬几种农田水分管理模式下春玉米氮素吸收及分配的差异. 中国农业科学, 2010, 43(14): 2905-2912. doi: 10.3864/j.issn.0578-1752.2010.14.009.

doi: 10.3864/j.issn.0578-1752.2010.14.009
XU H M, ZHU L, LIU Y, CHEN X P, LI S Q. Nitrogen absorption and allocation of spring maize on dryland of Loess Plateau in different farmland water management patterns. Scientia Agricultura Sinica, 2010, 43(14): 2905-2912. doi: 10.3864/j.issn.0578-1752.2010.14.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2010.14.009
KIM K I, CLAY D E, CARLSON C G, CLAY S A, TROOIEN T. Do synergistic relationships between nitrogen and water influence the ability of corn to use nitrogen derived from fertilizer and soil? Agronomy Journal, 2008, 100(3): 551-556.

doi: 10.2134/agronj2007.0064
PANG B, MA X X, HONG J T, XU X, ZHANG X K, WANG X D. Acquisition pattern of nitrogen by microorganisms and plants affected by gravel mulch in a semiarid Tibetan grassland. Science of the Total Environment, 2022, 830: 154635.

doi: 10.1016/j.scitotenv.2022.154635
MA B L, DWYER L M. Nitrogen uptake and use of two contrasting maize hybrids differing in leaf senescence. Plant and Soil, 1998, 199(2): 283-291.

doi: 10.1023/A:1004397219723
ECHARTE L, ROTHSTEIN S, TOLLENAAR M. The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid. Crop Science, 2008, 48(2): 656-665.

doi: 10.2135/cropsci2007.06.0366
MENG Q F, CUI Z L, YANG H S, ZHANG F S, CHEN X P. Establishing high-yielding maize system for sustainable intensification in China. Advances in Agronomy, 2018, 148: 85-109.
吕丽华, 赵明, 赵久然, 陶洪斌, 王璞. 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 2008, 41(9): 2624-2632. doi: 10.3864/j.issn.0578-1752.2008.09.008.

doi: 10.3864/j.issn.0578-1752.2008.09.008
L H, ZHAO M, ZHAO J R, TAO H B, WANG P. Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica, 2008, 41(9): 2624-2632. doi: 10.3864/j.issn.0578-1752.2008.09.008. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2008.09.008
LI J T, ZHANG B. Paddy soil stability and mechanical properties as affected by long-term application of chemical fertilizer and animal manure in subtropical China. Pedosphere, 2007, 17(5): 568-579.

doi: 10.1016/S1002-0160(07)60067-8
王宜伦, 李潮海, 何萍, 金继运, 韩燕来, 张许, 谭金芳. 超高产夏玉米养分限制因子及养分吸收积累规律研究. 植物营养与肥料学报, 2010, 16(3): 559-566.
WANG Y L, LI C H, HE P, JIN J Y, HAN Y L, ZHANG X, TAN J F. Nutrient restrictive factors and accumulation of super-high-yield summer maize. Plant Nutrition and Fertilizer Science, 2010, 16(3): 559-566. (in Chinese)
YE S J, ZHENG C M, ZHANG Y, LIU X. Effects of reduced chemical nitrogen input combined with organic fertilizer application on the productivity of winter wheat and summer maize rotation and soil properties in central Henan Province. Chinese Journal of Eco-Agriculture, 2022, 30(6): 900-912.
丁凡, 严昌荣, 汪景宽. 黑土地保护中不容忽视的一个问题:地膜残留及其污染. 土壤通报, 2022, 53(1): 234-240.
DING F, YAN C R, WANG J K. An overlooked issue in black soil protection: Plastic film accumulation and pollution. Chinese Journal of Soil Science, 2022, 53(1): 234-240. (in Chinese)
邰书静. 品种、氮肥和种植密度对玉米产量与品质的影响[D]. 杨凌: 西北农林科技大学, 2010.
TAI S J. Effects of variety, nitrogen fertilizer and plant density on maize yield and quality[D]. Yangling: Northwest A & F University, 2010. (in Chinese)
赵晖, 李尚中, 樊廷录, 赵刚, 党翼, 王磊, 张建军, 王淑英, 程万莉, 唐小明. 种植密度与施氮量对旱地地膜玉米产量、水分利用效率和品质的影响. 干旱地区农业研究, 2021, 39(5): 169-177.
ZHAO H, LI S Z, FAN T L, ZHAO G, DANG Y, WANG L, ZHANG J J, WANG S Y, CHENG W L, TANG X M. Effects of planting density and nitrogen fertilizer rate on yield, water use efficiency and quality of dryland maize with film mulching. Agricultural Research in the Arid Areas, 2021, 39(5): 169-177. (in Chinese)
CORRENDO ADRIAN A, FERNANDEZ JAVIER A, VARA PRASAD P V, CIAMPITTI IGNACIO A. Do water and nitrogen management practices impact grain quality in maize? Agronomy, 2021, 11(9): 1851.

doi: 10.3390/agronomy11091851
于宁宁, 赵子航, 任佰朝, 赵斌, 刘鹏, 张吉旺. 综合农艺管理促进夏玉米氮素吸收、籽粒灌浆和品质提高. 植物营养与肥料学报, 2020, 26(5): 797-805.
YU N N, ZHAO Z H, REN B Z, ZHAO B, LIU P, ZHANG J W. Integrated agronomic management practices improve nitrogen absorption, grain filling and nutritional qualities of summer maize. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 797-805. (in Chinese)
司雷勇, 夏镇卿, 金岩, 陈广周, 王广福, 路海东, 薛吉全. 覆盖方式对旱地春玉米根冠生长及水分利用效率的影响. 作物杂志, 2020(1): 146-153.
SI L Y, XIA Z Q, JIN Y, CHEN G Z, WANG G F, LU H D, XUE J Q. Impacts of different mulching patterns on root-shoot growth of spring maize and water use efficiency in dry land. Crops, 2020(1): 146-153. (in Chinese)
ZHANG L, LIANG Z Y, HE X M, MENG Q F, HU Y C, SCHMIDHALTER U, ZHANG W, ZOU C Q, CHEN X P. Improving grain yield and protein concentration of maize (Zea mays L.) simultaneously by appropriate hybrid selection and nitrogen management. Field Crops Research, 2020, 249: 107754.

doi: 10.1016/j.fcr.2020.107754
LANG A L, PENDLETON J W, DUNGAN G H. Influence of population and nitrogen levels on yield and protein and oil contents of nine corn hybrids. Agronomy Journal, 1956, 48(7): 284-289.

doi: 10.2134/agronj1956.00021962004800070002x
GENTER C F, EHEART J F, LINKOUS W N. Effects of location, hybrid, fertilizer, and rate of planting on the oil and protein contents of corn Graing. Agronomy Journal, 1956, 48(2): 63-67.

doi: 10.2134/agronj1956.00021962004800020005x
ZHENG P Z, ALLEN W B, ROESLER K, WILLIAMS M E, ZHANG S R, LI J M, GLASSMAN K, RANCH J, NUBEL D, SOLAWETZ W, BHATTRAMAKKI D, LLACA V, DESCHAMPS S, ZHONG G Y, TARCZYNSKI M C, SHEN B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nature Genetics, 2008, 40(3): 367-372.

doi: 10.1038/ng.85 pmid: 18278045
[1] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[4] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[5] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[6] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[7] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[8] LI DeJin, MA Xiang, SUN Yue, XU MingGang, DUAN YingHua. Decomposition Characteristics of Straw and Organic Fertilizer Mixed Soil After Landfill in Typical Area [J]. Scientia Agricultura Sinica, 2023, 56(6): 1127-1138.
[9] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[10] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[11] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[12] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[13] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[14] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[15] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
Full text



No Suggested Reading articles found!