Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (7): 1344-1358.doi: 10.3864/j.issn.0578-1752.2023.07.012

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin

MA ShengLan1,2(), KUANG FuHong1(), LIN HongYu1,2, CUI JunFang1, TANG JiaLiang1, ZHU Bo1, PU QuanBo3   

  1. 1 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041
    2 University of Chinese Academy of Sciences, Beijing 100049
    3 Nanchong Academy of Agricultural Sciences, Nanchong 637000, Sichuan
  • Received:2022-02-24 Accepted:2022-05-09 Online:2023-04-01 Published:2023-04-03

Abstract:

【Objective】 The aim of this study was to ascertain the effects of straw returning quantity on the soil physical characteristics and to establish a recycling model for planting by-products, so as to provide a scientific basis for the utilization of straw resources in the central hilly area of Sichuan basin.【Method】 Herein, based on long-term field trials (2006-present) using a combination of in situ monitoring and computed tomography microscanning (CT), the effects of different amounts of straw returned to the field (0 straw returned (RMW0), 30% straw returned (RMW30), 50% straw returned (RMW50), and 100% straw returned (RMW100)) on the physical characteristics at the cultivated soil layer of the winter wheat-summer maize rotation system were examined.【Result】 (1) Straw returned to the field could significantly improve soil permeability, water holding capacity and hydraulic conductivity, and the improving effect increased significantly with the amount of straw returned to the field. Compared with RMW0, soil bulk density under RMW30, RMW50, and RMW100 reduced significantly by 15.2%, 11.7%, and 17.9%, respectively; whereas, soil porosity under these treatments were significantly increased by 18.4%, 13.7%, and 21.3%, respectively. In addition, the saturated hydraulic conductivity of RMW100 treatment was as high as 1.62 mm·min-1, and the soil hydraulic conductivity was superior to other treatments. (2) Straw returning promoted the development of existing pores into larger ones and significantly improved pore uniformity and connectivity. The RMW100 and RMW50 treatments improved the macropore composition of the soil better than that under the RMW30 and RMW0 treatments. The average pore diameter of the RMW100 treatment tended to be larger and inter-pore connectivity was optimal. The homogeneity of the pores under the RMW50 treatment was significantly improved and the pore size distribution was more appropriate than that under other treatments. (3) Compared with RMW0 treatment, the number of >2 mm agglomerates increased significantly and the number of 0.25-2 mm agglomerates decreased significantly after straw returned to the field, which was beneficial to the formation of large soil water-stable agglomerates and promoted the transformation of medium to large agglomerates. Both RMW50 and RMW100 treatments improved significantly better than that under RMW30 treatment. (4) Principal components analysis showed soil bulk density, water-stable aggregate with diameter larger than 0.25 mm and large pore were the main indicators of the physical characteristics of cultivated soils in calcareous purple soils. The first and second principal components explained 57.8% and 23.6% of the physical properties of the soil, respectively. The physical characteristics under RMW50 and RMW100 treatments were close to each other, and showed significant divergence from the RMW0 and RMW30 treatments on the PC1 and PC2 axes. 【Conclusion】 On the basis of no significant difference of crop yield in the central hilly area of Sichuan basin, there were differences in the effects of different straw returning quantities on the physical properties of cultivated soil layer, with no significant differences between 50% and 100% straw returning effects, but significantly better than that of 30% and 0 of straw incorporation. The specific straw application rate should be selected according to the local conditions.

Key words: straw returning, purple soil, winter wheat-summer maize rotation system, soil aggregate, soil pore characteristics

Fig. 1

Overview of the study area"

Fig. 2

Monthly average temperature and precipitation distribution of the study area from 2005 to 2019"

Table 1

Crop yield and straw production from 2008 to 2019"

冬小麦季Winter wheat 夏玉米季 Summer maize
RMW0 RMW30 RMW50 RMW100 RMW0 RMW30 RMW50 RMW100
作物产量
Crop yield (kg·hm-2)
3457±164ab 3282±143b 3721±212a 3765±205a 6115±342a 6217±330a 6254±269a 6263±337a
秸秆多年平均产量
Average straw production
(kg·hm-2)
5889±437 6247±272
秸秆还田量
The quantities of straw returning (kg·hm-2)
0 1874±65 3123±109 6247±272 0 1767±131 2944±219 5889±437

Fig. 3

Construction of microscopic 3D structure of soil macropores"

Table 2

Effects of straw returning quantity on soil particle composition and water stable agglomerates in cultivated soil"

粒径 Size (mm) RMW0 RMW30 RMW50 RMW100
容重Bulk density (g·cm-3) 1.45±0.06a 1.23±0.01b 1.28±0.04b 1.19±0.02b
总孔隙度 Total porosity (%) 45.4±2.34b 53.76±0.46a 51.63±1.60a 55.09±0.69a
饱和含水量Saturated water content (w/w, %) 25.77±2.24a 24.00±0.56a 26.31±1.10a 26.05±1.00a
饱和导水率Saturated hydraulic conductivity (mm·min-1) 0.80±0.01b 0.79±0.03b 1.11±0.26ab 1.62±0.37a
土壤颗粒组成
Soil particle composition (%)
0.05-2.0 25.43±4.78ab 22.71±1.62b 26.30±2.11ab 27.64±1.07a
0.002-0.05 43.40±3.65ab 46.59±3.09a 41.01±3.29b 44.13±2.08ab
<0.002 20.09±1.01ab 19.90±1.72ab 21.56±1.49a 16.19±1.05b
洗失量
Wash loss
11.06±0.91ab 10.79±0.64b 11.13±0.46ab 12.03±0.48a
水稳性团聚体含量
Water stable agglomerates content (%)
>2 18.14±4.36b 26.09±8.53a 27.99±5.02a 27.21±0.87a
0.25-2 50.66±6.33a 38.59±7.80b 43.47±4.6ab 36.33±2.52b
0.053-0.25 15.38±2.44a 17.40±1.48a 14.74±0.95a 17.40±1.48a
<0.053 15.82±3.48ab 18.02b±0.7ab 13.80±0.33b 22.07±1.84a
土壤团聚度 Soil agglomeration (%) 69.79±1.34a 72.33±0.34a 69.40 ±0.78a 65.80±1.65b

Fig. 4

Effects of straw returning quantity on soil compactness and moisture content in profile"

Table 3

Effects of straw returning quantity on soil pore characteristics of cultivated soil"

处理
Treatment
大孔隙度
(>25 μm)Macro porosity
(%)
大孔隙占总孔隙度的比例
Macro porosity as a proportion of total porosity (%)
不同孔径孔隙占大孔隙数量比/体积比
Ratio of pores under different sizes to the number/volume ratio of large pores
平均孔喉比
Mean pore-throat ratio
平均喉道截面积
Mean sectional area of throat (μm2)
形状因子
Shape factor-as circle
平均配位数
Mean
coordination number of pore
25-100
(μm)
100-500
(μm)
500-1000
(μm)
>1000
(μm)
RMW0 13 28.6 51.0/0 41.9/7.0 4.6/6.2 2.6/86.8 0.15 0.22 0.81 0.68
RMW30 8 14.8 41.9/0 49.8/13.5 5.5/12.1 2.8/74.4 0.12 0.17 0.80 0.69
RMW50 7 13.5 33.3/0 43.3/12.7 12.7/37.5 10.7/49.8 0.34 0.13 0.70 0.53
RMW100 17 36.0 41.8/0 39.6/3.2 10.2/5.7 8.4/91.0 0.34 0.25 0.74 0.88

Fig. 5

3D restoration and 3D cross-sectional diagram of undisturbed soil column with different treatments Yellow in the column and sectional diagram represents soil pores, white in the column and gray in the sectional diagram mean soil"

Fig. 6

Correlation analysis of soil physical characteristics under straw returning *Indicated significant difference P<0.05 (minimum significant difference); ** Indicated significant difference P<0.01 (moderately significant difference); *** Indicated significant difference P<0.001 (maximum significant difference)"

Table 4

Commonality of factors and eigenvectors of each indicator in principal component analysis"

因子
Factor
共同度
Communality
容重 Bulk density 0.959
孔隙度 Porosity 0.909
土壤饱和含水量
Saturated water content
0.822
土壤饱和导水率
Saturated hydraulic conductivity
0.860
孔隙数量
Porosity quantity
25-100 μm 0.930
100-500 μm 0.736
500-1000 μm 0.992
>1000 μm 0.991
颗粒组成
Soil particle composition
砂粒Sand 0.853
粉粒Silt 0.929
黏粒Clay 0.836
水稳性团聚体
Water-stable agglomerates
大团聚体Macro aggregate 0.877
中团聚体Medium aggregate 0.958
黏粉粒团聚体
Clay powder aggregate
0.935
微团聚体Micro aggregate 0.850

Fig. 7

Principal components analysis of soil physical properties under straw returning"

[1]
RABOT E, WIESMEIER M, SCHLÜTER S, VOGEL H J. Soil structure as an indicator of soil functions: A review. Geoderma, 2018, 314: 122-137.

doi: 10.1016/j.geoderma.2017.11.009
[2]
张俊伶, 张江周, 申建波, 田静, 金可默, 张福锁. 土壤健康与农业绿色发展:机遇与对策. 土壤学报, 2020, 57(4): 783-796.
ZHANG J L, ZHANG J Z, SHEN J B, TIAN J, JIN K M, ZHANG F S. Soil health and agriculture green development: Opportunities and challenges. Acta Pedologica Sinica, 2020, 57(4): 783-796. (in Chinese)
[3]
POLLÁKOVÁ N, ŠIMANSKÝ V, KRAVKA M. The influence of soil organic matter fractions on aggregates stabilization in agricultural and forest soils of selected Slovak and Czech hilly lands. Journal of Soils and Sediments, 2018, 18(8): 2790-2800.

doi: 10.1007/s11368-017-1842-x
[4]
武志杰, 张海军, 许广山, 张玉华, 刘春萍. 玉米秸秆还田培肥土壤的效果. 应用生态学报, 2002, 13(5): 539-542.
WU Z J, ZHANG H J, XU G S, ZHANG Y H, LIU C P. Effect of returning corn straw into soil on soil fertility. Chinese Journal of Applied Ecology, 2002, 13(5): 539-542. (in Chinese)
[5]
李春阳. 不同秸秆还田量对土壤性状及玉米产量的影响[D]. 沈阳: 沈阳农业大学, 2017.
LI C Y. Effects of different straw returning on soil properties and maize yield[D]. Shenyang: Shenyang Agricultural University, 2017. (in Chinese)
[6]
CATES A M, RUARK M D, HEDTCKE J L, POSNER J L. Long-term tillage, rotation and perennialization effects on particulate and aggregate soil organic matter. Soil and Tillage Research, 2016, 155: 371-380.

doi: 10.1016/j.still.2015.09.008
[7]
孟庆英, 邹洪涛, 韩艳玉, 张春峰. 秸秆还田量对土壤团聚体有机碳和玉米产量的影响. 农业工程学报, 2019, 35(23): 119-125.
MENG Q Y, ZOU H T, HAN Y Y, ZHANG C F. Effects of straw application rates on soil aggregates, soil organic carbon content and maize yield. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 119-125. (in Chinese)
[8]
江恒. 有机物输入量对黑土结构性质及其季节性变化的影响[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2019.
JIANG H. Effects of organic amendment rate on the soil structure properties and their seasonal variations in black soil[D]. Harbin: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2019. (in Chinese)
[9]
张久明, 迟凤琴, 匡恩俊, 韩锦泽, 刘宝林. 秸秆不同方式还田对土壤理化性质的影响. 黑龙江农业科学, 2016(9): 30-34.
ZHANG J M, CHI F Q, KUANG E J, HAN J Z, LIU B L. Effect of different straw returning ways on soil physical and chemical properties. Heilongjiang Agricultural Sciences, 2016(9): 30-34. (in Chinese)
[10]
王永栋, 武均, 蔡立群, 张仁陟. 秸秆还田量对陇中旱作麦田土壤团聚体稳定性和有机碳含量的影响. 干旱地区农业研究, 2022, 40(2): 232-239, 249.
WANG Y D, WU J, CAI L Q, ZHANG R Z. Effects of straw returning amount on stability of soil aggregates and organic carbon content in dryland wheat field of the Loess Plateau. Agricultural Research in the Arid Areas, 2022, 40(2): 232-239, 249. (in Chinese)
[11]
韩新忠, 朱利群, 杨敏芳, 俞琦, 卞新民. 不同小麦秸秆还田量对水稻生长、土壤微生物生物量及酶活性的影响. 农业环境科学学报, 2012, 31(11): 2192-2199.
HAN X Z, ZHU L Q, YANG M F, YU Q, BIAN X M. Effects of different amount of wheat straw returning on rice growth, soil microbial biomass and enzyme activity. Journal of Agro-Environment Science, 2012, 31(11): 2192-2199. (in Chinese)
[12]
GOVAERTS B, VERHULST N, CASTELLANOS-NAVARRETE A, SAYRE K D, DIXON J, DENDOOVEN L. Conservation agriculture and soil carbon sequestration: Between myth and farmer reality. Critical Reviews in Plant Sciences, 2009, 28(3): 97-122.

doi: 10.1080/07352680902776358
[13]
四川省秸秆综合利用规划(2016-2020) http://www.china nengyuan. com/news/105572.html.
Sichuan province straw comprehensive utilization planning. (2016-2020) http://www.china nengyuan.com/news/105572.html. (in Chinese)
[14]
吴婕, 朱钟麟, 郑家国, 姜心禄. 秸秆覆盖还田对土壤理化性质及作物产量的影响. 西南农业学报, 2006, 19(2): 192-195.
WU J, ZHU Z L, ZHENG J G, JIANG X L. Influences of straw mulching treatment on soil physical and chemical properties and crop yields. Southwest China Journal of Agricultural Sciences, 2006, 19(2): 192-195. (in Chinese)
[15]
徐勤学. 紫色土区主要农业活动对坡面土壤侵蚀的影响[D]. 武汉: 华中农业大学, 2011.
XU Q X. Effects of agricultural activities on hillslop soil erosion of purple soil[D]. Wuhan: Huazhong Agricultural University, 2011. (in Chinese)
[16]
张先婉, 朱波, 蒋明富. 中国科学院盐亭紫色土农业生态试验站建站20周年回顾. 山地学报, 2001, 19(S1): 1-3.
ZHANG X W, ZHU B, JIANG M F. A 20 years’ review on Yanting agro-ecological station of purple soil, Chinese Academy of Sciences. Journal of Mountain Research, 2001, 19(S1): 1-3. (in Chinese)
[17]
ZHU B, WANG T, KUANG F H, LUO Z X, TANG J L, XU T P. Measurements of nitrate leaching from a hillslope cropland in the central Sichuan Basin, China. Soil Science Society of America Journal, 2009, 73(4): 1419-1426.

doi: 10.2136/sssaj2008.0259
[18]
周明华. 紫色土坡耕地氮素平衡的模拟研究[D]. 北京: 中国科学院研究生院, 2010.
ZHOU M H. Simulation study on nitrogen balance of sloping farmland in purple soil[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2010. (in Chinese)
[19]
花可可. 紫色土坡耕地土壤固碳机制研究[D]. 北京: 中国科学院大学, 2013.
HUA K K. Study on soil carbon fixation mechanism of sloping farmland in purple soil[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese)
[20]
何毓蓉, 张保华, 周红艺, 黄成敏. 紫色土的水土保持与持续农业环境. 水土保持学报, 2002, 16(5): 11-13.
HE Y R, ZHANG B H, ZHOU H Y, HUANG C M. Soil and water conservation and sustainable agricultural environment of purple soil. Journal of Soil and Water Conservation, 2002, 16(5): 11-13. (in Chinese)
[21]
王红兰. 施用生物炭对紫色土坡耕地耕层土壤水力学性质的影响[D]. 成都: 中国科学院、水利部成都山地灾害与环境研究所, 2016.
WANG H L. Effect of the application of biochar on the hydrodynamic properties of the soil of the cultivated land on the purple soil slope[D]. Chengdu: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 2016. (in Chinese)
[22]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agriculture Scientech Press, 2000. (in Chinese)
[23]
邓继峰, 丁国栋, 李景浩, 邓舸, 张若菡, 周永斌, 殷有. 基于3种不同土壤粒径分级制度的毛乌素沙地樟子松林地土壤体积分形维数差异研究. 西北林学院学报, 2017, 32(3): 35-40.
DENG J F, DING G D, LI J H, DENG G, ZHANG R H, ZHOU Y B, YIN Y. Effects of three soil particle size classification system on calculating volume-based fractal dimension of Mongolian pine plantations in Mu Us Desert. Journal of Northwest Forestry University, 2017, 32(3): 35-40. (in Chinese)
[24]
胡雷, 王长庭, 阿的鲁骥, 字洪标. 高寒草甸植物根系生物量及有机碳含量与土壤机械组成的关系. 西南民族大学学报(自然科学版), 2015, 41(1): 6-11.
HU L, WANG C T, ADE LU-JI, ZI H B. Relationship between root biomass, soil organic carbon and soil mechanical composition in alpine meadow. Journal of Southwest University for Nationalities (Natural Science Edition), 2015, 41(1): 6-11. (in Chinese)
[25]
雷泽勇, 于东伟, 周凤艳, 张岩松, 李尧, 白津宁. 樟子松人工林营建对土壤颗粒组成变化的影响. 生态学报, 2020, 40(15): 5367-5376.
LEI Z Y, YU D W, ZHOU F Y, ZHANG Y S, LI Y, BAI J N. Effects of afforestation with Pinus sylvestris var. mongolica on change of soil particle size distribution in sandy land. Acta Ecologica Sinica, 2020, 40(15): 5367-5376. (in Chinese)
[26]
曹晶晶. 棉秆还田对连作棉田土壤团聚体养分及有机碳组分的影响[D]. 石河子: 石河子大学, 2016.
CAO J J. Effect of returning straw into field on the soil aggregates nutrients, organic carbon components[D]. Shihezi: Shihezi University, 2016. (in Chinese)
[27]
窦森, 李凯, 关松. 土壤团聚体中有机质研究进展. 土壤学报, 2011, 48(2): 412-418.
DOU S, LI K, GUAN S. A review on organic matter in soil aggregates. Acta Pedologica Sinica, 2011, 48(2): 412-418. (in Chinese)
[28]
薛斌, 黄丽, 鲁剑巍, 李小坤, 殷志遥, 刘智杰, 陈涛. 连续秸秆还田和免耕对土壤团聚体及有机碳的影响. 水土保持学报, 2018, 32(1): 182-189.
XUE B, HUANG L, LU J W, LI X K, YIN Z Y, LIU Z J, CHEN T. Effects of continuous straw returning and no-tillage on soil aggregates and organic carbon. Journal of Soil and Water Conservation, 2018, 32(1): 182-189. (in Chinese)
[29]
侯晓娜, 李慧, 朱刘兵, 韩燕来, 唐政, 李忠芳, 谭金芳, 张水清. 生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响. 中国农业科学, 2015, 48(4): 705-712.

doi: 10.3864/j.issn.0578-1752.2015.04.08
HOU X N, LI H, ZHU L B, HAN Y L, TANG Z, LI Z F, TAN J F, ZHANG S Q. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution. Scientia Agricultura Sinica, 2015, 48(4): 705-712. (in Chinese)
[30]
孙梅, 黄运湘, 孙楠, 徐明岗, 王伯仁, 张旭博. 农田土壤孔隙及其影响因素研究进展. 土壤通报, 2015, 46(1): 233-238.
SUN M, HUANG Y X, SUN N, XU M G, WANG B R, ZHANG X B. Advance in soil pore and its influencing factors. Chinese Journal of Soil Science, 2015, 46(1): 233-238. (in Chinese)

doi: 10.1111/ejs.1995.46.issue-2
[31]
赵丽丽, 李陆生, 蔡焕杰, 石小虎, 薛少平. 有机物料还田对土壤导水导气性的综合影响. 中国农业科学, 2019, 52(6): 1045-1057.

doi: 10.3864/j.issn.0578-1752.2019.06.008
ZHAO L L, LI L S, CAI H J, SHI X H, XUE S P. Comprehensive effects of organic materials incorporation on soil hydraulic conductivity and air permeability. Scientia Agricultura Sinica, 2019, 52(6): 1045-1057. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.06.008
[32]
孙纪杰, 李新举, 李海燕, 黄晓娜. 不同复垦工艺土壤物理性状研究. 土壤通报, 2013, 44(6): 1332-1336.
SUN J J, LI X J, LI H Y, HUANG X N. The research of soil physical properties with different reclamations. Chinese Journal of Soil Science, 2013, 44(6): 1332-1336. (in Chinese)
[33]
王秋菊, 刘峰, 焦峰, 常本超, 姜辉, 宫秀杰. 秸秆粉碎集条深埋机械还田对土壤物理性质的影响. 农业工程学报, 2019, 35(17): 43-49.
WANG Q J, LIU F, JIAO F, CHANG B C, JIANG H, GONG X J. Effects of strip-collected chopping and mechanical deep-buried return of straw on physical properties of soil. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 43-49. (in Chinese)
[34]
李江涛, 钟晓兰, 张斌, 刘勤, 赵其国. 长期施用畜禽粪便对土壤孔隙结构特征的影响. 水土保持学报, 2010, 24(6): 137-140, 180.
LI J T, ZHONG X L, ZHANG B, LIU Q, ZHAO Q G. Soil pore structure properties as affected by long-term application of poultry litter and livestock manure. Journal of Soil and Water Conservation, 2010, 24(6): 137-140, 180. (in Chinese)
[35]
陈学文, 张晓平, 梁爱珍, 贾淑霞, 时秀焕, 范如芹, 魏守才. 耕作方式对黑土硬度和容重的影响. 应用生态学报, 2012, 23(2): 439-444.
CHEN X W, ZHANG X P, LIANG A Z, JIA S X, SHI X H, FAN R Q, WEI S C. Effects of tillage mode on black soil’s penetration resistance and bulk density. Chinese Journal of Applied Ecology, 2012, 23(2): 439-444. (in Chinese)
[36]
WANG S C, ZHAO Y W, WANG J Z, ZHU P, CUI X, HAN X Z, XU M G, LU C G. The efficiency of long-term straw return to sequester organic carbon in Northeast China’s cropland. Journal of Integrative Agriculture, 2018, 17(2): 436-448.

doi: 10.1016/S2095-3119(17)61739-8
[37]
POESEN J, INGELMO-SANCHEZ F. Runoff and sediment yield from topsoils with different porosity as affected by rock fragment cover and position. CATENA, 1992, 19(5): 451-474.

doi: 10.1016/0341-8162(92)90044-C
[38]
KUNCORO P H, KOGA K, SATTA N, MUTO Y. A study on the effect of compaction on transport properties of soil gas and water I: Relative gas diffusivity, air permeability, and saturated hydraulic conductivity. Soil and Tillage Research, 2014, 143: 172-179.

doi: 10.1016/j.still.2014.02.006
[39]
张琪. 长期免耕措施下土壤结构定量化研究[D]. 北京: 中国地质大学(北京), 2020.
ZHANG Q. Quantitative description of soil structure under long-term no-tillage farming[D]. Beijing: China University of Geosciences, 2020. (in Chinese)
[40]
WATSON K W, LUXMOORE R J. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Science Society of America Journal, 1986, 50(3): 578-582.

doi: 10.2136/sssaj1986.03615995005000030007x
[41]
窦莉洋. 秸秆还田对不同类型土壤团聚体稳定性、有机碳含量及其分布的影响[D]. 沈阳: 沈阳农业大学, 2018.
DOU L Y. Effects of straw return to field on stability, organic carbon content and distribution of different types of soil aggregates[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[42]
张鹏, 贾志宽, 王维, 路文涛, 高飞, 聂俊峰. 秸秆还田对宁南半干旱地区土壤团聚体特征的影响. 中国农业科学, 2012, 45(8): 1513-1520.

doi: 10.3864/j.issn.0578-1752.2012.08.007
ZHANG P, JIA Z K, WANG W, LU W T, GAO F, NIE J F. Effects of straw returning on characteristics of soil aggregates in semi-arid areas in southern Ningxia of China. Scientia Agricultura Sinica, 2012, 45(8): 1513-1520. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.08.007
[43]
董珊珊, 窦森, 邵满娇, 靳亚双, 李立波, 谭岑, 林琛茗. 秸秆深还不同年限对黑土腐殖质组成和胡敏酸结构特征的影响. 土壤学报, 2017, 54(1): 150-159.
DONG S S, DOU S, SHAO M J, JIN Y S, LI L B, TAN C, LIN C M. Effect of corn stover deep incorporation with different years on composition of soil humus and structural characteristics of humic acid in black soil. Acta Pedologica Sinica, 2017, 54(1): 150-159. (in Chinese)
[44]
朱姝, 窦森, 关松, 郭聘. 秸秆深还对土壤团聚体中胡敏素结构特征的影响. 土壤学报, 2016, 53(1): 127-136.
ZHU S, DOU S, GUAN S, GUO P. Effect of corn stover deep incorporation on composition of humin in soil aggregates. Acta Pedologica Sinica, 2016, 53(1): 127-136. (in Chinese)
[45]
王秋菊, 焦峰, 刘峰, 常本超, 姜辉, 姜宇, 米刚, 周鑫. 秸秆粉碎集条深埋机械还田模式对玉米生长及产量的影响. 农业工程学报, 2018, 34(9): 153-159.
WANG Q J, JIAO F, LIU F, CHANG B C, JIANG H, JIANG Y, MI G, ZHOU X. Effect of straw pulverization and concentrated deep-buried into field on growth and yield of maize. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 153-159. (in Chinese)
[46]
闫雷, 李思莹, 孟庆峰, 周丽婷, 董天浩, 戴建军, 张宇飞, 喇乐鹏. 秸秆还田与有机肥对黑土区土壤团聚性的影响. 东北农业大学学报, 2019, 50(12): 58-67.
YAN L, LI S Y, MENG Q F, ZHOU L T, DONG T H, DAI J J, ZHANG Y F, LA Y P. Effect of straw returning and organic manure on soil aggregate in black soil area. Journal of Northeast Agricultural University, 2019, 50(12): 58-67. (in Chinese)
[47]
皇甫呈惠, 孙筱璐, 刘树堂, 贾志越, 赵洪翠. 长期定位秸秆还田对土壤团聚体及有机碳组分的影响. 华北农学报, 2020, 35(3): 153-159.

doi: 10.7668/hbnxb.20190844
HUANGFU C H, SUN X L, LIU S T, JIA Z Y, ZHAO H C. Effect of long-term straw returning to field on soil aggregates and organic carbon components. Acta Agriculturae Boreali-Sinica, 2020, 35(3): 153-159. (in Chinese)

doi: 10.7668/hbnxb.20190844
[48]
邹文秀, 韩晓增, 陆欣春, 郝翔翔, 江恒, 刘元明. 不同土地利用方式对黑土剖面土壤物理性质的影响. 水土保持学报, 2015, 29(5): 187-193, 199.
ZOU W X, HAN X Z, LU X C, HAO X X, JIANG H, LIU Y M. Effect of land use types on physical properties of black soil profiles. Journal of Soil and Water Conservation, 2015, 29(5): 187-193, 199. (in Chinese)
[49]
王秋菊, 高中超, 常本超, 刘峰. 有机物料深耕还田改善石灰性黑钙土物理性状. 农业工程学报, 2015, 31(10): 161-166.
WANG Q J, GAO Z C, CHANG B C, LIU F. Deep tillage with organic materials returning to field improving soil physical characters of calcic chernozem. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 161-166. (in Chinese)
[50]
杨永辉, 武继承, 毛永萍, 韩庆元, 何方. 利用计算机断层扫描技术研究土壤改良措施下土壤孔隙. 农业工程学报, 2013, 29(23): 99-108.
YANG Y H, WU J C, MAO Y P, HAN Q Y, HE F. Using computed tomography scanning to study soil pores under different soil structure improvement measures. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(23): 99-108. (in Chinese)
[1] YANG JianJun, GAI Hao, ZHANG MengXuan, CAI YuRong, WANG LiYan, WANG LiGang. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(5): 892-906.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[4] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[5] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[6] WANG Liang,LIU YuanYuan,QIAN Xin,ZHANG Hui,DAI HongCui,LIU KaiChang,GAO YingBo,FANG ZhiJun,LIU ShuTang,LI ZongXin. The Single Season Wheat Straw Returning to Promote the Synergistic Improvement of Carbon Efficiency and Economic Benefit in Wheat- Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2022, 55(2): 350-364.
[7] MA LiXiao,LI Jing,ZOU ZhiChao,CAI AnDong,ZHANG AiPing,LI GuiChun,DU ZhangLiu. Effects of No-Tillage and Straw Returning on Soil C-Cycling Enzyme Activities in China: Meta-Analysis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925.
[8] JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951.
[9] SONG Ge,SHI DongMei,JIANG GuangYi,JIANG Na,YE Qing,ZHANG JianLe. Effects of Different Fertilization Methods on Restoration of Eroded and Degraded Cultivated-Layer in Slope Farmland [J]. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714.
[10] Xu LI,WeiLing DONG,ALin SONG,YanLing LI,YuQiu LU,EnZhao WANG,XiongDuo LIU,Meng WANG,FenLiang FAN. Effects of Straw Addition on Soil Biological N2-Fixation Rate and Diazotroph Community Properties [J]. Scientia Agricultura Sinica, 2021, 54(5): 980-991.
[11] ZHENG FengJun, WANG Xue, LI ShengPing, LIU XiaoTong, LIU ZhiPing, LU JinJing, WU XuePing, XI JiLong, ZHANG JianCheng, LI YongShan. Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice [J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607.
[12] WANG XinYuan,ZHAO SiDa,ZHENG XianFeng,WANG ZhaoHui,HE Gang. Effects of Straw Returning and Nitrogen Application Rate on Grain Yield and Nitrogen Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053.
[13] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[14] LI Jing,WU HuiJun,WU XuePing,WANG BiSheng,YAO YuQing,LÜ JunJie. Long-Term Conservation Tillage Enhanced Organic Carbon and Nitrogen Contents of Particulate Organic Matter in Soil Aggregates [J]. Scientia Agricultura Sinica, 2021, 54(2): 334-344.
[15] MIAO FangFang,MIAN YouMing,PU XueKe,WU ChunHua,ZHOU YongJin,HOU XianQing. Effects of Tillage with Mulching on Soil Aggregate Structure and Water Use Efficiency of Potato in Dry-Farming Area of Southern Ningxia [J]. Scientia Agricultura Sinica, 2021, 54(11): 2366-2376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!