Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (6): 1019-1034.doi: 10.3864/j.issn.0578-1752.2023.06.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types

NAN Rui1(), YANG YuCun1, SHI FangHui1, ZHANG LiNing1, MI TongXi1, ZHANG LiQiang2, LI ChunYan2, SUN FengLi1, XI YaJun1, ZHANG Chao1()   

  1. 1 College of Agronomy, Northwest A&F University/Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agricultural and Rural Affairs, Yangling 712100, Shaanxi
    2 Baoji Longxian Seed Workstation, Baoji 712100, Shaanxi
  • Received:2022-11-17 Accepted:2023-01-03 Online:2023-03-16 Published:2023-03-23

Abstract:

【Objective】 The aim of this study is to screen the evaluation indexes of wheat source-sink and classify the source-sink types. In addition, the relationships between different source-sink types and the agronomic traits, yield and grain quality of wheat were also clarified, which provides a better understanding of wheat source-sink metabolism and wheat breeding. 【Method】 In this study, the related agronomic traits of source metabolism and sink metabolism of 190 wheat varieties which from different regions were measured. Then, the source-sink metabolic capacity of wheat was evaluated by principal component analysis, and the superior wheat materials were selected according to the composite score. Furthermore, the hierarchical clustering was conducted based on the source size (leaf area), source activity, sink number and sink activity. Then, based on the clustering results, the source-sink types of wheat were classified and the source-sink characteristics of different region of wheats were analyzed. Meanwhile, the agronomic, yield and quality traits of different wheat source-sink types were compared and analyzed. 【Result】 For better understanding the results, six indicators related to source activity were converted into three independent indicators (photochemical quenching coefficient, maximum photosynthetic potential, chlorophyll content), and five indicators related to sink activity were converted into two independent indicators (maximum filling rate, filling duration) based on the principal component analysis. The cumulative contributions of three source activity indicators and two sink activity indicators were 82.80% and 92.90%, respectively. Then the top 10 wheat varieties were screened based on the source activity, source size (leaf area), sink activity, and sink number (number of spike grains). According to the source-library relationship, all the wheat varieties were divided into three major categories and eight subcategories, including sufficient source-weak sink type (medium source-weak sink type, strong source-medium sink type), weak source-sufficient sink type (medium source-strong sink type, weak source-medium sink type) and source-sink balance type (weak source-weak sink type limited by sink activity, weak source-weak sink type limited by source activity and grain number per spike, medium source-medium sink type, and strong source-strong sink type). 76.84% of wheat lines were contained in three subcategories (weak source-weak sink type, the medium source-strong sink type, and strong source-strong sink type), other wheat lines were distributed in other subcategories evenly. Most wheat varieties of China showed similar source-sink relationship, which presented the medium level of source activity, leaf area and grain number per spike, while the sink activity was high. But the sink activity of wheat varieties which were cultivated at the middle and lower reaches of the Yangtze River is low. The plant height, length of uppermost internode and spikelet number in different categories indicated that the sufficient source-weak sink type>source-sink balance type>weak source-sufficient sink type, and the dry protein content, dry wet gluten content and sedimentation value in different categories showed that source-weak sink type > source-sink balance type > weak source-sufficient sink type. Grain water absorption showed that the stronger the sink activity had the higher the water absorption rate. The yield of per plant was different among different source-bank groups, but it was positively correlated with the source activity and the number of grains per spike in the three subcategories which contained most wheat varieties. 【Conclusion】 In this study, photochemical quenching coefficient, maximum photosynthetic potential and chlorophyll content could be used as the main indexes to evaluate the activity of wheat source. The maximum filling rate and filling duration could be used as the main indexes to evaluate the activity of wheat sink. In practical production, the wheat yield could be improved by increasing the number of grains per spike and the activity of source. When the supply capacity of source is stronger than the absorption capacity of sink, the plant height, peduncle length, spikelet number, dry protein content, dry wet gluten content and sedimentation value would be increased. Strong sink activity would help us to improve the water absorption of wheat grains.

Key words: wheat, evaluation indicators, source-sink type, agronomic traits, yield traits, quality traits

Table 1

Variation range and genetic diversity of source-sink indexes in wheat"

特征
Characteristic
性状
Trait
最小值
Minimum value
最大值
Maximum value
变异系数
Coefficient of variation
多样性指数
Diversity index
源性状
Source traits
SPAD 30.15 67.58 0.11 2.00
Fv’/Fm 0.03 0.32 0.30 2.05
Fv/Fm 0.81 0.87 0.01 1.83
NPQ 0.26 1.43 0.27 2.04
qP 0.06 0.53 0.26 2.03
Fm 11259.33 28458.33 0.19 2.02
叶面积 Leaf area (cm2) 14.04 59.40 0.26 1.96
库性状
Sink traits
灌浆持续期 Grain filling duration (d) 27.00 49.14 0.10 2.02
平均灌浆速率 Average filling rate (g·d-1) 0.73 1.78 0.16 2.09
最大灌浆速率 Maximal filling rate (g·d-1) 1.01 2.71 0.17 2.08
千粒重 thousand-grain weight (g) 22.41 60.11 0.16 2.07
籽粒面积 Grain area (mm2) 12.14 23.99 0.11 2.05
穗粒数 Grain number per spike 21.73 63.56 0.19 2.08

Table 2

Initial eigenvalue, variance contribution rate and cumulative contribution rate of wheat source active and sink active principal components"

特征
Characteristic
成分
Component
初始特征值Initial eigenvalues 提取载荷平方和Extraction eigenvalues
总计
Total
方差百分比
Variance (%)
累积
Cumulative (%)
总计
Total
方差百分比
Variance (%)
累积
Cumulative (%)
源活性
Source activity
1 2.44 40.62 40.62 2.44 40.62 40.62
2 1.52 25.37 65.99 1.52 25.37 65.99
3 1.01 16.81 82.80 1.01 16.81 82.80
4 0.70 11.61 94.41
5 0.32 5.27 99.68
6 0.02 0.32 100.00
库活性
Sink activity
1 3.49 69.89 69.89 3.49 69.89 69.89
2 1.15 23.01 92.89 1.15 23.01 92.89
3 0.26 5.13 98.02
4 0.08 1.63 99.65
5 0.02 0.34 100.00

Table 3

Principal component load matrix of wheat source activity and sink activity"

特征 Characteristic 性状 Trait 第一主成分 Component 1 第二主成分 Component 2 第三主成分 Component 3
源活性
Source active
SPAD -0.27 0.56 0.55
NPQ 0.61 -0.55 0.41
Fv’/Fm 0.80 0.54 -0.22
Fv/Fm -0.28 0.60 0.42
qP 0.86 0.45 -0.21
Fm -0.72 0.23 -0.52
库活性
Sink activity
灌浆持续期 Grain filling duration (d) -0.18 0.96
平均灌浆速率 Average filling rate (g·d-1) 0.95 -0.21
最大灌浆速率 Maximal filling rate (g·d-1) 0.96 -0.14
千粒重 Thousand-grain weight (g) 0.93 0.30
籽粒面积 Grain area (mm2) 0.88 0.27

Table 4

Top ten wheat varieties with source activity and their principal component scores"

材料
Materal
第一主成分得分
Component 1 score
第二主成分得分
Component 2 score
第三主成分得分
Component 3 score
库活性综合得分
Comprehensive score of sink activity
IR39 5.44 -0.17 -0.42 2.09
红粒无名 Hongliwuming 3.52 2.60 -0.04 2.09
西农1376 Xinong1376 2.78 0.80 0.13 1.36
印度蓝粒 Yindulanli 3.32 -0.27 -0.21 1.24
MK186 2.49 1.17 -0.57 1.21
豫麦54 Yumai54 1.45 1.97 0.41 1.16
SIRMIONE 2.78 0.01 0.15 1.16
西农100 Xinong100 1.59 3.08 -1.67 1.14
开麦21 Kaimai21 1.78 1.83 -0.31 1.14
疙绉麦 Gezhoumai 1.88 0.65 1.12 1.12

Table 5

Top ten wheat varieties in source size"

材料 Matera 叶面积 Leaf area (cm2)
GRIFONE 235 59.40
LAGODEKHIS-GRDZEL TAVTAVA 53.12
H 798 48.38
LOHARI Y91-92 No.123 46.84
西昌76-9 Xichang76-9 42.02
RED-BOBS-222 40.91
中国春 China Spring 40.85
Claudia 40.74
MK186 39.51
SENMARQ 39.11

Table 6

Top ten wheat varieties in sink activity and their principal component scores"

材料
Wheat materal
第一主成分得分
Component 1 score
第二主成分得分
Component 2 score
库活性综合得分
Comprehensive score of sink activity
开麦21 Kaimai21 4.43 0.25 3.15
豫麦19 Yumai19 4.26 0.41 3.07
西农928 Xinong928 3.94 0.89 2.95
中麦578 Zhongmai578 4.09 0.12 2.89
宁麦12 Ningmai12 3.39 1.41 2.7
FS056 3.55 -0.38 2.39
周麦26 Zhoumai26 3.12 0.68 2.33
内乡182 Neixiang182 3.59 -0.84 2.31
豫农949 Yunong949 3.72 -1.33 2.29
丰抗8号 Fengkang8 3.29 -0.14 2.27

Table 7

Top ten wheat varieties in sink"

材料
Wheat materal
穗粒数
Grain number per spike
洲元9369 Zhouyuan9369 63.56
Claudia 58.28
YDSS 58.17
红粒(zh)Hongli(zh) 58.14
焦麦266 Jiaomai266 57.07
IR89 56.95
IR202 56.95
西昌76-9 Xichang76-9 54.95
IR4 54.06
IR211 39.11

Fig. 1

Source-sink characteristics and clustering results of 190 wheat materials"

Table 8

Distribution of 190 wheat materials in eight groups"

类群
Group
源活性
Source activity
叶面积
Leaf area (cm2)
库活性
Sink activity
穗粒数
Grain number per spike
0.19±0.46b 21.54±2.79de -1.68±0.73de 46.10±4.91ab
1.81±0.49a 18.75±2.73e -0.95±1.27de 42.37±7.85bc
-1.89±0.51c 20.92±3.74e 1.04±0.84a 38.67±2.44cde
-0.21±0.88b 30.57±5.97bc -1.73±0.92e 34.43±5.52e
-0.24±0.55b 26.69±5.16cd 0.16±0.61b 35.41±5.42de
0.14±0.60b 23.89±4.38de 1.19±0.96a 40.63±6.00bcde
-0.05±0.93b 53.64±5.53a 0.00±0.88bc 41.19±5.48bcd
0.22±0.67b 32.50±6.23b -0.79±0.81cd 49.69±5.94a

Table 9

Growth period and source - sink type distribution of wheat in different regions"

类群
Group
黄淮冬麦区
Huang-huai winter wheat area
长江中下游麦区
Wheat region in the middle and lower reaches of yangtze river
西南春麦区
Southwest spring wheat region
北部冬麦区
Northern winter wheat region
国外
Foreign
variety
5 1 6
2
2 1 1
1 13
26 4 1 21
32 2 4 3 14
3
8 1 1 16
开花时间(月/日)Flowering time (M/D) 4/11-5/03 4/12-4/17 4/13-4/19 4/13-4/20 4/09-4/30
平均开花时间(月/日)
Average flowering time (M/D)
4/16 4/13 4/15 4/17 4/17
成熟时间(月/日)Maturity time (M/D) 5/16-6/04 5/18-5/29 5/21-6/01 5/22-6/02 5/16-6/09
平均成熟时间(月/日)
Average maturity time (M/D)
5/25 5/23 5/24 5/26 5/25

Table 10

Agronomic and yield traits of wheat with different source-sink types"

类群
Group
株高
Plant height
(cm)
穗下节长
Length of uppermost internode (cm)
小穗数
Sikelet number per spike
千粒重
Thousand-grain weight (g)
穗粒数
Gain number per spike
单株产量
Single plant yield
(g)
104.29±19.32bc 33.84±8.59bc 10.67±2.26a 35.96±4.78e 46.10±4.78ab 17.56±4.46ab
100.40±15.04bc 33.67±6.95bc 10.27±0.41a 39.82±5.54de 42.37±6.41bc 17.75±4.56ab
95.28±18.61bc 32.27±4.77bc 8.90±2.88a 49.07±1.25ab 38.67±2.11cde 16.99±6.05ab
119.73±31.20ab 40.89±13.06ab 11.02±2.36a 35.09±5.22e 34.43±5.33e 13.11±3.63b
107.96±22.54abc 35.69±6.70abc 9.72±2.84a 45.44±3.45bc 35.41±5.37de 15.77±4.37ab
93.95±18.55c 31.67±6.85c 8.85±2.27a 50.74±5.19a 40.48±5.88bcde 17.84±4.28ab
130.00±32.49a 42.93±4.68a 11.27±0.38a 43.99±4.23cd 41.19±4.48bcd 20.31±2.23a
108.47±21.57abc 36.03±6.22abc 9.31±2.35a 40.21±4.50de 49.69±5.84a 18.27±4.74ab

Table 11

Quality Traits of Different Groups of Wheat"

类群
Group
蛋白质干基
Dry protein content (%)
水分含量
Moisture content
(%)
沉降值
Sedimentation value (mL)
湿面筋干基
Dry wet gluten content (%)
吸水率
Water absorption
(%)
容重
Volumetric weight (g·L-1)
15.59±1.53a 9.58±0.37a 49.47±5.52ab 34.16±3.13a 57.90±2.91ab 811.84±16.98a
16.08±1.46a 9.81±0.11a 51.80±2.82a 34.40±2.20a 57.67±4.18ab 814.93±7.28a
14.88±2.94a 9.84±0.37a 45.76±12.93ab 33.20±6.75a 58.87±3.88ab 808.56±18.77a
16.42±2.95a 10.08±0.37a 51.92±9.15a 35.62±5.72a 55.97±2.34b 810.66±18.46a
14.54±1.58a 9.86±0.44a 44.30±5.87b 32.28±3.48a 59.49±2.67a 802.91±15.11a
14.39±1.26a 9.88±0.45a 43.81±4.52b 32.54±2.47a 60.80±2.51a 801.98±14.94a
15.61±1.70a 9.79±0.11a 52.06±5.31a 33.44±4.29a 59.34±1.48a 817.58±3.93a
14.45±1.50a 9.90±0.43a 45.97±6.33ab 31.88±2.98a 58.73±2.23ab 811.42±14.35a
[1]
YANG F, ZHANG J J, LIU Q E, LIU H, ZHOU Y H, YANG W Y, MA W J. Improvement and re-evolution of tetraploid wheat for global environmental challenge and diversity consumption demand. International Journal of Molecular Sciences, 2022, 23(4): 2206.

doi: 10.3390/ijms23042206
[2]
LI A, LIU D, YANG W, KISHII M, MAO L. Synthetic hexaploid wheat: Yesterday, today, and tomorrow. Engineering, 2018, 4(4): 552-558.

doi: 10.1016/j.eng.2018.07.001
[3]
DE SOUSA T, RIBEIRO M, SABENÇA C, IGREJAS G. The 10,000-year success story of wheat!. Foods(Basel, Switzerland), 2021, 10(9): 2124.
[4]
WHITE A C, ROGERS A, REES M, OSBORNE C P. How can we make plants grow faster? A source-sink perspective on growth rate. Journal of Experimental Botany, 2015, 67(1): 31-45.

doi: 10.1093/jxb/erv447
[5]
PAUL M J, WATSON A, GRIFFITHS C A. Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. Journal of Experimental Botany, 2019, 71(7): 2270-2280.

doi: 10.1093/jxb/erz480
[6]
赵全志, 黄丕生. 略论作物生产的源库系统行为. 耕作与栽培, 1998(6): 36-38.
ZHAO Q Z, HUANG P S. On the source-sink system behavior of crop production. Tillage and Cultivation, 1998(6): 36-38. (in Chinese)
[7]
马冬云, 郭天财, 宋晓, 查菲娜, 岳艳军. 小麦源库关系研究进展. 河南农业科学, 2008, 37(1): 12-15.

doi: 10.3969/j.issn.1004-3268.2008.01.003
MA D Y, GUO T C, SONG X, ZHA F N, YUE Y J. Advances in research on source-sink relationship of wheat. Journal of Henan Agricultural Sciences, 2008, 37(1): 12-15. (in Chinese)
[8]
BISWAL A K, KOHLI A. Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Molecular Breeding, 2013, 31(4): 749-766.

doi: 10.1007/s11032-013-9847-7
[9]
CHEN X, LIU J Y, JIANG X D. Effect of source-sink change on photosynthesis and yield of wheat. Agricultural Science & Technology, 2010, 11(7): 59-61.
[10]
陈晓杰, 张建伟, 杨保安, 范家霖, 张福彦, 程仲杰, 胡银岗. 中国冬小麦微核心种质遗传多样性分析. 河南农业科学, 2015, 44(4): 14-20.
CHEN X J, ZHANG J W, YANG B A, FAN J L, ZHANG F Y, CHENG Z J, HU Y G. Genetic diversity of micro-core collections of Chinese winter wheat. Journal of Henan Agricultural Sciences, 2015, 44 (4): 14-20. (in Chinese)
[11]
卓武燕, 张正茂, 刘苗苗, 刘玉秀, 刘芳亮, 孙茹. 不同类型小麦光合特性及农艺性状的差异. 西北农业学报, 2016, 25(4): 538-546.
ZHUO W Y, ZHANG Z M, LIU M M, LIU Y X, LIU F L, SUN R. Difference of photosynthetic characteristics and agronomic traits in different types of wheat. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(4): 538-546. (in Chinese)
[12]
张凡, 刘国涛, 杨春玲. 620份小麦种质资源农艺性状调查及其遗传多样性分析. 山东农业科学, 2022, 54(3): 15-21.
ZHANG F, LIU G T, YANG C L. Agronomic characters and genetic diversity of 620 wheat germplasms. Shandong Agricultural Sciences, 2022, 54(3): 15-21. (in Chinese)
[13]
王小波, 关攀锋, 辛明明, 汪永法, 陈希勇, 赵爱菊, 刘曼双, 李红霞, 张明义, 逯腊虎, 魏亦勤, 刘旺清, 张金波, 倪中福, 姚颖垠, 胡兆荣, 彭惠茹, 孙其信. 小麦种质资源耐热性评价. 中国农业科学, 2019, 52(23): 4191-4200.

doi: 10.3864/j.issn.0578-1752.2019.23.001
WANG X B, GUAN P F, XIN M M, WANG Y F, CHEN X Y, ZHAO A J, LIU M S, LI H X, ZHANG M Y, LU L H, WEI Y Q, LIU W Q, ZHANG J B, NI Z F, YAO Y Y, HU Z R, PENG H R, SUN Q X. Evaluation of heat tolerance of wheat germplasm resources. Scentia Agricultura Sinica, 2019, 52(23): 4191-4200. (in Chinese)
[14]
李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44(7): 988-999.

doi: 10.3724/SP.J.1006.2018.00988
LI L, MAO X G, WANG J Y, CHANG X P, LIU Y P, JING R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44(7): 988-999. (in Chinese)

doi: 10.3724/SP.J.1006.2018.00988
[15]
王维领, 刘畅, 张雨婷, 段瑞华, 赵灿, 李国辉, 许轲, 霍中洋. 不同基因型小麦品种倒春寒抗性分析及其评价. 麦类作物学报, 2022, 42(10): 1220-1230.
WANG W L, LIU C, ZHANG Y T, DUAN R H, ZHAO C, LI G H, XU K, HUO Z Y. Analysis and evaluation of resistance to late spring coldness in different genotypes of whea. Journal of Triticeae Crops, 2022, 42(10): 1220-1230. (in Chinese)
[16]
黄亮, 刘太国, 肖星芷, 屈春艳, 刘博, 高利, 罗培高, 陈万权. 中国79个小麦品种(系)抗条锈病评价及基因分子检测. 中国农业科学, 2017, 50(16): 3122-3134.

doi: 10.3864/j.issn.0578-1752.2017.16.007
HUANG L, LIU T G, XIAO X Z, QU C Y, LIU B, GAO L, LUO P G, CHEN W Q. Evaluation and molecular detection of stripe rust resistance in 79 wheat varieties (lines) in China. Scentia Agricultura Sinica, 2017, 50(16): 3122-3134. (in Chinese)
[17]
庞云星, 崔宏梅, 蔺瑞明, 杨慧, 冯晶, 马东方, 徐世昌, 王凤涛. 89份河北、山西小麦品种抗条锈性评价及抗条锈病基因检测. 植物保护, 2021, 47(6): 49-57, 92.
PANG Y X, CUI H M, LIN R M, YANG H, FENG J, MA D F, XU S C, WANG F T. Resistance evaluation and detection of the resistance genes in 89 wheat cultivars from hebei and shanxi provinces to stripe rust. Plant Protection, 2021, 47(6): 49-57, 92. (in Chinese)
[18]
赵瑞, 张旭辉, 张程炀, 郭泾磊, 汪妤, 李红霞. 小麦种质资源成株期氮效率评价及筛选. 中国农业科学, 2021, 54(18): 3818-3833.

doi: 10.3864/j.issn.0578-1752.2021.18.003
ZHAO R, ZHANG X H, ZHANG C Y, GUO J L, WANG Y, LI H X. Evaluation and screening of nitrogen efficiency of wheat germplasm resources at adult stage. Scentia Agricultura Sinica, 2021, 54(18): 3818-3833. (in Chinese)
[19]
张子豪, 李想成, 吴昊天, 付鹏浩, 高春保, 张运波, 邹娟. 基于主成分和聚类分析筛选氮高效小麦品种. 湖南农业大学学报(自然科学版), 2022, 48(5): 513-519.
ZHANG Z H, LI X C, WU H T, FU P H, GAO C B, ZHANG Y B, ZOU J. Screening of wheat cultivars with high nitrogen efficiency using principal component and cluster analysis. Journal of Hunan Agricultural University (Natural Science), 2022, 48(5): 513-519. (in Chinese)
[20]
褚宏欣, 牟文燕, 党海燕, 王涛, 孙蕊卿, 侯赛宾, 黄婷苗, 黄倩楠, 石美, 王朝辉. 我国主要麦区小麦籽粒微量元素含量及营养评价. 作物学报, 2022, 48(11): 2853-2865.

doi: 10.3724/SP.J.1006.2022.11099
CHU H X, MOU W Y, DANG H Y, WANG T, SUN R Q, HOU S B, HUANG T M, HUANG Q N, SHI M, WANG Z H. Evaluation on concentration and nutrition of micro-elements in wheat grains in major wheat production regions of China. Acta Agronomica Sinica, 2022, 48(11): 2853-2865. (in Chinese)
[21]
温艳霞, 张春娥, 廖若宇. 不同品种小麦的品质特性分析. 食品工业, 2022, 43(7): 299-302.
WEN Y X, ZHANG C E, LIAO R Y. Analysis of quality characteristics of different wheat varieties. Food Industry, 2022, 43(7): 299-302. (in Chinese)
[22]
徐风. 小麦品种源库生态规律的研究(续): 我国小麦高产育种若干问题的探讨. 安徽农学院学报, 1985, 12(2): 1-15.
XU F. Study on the source-sink ecological law of wheat varieties (continued): Discussion on some problems of wheat breeding for high yield in China. Journal of Anhui Agricultural University, 1985, 12(2): 1-15. (in Chinese)
[23]
韩守良, 单玉珊, 慕美财, 张中兰, 王学芬, 孔凡克, 张道玺, 刘翠红, 孙庆英. 小麦超高产栽培理论探讨. 沈阳农业大学学报, 1999, 30(6): 576-580.
HAN S L, SHAN Y S, MU M C, ZHANG Z L, WANG X F, KONG F K, ZHANG D X, LIU C H, SUN Q Y. Discussion on the super high yield cultivation of winter wheat. Journal of Shenyang Agricultural University, 1999, 30(6): 576-580. (in Chinese)
[24]
王振林, 尹燕枰, 贺明荣, 孙学振. 小麦源库比与产量形成期同化物分配及结实性的关系. 山东农业大学学报, 1995, 26(2): 144-150.
WANG Z L, YIN Y P, HE M R, SUN X Z. Relationship of source-sink ratio and the partitioning of photoassimilates during the grain-filling phase with the grain setting of wheat. Journal of Shandong Agricultural University, 1995, 26(2): 144-150. (in Chinese)
[25]
XU H, HASSAN M A, SUN D, WU Z, JIANG G, LIU B, NI Q, YANG W, FANG H, LI J, CHEN X. Effects of low temperature stress on source-sink organs in wheat and phosphorus mitigation strategies. Frontiers in Plant Science, 2022, 13: 807844.

doi: 10.3389/fpls.2022.807844
[26]
LIANG Y, CHEN Y X, LI D Q, CHENG J P, ZHAO G, FAHIMA T, YAN J. Selenium application effects on quality and distribution of trace elements in sink-source organs of wild emmer wheat. Journal of Animal and Plant Sciences, 2020, 31(1): 188-202.
[27]
MADANI A, SHIRANI-RAD A, PAZOKI A, NOURMOHAMMADI G, ZARGHAMI R, MOKHTASSI-BIDGOLI A. The impact of source or sink limitations on yield formation of winter wheat (Triticum aestivum L.) due to post-anthesis water and nitrogen deficiencies. Plant, Soil and Environment, 2010, 56(5): 218-227.

doi: 10.17221/193/2009-PSE
[28]
ABDELRAHMAN M, BURRITT D J, GUPTA A, TSUJIMOTO H, TRAN L S P. Heat stress effects on source-sink relationships and metabolome dynamics in wheat. Journal of Experimental Botany, 2019, 71(2): 543-554.

doi: 10.1093/jxb/erz296
[29]
薛香, 吴玉娥, 陈荣江, 韩占江, 郜庆炉. 小麦籽粒灌浆过程的不同数学模型模拟比较. 麦类作物学报, 2006, 26(6): 169-171.
XUE X, WU Y E, CHEN R J, HAN Z J, GAO Q L. Comparison of different mathematical equations for simulating the qrain filling process of wheat. Journal of Triticeae Crops, 2006, 26(6): 169-171. (in Chinese)
[30]
冯伟, 李晓, 郭天财, 朱云集. 氮用量对不同穗型小麦品种籽粒灌浆及穗部性状的影响. 干旱地区农业研究, 2005, 23(4): 22-25.
FENG W, LI X, GUO T C, ZHU Y J. Effects of nitrogen application levels on grain filling and spike traits of winter wheat cultivars with different spike-type. Agricultural Research in Arid Areas, 2005, 23(4): 22-25. (in Chinese)
[31]
DOU X X, SHEN D, ZHANG X H, CHENG J Q, LI S G, SONG J P, WANG H P, ZHANG W, LI X X. Diversity of sex types and seasonal sexual plasticity in a cucumber germplasm collection. Horticultural Plant Journal, 2015, 1(2): 61-69.
[32]
CHEN C, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.

doi: S1674-2052(20)30187-8 pmid: 32585190
[33]
姚国才, 周朝飞, 钱存鸣, 盛培英, 陈志德. 小麦品种源库性状演变分析及其在育种中的利用. 江苏农业科学, 1994, 22(2): 1-4.
YAO G C, ZHOU C F, QIAN C M, SHENG P Y, CHEN Z D. Evolution analysis of source-sink traits of wheat varieties and their utilization in breeding. Jiangsu Agricultural Sciences, 1994, 22(2): 1-4. (in Chinese)
[34]
张贵合, 郭华春. 马铃薯不同品种(系)的光合特性比较与聚类分析. 作物学报, 2017, 43(7): 1067-1076.
ZHANG G H, GUO H C. Comparison of photosynthetic characteristics and cluster analysis in potato varieties (lines). Acta Agronomica Sinica, 2017, 43(7): 1067-1076. (in Chinese)

doi: 10.3724/SP.J.1006.2017.01067
[35]
李纯佳, 覃伟, 徐超华, 刘洪博, 毛钧, 陆鑫. 国外引进甘蔗栽培品种的光合气体交换参数遗传差异与聚类分析. 中国农业科学, 2018, 51(12): 2288-2299.

doi: 10.3864/j.issn.0578-1752.2018.12.006
LI C J, QIN W, XU C H, LIU H B, MAO J, LU X. Genetic variations and cluster analysis of photosynthetic gas exchange parameters in exotic sugarcane cultivars. Scientia Agricultura Sinica, 2018, 51(12): 2288-2299. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.12.006
[36]
朱峰, 王长发, 苗芳, 张嵩午. 冬小麦品种(系)叶绿素荧光参数的因子分析. 麦类作物学报, 2010, 30(2): 290-295.
ZHU F, WANG C F, MIAO F, ZHANG S W. Factor analysis of chlorophyll fluorescence parameters of winter wheat varieties (lines). Journal of Triticeae Crops, 2010, 30(2): 290-295. (in Chinese)
[37]
池宏康. 冬小麦单位面积产量的光谱数据估产模型研究. 遥感信息, 1995, 10(3): 15-18.
CHI H K. Research on yield estimation model of winter wheat based on spectral data. Remote Sensing Information, 1995, 10(3): 15-18. (in Chinese)
[38]
夏天, 吴文斌, 周清波, 周勇, 于雷. 基于高光谱的冬小麦叶面积指数估算方法. 中国农业科学, 2012, 45(10): 2085-2092.

doi: 10.3864/j.issn.0578-1752.2012.10.022
XIA T, WU W B, ZHOU Q B, ZHOU Y, YU L. An estimation method of winter wheat leaf area index based on hyperspectral data. Scientia Agricultura Sinica, 2012, 45(10): 2085-2092. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.10.022
[39]
郭文善, 封超年, 严六零, 彭永欣, 朱新开, 宗爱国. 小麦开花后源库关系分析. 作物学报, 1995, 21(3): 334-340.
GUO W S, FENG C N, YAN L L, PENG Y X, ZHU X K, ZONG A G. Analysis on source-sink relationship after anthesis in wheat. Acta Agronomica Sinica, 1995, 21(3): 334-340. (in Chinese)
[40]
R.A FISCHER, 黄沃译. 小麦籽粒灌浆时的源: 库互作. 麦类作物学报, 1985, 5(6): 36-39.
FISCHER R A, HUANG W Y. Source-sink interaction during grain filling in wheat. Journal of Triticeae Crops, 1985, 5(6): 36-39. (in Chinese)
[41]
刘晓冰, 张秋英. 试论作物的源库系统. 农业系统科学与综合研究, 1992, 8(2): 131-134.
LIU X B, ZHANG Q Y. On the source-sink system of crops. Systems Science and Comprehensive Studies in Agricultural, 1992, 8(2): 131-134. (in Chinese)
[42]
何闻静, 韩霜, 曹亚娟, 沙莎, 易镇邪, 陈平平. 作物产量形成理论与玉米高产栽培研究进展. 湖南生态科学学报, 2018, 5(2): 36-45.
HE W J, HAN S, CAO Y J, SHA S, YI Z X, CHEN P P. Research progress of crop yield formation theory and high yield cultivation of maize. Hunan Journal of Ecological Sciences, 2018, 5(2): 36-45. (in Chinese)
[43]
MURCHIE E H, LAWSON T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. Journal of Experimental Botany, 2013, 64(13): 3983-3998.

doi: 10.1093/jxb/ert208 pmid: 23913954
[44]
曹显祖, 朱庆森. 水稻品种的库源特征及其类型划分的研究. 作物学报, 1987, 13(4): 265-272.
CAO X Z, ZHU Q S. Study on characteristics of the relationship between source and sink in rice varieties and their classification. Acta Agronomica Sinica, 1987, 13(4): 265-272. (in Chinese)
[45]
高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类. 作物学报, 2021, 47(9): 1712-1723.

doi: 10.3724/SP.J.1006.2021.04164
GAO F, LIU Z X, ZHAO J H, WANG Y, PAN X Y, LAI H J, LI X D, YANG D Q. Source-sink characteristics and classification of main peanut varieties in northern China. Acta Agronomica Sinica, 2021, 47(9): 1712-1723. (in Chinese)
[46]
严威凯. 小麦茎秆运输能力对籽粒产量限制作用的研究. 陕西农业科学, 1988, 34(3): 3-6.
YAN W K. Study on the effect of wheat stem transport capacity on grain yield limitation. Shaanxi Journal of Agricultural Sciences, 1988, 34(3): 3-6. (in Chinese)
[47]
张文虎. 新株型稻与粳/灿杂交稻源库特征与物质运转的研究[D]. 扬州: 扬州大学, 2003.
ZHANG W H. Study on the source-sink characteristics and material transport of new plant type rice and japonica/indica hybrid rice[D]. Yangzhou: Yangzhou University, 2003. (in Chinese)
[48]
远彤, 郭天财, 罗毅, 孙金花. 冬小麦不同粒型品种茎叶组织结构与籽粒形成关系的研究. 作物学报, 1998, 24(6): 876-883.
YUAN T, GUO T C, LUO Y, SUN J H. Study on the relationship between stem-leaf tissue structure and grain formation of winter wheat varieties with different grain types. Acta Agronomica Sinica, 1998, 24(6): 876-883. (in Chinese)
[49]
范平, 张娟, 李新平, 张岱, 赵东旺. 不同小麦品种(系)茎秆组织结构与产量潜力关系研究. 河南农业大学学报, 2000, 34(3): 216-219.
FAN P, ZHANG J, LI X P, ZHANG D, ZHAO D W. Relationship between the anatomical structure of stem and the yield potential of different wheat varieties. Journal of Henan Agricultural University, 2000, 34(3): 216-219. (in Chinese)
[50]
王振林, 贺明荣, 傅金民, 田奇卓, 尹燕枰, 曹鸿鸣. 源库调节对灌溉与旱地小麦开花后光合产物生产和分配的影响. 作物学报, 1999, 25(2): 162-168.
WANG Z L, HE M R, FU J M, TIAN Q Z, YIN Y P, CAO H M. Effects of source-sink regulation on photosynthate production and distribution in irrigated and dryland wheat after anthesis. Acta Agronomica Sinica, 1999, 25(2): 162-168. (in Chinese)
[51]
凌启鸿, 杨建昌. 水稻群体“粒叶比”与高产栽培途径的研究. 中国农业科学, 1986, 19(3): 1-8.
LING Q H, YANG J C. Study on 'grain-leaf ratio' of rice population and high-yielding cultivation approaches. Scientia Agricultura Sinica, 1986, 19(3): 1-8. (in Chinese)
[52]
贺明荣, 王振林, 曹鸿鸣. 源库关系改变对小麦灌浆期植株光合速率及14C同化物运转分配的影响. 西北植物学报, 1998, 18(4): 82-87.
HE M R, WANG Z L, CAO H M. Effects of source-sink relationship on photosynthetic rate and translocation and distribution of - (14) C-assimilates during grain filling stage of wheat. Northwest Botanical Journal, 1998, 18 (4): 82-87. (in Chinese)
[53]
孙道杰, 王辉, 闵东红, 李学军, 冯毅. 小麦品种产量改良的限制因素分析. 西南农业学报, 2002, 15(3): 13-16.
SUN D J, WANG H, MIN D H, LI X J, FENG Y. An analysis of the restrictive factors of yield improvement of wheat cultivars. Southwest Agricultural Journal, 2002, 15(3): 13-16. (in Chinese)
[54]
杨建昌, 王朋, 刘立军, 王志琴, 朱庆森. 中籼水稻品种产量与株型演进特征研究. 作物学报, 2006, 32(7): 949-955.
YANG J C, WANG P, LIU L J, WANG Z Q, ZHU Q S. Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars. Acta Agronomica Sinica, 2006, 32(7): 949-955. (in Chinese)
[55]
马冬云, 郭天财, 宋晓, 岳艳军, 查菲娜, 韩巧霞. 源库改变对小麦籽粒蛋白质含量及其组分的影响. 西北农业学报, 2009, 18(1): 112-116.
MA D Y, GUO T C, SONG X, YUE Y J, ZHA F N, HAN Q X. Effects of source-sink manipulation on accumulation of grain protein and its component in wheat (Triticum aestivum L.). Acta Agriculturae Boreali-Occidentalis Sinica, 2009, 18(1): 112-116. (in Chinese)
[56]
刘晓冰, 李文雄. 源库改变对小麦籽粒蛋白质、淀粉含量和产量的影响. 东北农业大学学报, 1996, 27(4): 321-325.
LIU X B, LI W X. Effects of source-sink alteration on grain protein, starch content and yield of wheat. Journal of Northeast Agricultural University, 1996, 27(4): 321-325. (in Chinese)
[57]
张英华, 周顺利, 张凯, 王志敏. 源库调节对小麦不同品种籽粒微量元素及蛋白质含量的影响. 作物学报, 2008, 34(9): 1629-1636.
ZHANG Y H, ZHOU S L, ZHANG K, WANG Z M. Effects of source and sink reductions on micronutrient and protein contents of grain in wheat. Acta Agronomica Sinica, 2008, 34(9): 1629-1636. (in Chinese)

doi: 10.3724/SP.J.1006.2008.01629
[58]
马兴林, 王庆祥. 通过剪叶改变源库关系对玉米子粒营养组分含量的影响. 玉米科学, 2006, 14(6): 7-12, 22.
MA X L, WANG Q X. Effects of source-sink alteration by leaf-clipped treatment on grain nutrition components accumulation. Journal of Maize Sciences, 2006, 14(6): 7-12, 22. (in Chinese)
[1] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[2] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[3] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[4] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[5] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[6] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[7] YAO YiJun, JU XingRong, WANG LiFeng. Lipid-Lowering Effects and Its Regulation Mechanism of Buckwheat Polyphenols in High-Fat Diet-Induced Obese Mice [J]. Scientia Agricultura Sinica, 2023, 56(5): 981-994.
[8] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[9] SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
[10] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[11] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[12] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[13] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[14] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[15] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!