Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (15): 2880-2894.doi: 10.3864/j.issn.0578-1752.2023.15.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination

MU XinYuan1,2(), LÜ ShanShan1, LU LiangTao1, LIU TianXue1(), LI ShuYan3, XUE ChangYing3, WANG HongWei4, ZHAO Xia2, XIA LaiKun2(), TANG BaoJun2   

  1. 1 College of Agronomy, Henan Agricultural University, Zhengzhou 450046
    2 Cereal Institute, Henan Academy of Agricultural Sciences/ Henan International Joint Laboratory on Maize Precision Production, Zhengzhou 450002
    3 China Meteorological Administration/Henan Key Laboratory of Agrometeorological Support and Applied Technique, Zhengzhou 450003
    4 Nanyang Wancheng District Letters and Calls Bureau, Nanyang 473000, Henan
  • Received:2022-12-02 Accepted:2023-03-02 Online:2023-08-01 Published:2023-08-05

Abstract:

【Objective】 High temperature stress is one of the most critical meteorological disaster factors that restrict the high and stable yield of maize. This study explored the effect of tassel sizes on yield of different maize varieties under high temperature stress during pollination, so as to provide the theoretical basis and reference for stress-resistant cultivation and high temperature resistance breeding of maize. 【Method】 This study was conducted by plot experiment in a greenhouse with two maize varieties as the experimental materials, Xundan 20 (XD20) and Nonghua 101 (NH101), from 2020 to 2021. The effect of tassel sizes on dry matter accumulation, distribution and yield of maize under high temperature stress during pollination was investigated by setting the tassel branch removal treatment at tasseling stage. 【Result】 The results of two years showed that high temperature stress during pollination had little effect on tassel length, branch number, spikelet number and flowering dynamics of male and female. However, high temperature stress resulted in the decrease of dry matter accumulation capacity and distribution ratio to ear, which affected the growth and development of ear, resulting in the significant decrease of cob length and diameter, the significant decrease of grain number per ear, the decrease of proportion of matter accumulation to grain after anthesis, and the significant decrease of yield. Under high temperature stress, the decrease of ear length of NH101 was less than that of XD20, but the decrease of grain number per row, grain number per ear and the proportion of matter accumulation to grain after anthesis was higher than that of XD20, resulting in the decrease of yield of NH101 more than that of XD20, and the yield of XD20 and NH101 decreased by 12.32% and 25.00% respectively. XD20 is more resistant to heat than NH101. The tassel branch removal treatment significantly reduced the number of tassel branch and spikelet of XD20 and NH101 by 58.57%, 42.91% and 57.30%, 41.34%, respectively, but had little effect on the flowering dynamics of male and female. Under the two temperature conditions, the tassel branch removal treatment promoted the growth of ear, increased the grain number per ear, increased the proportion of matter accumulation to grain after anthesis, and thus increased the yield. Among them, the yield increase of XD20 under high temperature conditions was the largest. Compared with normal tassel branch treatment, tassel branch removal treatment increased the yield of XD20 and NH101 by 2.76% and 4.37% under normal temperature conditions, while increased by 12.47% and 5.75% under high temperature conditions, respectively. 【Conclusion】 High temperature stress during pollination has little effect on the growth and development of tassel, but it caused irreversible damage to the growth and development of ear, reduced the number of grains per ear, limited the distribution of photosynthate to grains after anthesis, and significantly reduced the yield. Under high temperature conditions, properly reducing the number of branches in tassel can promote the growth and development of ear, increase the number of grains per ear, promote the accumulation of matter to grains after anthesis, and increase the yield. In addition, the yield increase of the large tassel-type variety XD20 was higher than that of the small tassel-type variety NH101.

Key words: maize, high temperature during pollination, tassel size, dry matter mass, grain yield

Fig. 1

Diagrammatic sketch of the normal tassel branch (NB) and removal tassel branch (RB) treatments"

Fig. 2

Temperature changes in one day and during the 10 days experiment period at maize pollination stage of the normal temperature (NT) and high temperature (HT) treatments"

Fig. 3

Effects of high temperature stress during pollination and removal tassel branch treatment on tassel-related traits of maize Mean±Standard error. Different lowercase letters in the same variety represent significant differences among different treatments at P<0.05 probability level. The same as below"

Fig. 4

Effects of high temperature stress during pollination and removal tassel branch treatment on flowering dynamics of maize Ta: Tasseling; Si: Silking; Sh: Shedding; Es: End of shedding; ASI: Anthesis-silking interval; PSD: Pollen shedding duration"

Fig. 5

Effects of high temperature stress during pollination and removal tassel branch treatment on ear-related traits of maize"

Table 1

Effects of high temperature stress during pollination and removal tassel branch treatment on dry matter distribution at the end of high temperature treatment"

年份
Year
品种
Variety
处理
Treatment
茎叶Stem leaf 雌穗Ear 总干重
Total dry matter (g/plant)
干重
Dry matter (g/plant)
比例
Proportion (%)
干重
Dry matter (g/plant)
比例
Proportion (%)
2020 XD20 NT+NB 91.23±3.35a 74.76 30.80±4.35a 25.24 122.03±6.80a
NT+RB 93.62±3.43a 74.31 32.37±2.73a 25.69 125.99±6.03a
HT+NB 82.43±1.08a 79.73 20.95±2.79b 20.27 103.38±2.51b
HT+RB 90.57±7.21a 79.57 23.26±2.48b 20.43 113.83±9.14ab
NH101 NT+NB 87.51±3.72a 74.38 30.15±4.69a 25.62 117.66±1.04a
NT+RB 87.43±5.60a 74.08 30.59±2.09a 25.92 118.02±6.24a
HT+NB 87.14±6.27a 79.49 22.48±2.53b 20.51 109.62±3.75a
HT+RB 89.66±5.07a 79.32 23.37±1.32b 20.68 113.03±6.33a
变异来源 Source of variation
品种Variety (V) NS NS NS
温度Temperature (T) NS ** **
雄穗Tassel (B) NS NS NS
V×T NS NS NS
V×B NS NS NS
T×B NS NS NS
V×T×B NS NS NS
2021 XD20 NT+NB 81.36±5.10a 74.46 27.91±4.06a 25.54 109.27±8.92a
NT+RB 80.52±2.37a 73.85 28.51±3.14a 26.15 109.03±5.40a
HT+NB 72.17±2.78b 78.57 19.68±2.41b 21.43 91.85±4.80b
HT+RB 73.14±2.49b 78.61 19.90±0.97b 21.39 93.04±3.14b
NH101 NT+NB 60.69±3.46a 74.88 20.36±1.22a 25.12 81.05±2.57a
NT+RB 60.84±6.85a 74.87 20.42±1.15a 25.13 81.26±7.99a
HT+NB 61.49±3.24a 77.37 17.99±2.18a 22.63 79.48±3.99a
HT+RB 61.37±1.91a 76.93 18.40±1.48a 23.07 79.77±3.26a
变异来源 Source of variation
品种Variety (V) ** ** **
温度Temperature (T) ** ** **
雄穗Tassel (B) NS NS NS
V×T * NS *
V×B NS NS NS
T×B NS NS NS
V×T×B NS NS NS

Table 2

Effects of high temperature stress during pollination and removal tassel branch treatment on dry matter distribution at the maturity stage"

年份
Year
品种
Variety
处理
Treatment
茎叶Stem leaf 穗轴Cob 籽粒Grain 总干重
Total dry matter (g/plant)
干重
Dry matter (g/plant)
比例
Proportion (%)
干重
Dry matter (g/plant)
比例
Proportion (%)
干重
Dry matter (g/plant)
比例
Proportion (%)
2020 XD20 NT+NB 74.28±7.44a 37.03 19.19±0.59ab 9.56 107.14±8.73ab 53.41 200.61±13.69ab
NT+RB 72.40±4.33a 35.38 21.09±2.32a 10.30 111.17±3.84a 54.32 204.65±4.42a
HT+NB 67.70±6.51a 41.74 15.77±0.67b 9.72 78.72±13.06b 48.53 162.19±18.89b
HT+RB 79.90±6.87a 39.55 19.08±2.26ab 9.44 103.05±8.30ab 51.01 202.02±17.33ab
NH101 NT+NB 95.97±4.64a 40.76 29.53±4.27ab 12.54 109.94±12.90ab 46.69 235.44±20.69ab
NT+RB 102.88±5.09a 38.87 36.04±1.35a 13.62 125.78±7.11a 47.52 264.71±2.86a
HT+NB 98.00±7.22a 46.69 28.90±4.34b 13.77 82.98±8.05b 39.54 209.88±17.06b
HT+RB 101.30±6.96a 44.85 33.70±2.45ab 14.92 90.88±10.14b 40.23 225.89±19.03ab
变异来源
Source of variation
品种Variety (V) ** ** NS **
温度Temperature (T) NS * ** *
雄穗Tassel (B) NS NS * NS
V×T NS NS NS NS
V×B NS NS NS NS
T×B NS NS NS NS
V×T×B NS NS NS NS
2021 XD20 NT+NB 78.04±2.18ab 36.79 21.04±0.88a 9.92 113.04±3.87a 53.29 212.13±4.79a
NT+RB 88.37±8.82a 37.45 22.00±2.95a 9.32 125.58±14.30a 53.23 235.95±25.92a
HT+NB 71.22±4.10b 40.04 15.67±0.88b 8.81 90.98±3.20b 51.15 177.87±6.87b
HT+RB 76.13±3.11ab 39.77 16.98±1.90b 8.87 98.32±4.90b 51.36 191.44±8.04b
NH101 NT+NB 82.48±6.85a 38.63 25.60±3.01a 11.99 105.42±8.97a 49.38 213.50±17.81a
NT+RB 81.60±2.11a 38.14 26.85±1.36a 12.55 105.51±6.69a 49.31 213.96±9.33a
HT+NB 80.56±3.31a 45.06 18.94±0.38b 10.59 79.30±2.23b 44.35 178.80±2.71b
HT+RB 82.39±3.54a 44.64 21.59±2.35ab 11.69 80.60±9.47ab 43.67 184.58±14.67ab
变异来源
Source of variation
品种Variety (V) NS ** NS NS
温度Temperature (T) NS ** ** *
雄穗Tassel (B) NS NS NS NS
V×T NS NS NS NS
V×B NS NS NS NS
T×B NS NS NS NS
V×T×B NS NS NS NS

Table 3

Effects of high temperature stress during pollination and removal tassel branch treatment on grain yield and its components of maize"

年份
Year
品种
Variety
处理
Treatment
穗长
Ear length
(cm)
穗粗
Ear diameter (mm)
穗行数
Ear rows
行粒数
Grains per row
穗粒数
Grains per ear
百粒重
100-grain weight (g)
产量
Grain yield (g·m-2)
2020 XD20 NT+NB 13.69±0.35a 45.96±0.97ab 15.00±0.33a 25.78±0.70ab 385.40±9.00a 24.54±1.04a 629.87±28.91a
NT+RB 14.53±0.28a 46.86±0.63a 14.40±0.27a 27.50±1.11a 394.30±12.53a 24.32±0.68a 641.67±33.63a
HT+NB 12.20±0.43b 44.28±0.59b 14.49±0.58a 22.32±0.99b 320.40±8.62c 25.15±1.55a 528.40±22.09b
HT+RB 12.32±0.50b 45.33±0.60ab 14.07±0.55a 24.09±1.68ab 343.45±6.72b 27.21±1.37a 592.53±18.55ab
NH101 NT+NB 14.15±0.33ab 46.40±0.79a 14.80±0.53a 22.57±0.79a 331.60±10.00a 24.55±0.80a 597.80±16.42a
NT+RB 14.93±0.39a 46.50±0.54a 14.80±0.53a 23.25±1.07a 340.50±11.33a 25.30±2.45a 627.40±28.06a
HT+NB 12.65±0.47c 42.32±0.92b 14.40±0.50ab 16.74±1.18b 237.80±12.53b 27.20±0.87a 425.07±16.57c
HT+RB 13.69±0.30bc 43.99±0.90b 13.20±0.33b 21.65±1.02a 253.90±9.79b 27.93±1.49a 469.33±21.94b
变异来源
Source of variation
品种Variety (V) NS NS NS ** ** NS **
温度Temperature (T) ** ** NS ** ** NS **
雄穗Tassel (B) * NS NS ** * NS *
V×T NS NS NS NS NS NS **
V×B NS NS NS NS NS NS NS
T×B NS NS NS NS NS NS NS
V×T×B NS NS NS NS NS NS NS
2021 XD20 NT+NB 14.18±0.26b 48.24±0.56a 14.60±0.26a 32.85±0.70a 427.10±12.54a 22.30±0.42b 636.57±24.15ab
NT+RB 14.87±0.15a 48.63±0.34a 14.60±0.21a 34.60±0.58a 440.05±9.16a 22.48±0.37b 659.83±17.73a
HT+NB 12.20±0.17c 45.20±0.45b 14.00±0.36a 26.40±0.72b 355.63±9.83b 22.61±0.64b 531.26±12.90c
HT+RB 12.56±0.18c 46.27±0.47b 14.00±0.38a 27.70±0.87b 375.27±14.68b 24.27±0.70a 599.24±18.83b
NH101 NT+NB 13.54±0.37a 45.92±0.33ab 14.60±0.36a 23.35±0.77a 344.13±10.87a 26.92±1.08a 595.90±17.24a
NT+RB 14.20±0.20a 45.79±0.43b 14.50±0.35a 24.80±0.48a 359.97±8.72a 25.91±0.61a 618.43±15.81a
HT+NB 12.55±0.24b 47.24±0.55a 14.70±0.33a 20.15±0.60b 277.25±12.46b 26.74±0.88a 482.80±11.40b
HT+RB 14.09±0.33a 44.64±0.57b 13.90±0.31a 20.25±0.55b 277.64±10.71b 26.65±0.74a 488.00±15.69b
变异来源
Source of variation
品种Variety (V) NS ** NS ** ** ** **
温度Temperature (T) ** ** NS ** ** NS **
雄穗Tassel (B) ** NS NS * NS NS *
V×T ** ** NS ** NS NS NS
V×B ** ** NS NS NS NS NS
T×B NS NS NS NS NS NS NS
V×T×B NS NS NS NS NS NS NS
[1]
ABBASS K, QASIM M Z, SONG H M, MURSHED M, MAHMOOD H, YOUNIS I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 2022, 29(28): 42539-42559.

doi: 10.1007/s11356-022-19718-6
[2]
陈怀亮, 李树岩. 气候变暖背景下河南省夏玉米花期高温灾害风险预估. 中国生态农业学报(中英文), 2020, 28(3): 337-348.
CHEN H L, LI S Y. Prediction of high temperature disaster risks during summer maize flowering under future climate warming background in Henan Province. Chinese Journal of Eco-Agriculture, 2020, 28(3): 337-348. (in Chinese)
[3]
陆伟婷, 于欢, 曹胜男, 陈长青. 近20年黄淮海地区气候变暖对夏玉米生育进程及产量的影响. 中国农业科学, 2015, 48(16): 3132-3145.

doi: 10.3864/j.issn.0578-1752.2015.16.004
LU W T, YU H, CAO S N, CHEN C Q. Effects of climate warming on growth process and yield of summer maize in Huang-Huai-Hai plain in last 20 years. Scientia Agricultura Sinica, 2015, 48(16): 3132-3245. (in Chinese)
[4]
LI T, ZHANG X P, LIU Q, LIU J, CHEN Y Q, SUI P. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review. Journal of Integrative Agriculture, 2022, 21(9): 2465-2476.

doi: 10.1016/j.jia.2022.07.013
[5]
和骅芸, 胡琦, 潘学标, 马雪晴, 胡莉婷, 王晓晨, 何奇瑾. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析. 中国农业气象, 2020, 41(1): 1-15.
HE H Y, HU Q, PAN X B, MA X Q, HU L T, WANG X C, HE Q J. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China plain under climate change. Chinese Journal of Agrometeorology, 2020, 41(1): 1-15. (in Chinese)
[6]
WAHID A, GELANI S, ASHRAF M, FOOLAD M R. Heat tolerance in plants: An overview. Environmental and Experimental Botany, 2007, 61(3): 199-223.

doi: 10.1016/j.envexpbot.2007.05.011
[7]
CAIRNS J E, SONDER K, ZAIDI P H, VERHULST N, MAHUKU G, BABU R, NAIR S K, DAS B, GOVAERTS B, VINAYAN M T, RASHID Z, NOOR J J, DEVI P, SAN VICENTE F, PRASANNA B M. Maize production in a changing climate. Advances in Agronomy, 2012, 114: 1-58.
[8]
LIZASO J I, RUIZ-RAMOS M, RODRÍGUEZ L, GABALDON- LEAL C, OLIVEIRA J A, LORITE I J, SÁNCHEZ D, GARCÍA E, RODRÍGUEZ A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Research, 2018, 216: 129-140.

doi: 10.1016/j.fcr.2017.11.013
[9]
CICCHINO M, RATTALINO EDREIRA J I, OTEGUI M E. Heat stress during late vegetative growth of maize: Effects on phenology and assessment of optimum temperature. Crop Science, 2010, 50(4): 1431-1437.

doi: 10.2135/cropsci2009.07.0400
[10]
LOHANI N, SINGH M B, BHALLA P L. High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 2020, 71(2): 555-568.

doi: 10.1093/jxb/erz426 pmid: 31560053
[11]
ZINN K E, TUNC-OZDEMIR M, HARPER J F. Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 2010, 61(7): 1959-1968.

doi: 10.1093/jxb/erq053 pmid: 20351019
[12]
冀华, 李宏, 张树伟. 玉米雌雄穗发育及其与产量的关系. 山西农业科学, 2011, 39(7): 754-755, 774.
JI H, LI H, ZHANG S W. Differentiation and growth of the male and female ears and the relationship with yield in maize. Journal of Shanxi Agricultural Sciences, 2011, 39(7): 754-755, 774. (in Chinese)
[13]
WANG Y Y, TAO H B, TIAN B J, SHENG D C, XU C C, ZHOU H M, HUANG S B, WANG P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany, 2019, 158: 80-88.

doi: 10.1016/j.envexpbot.2018.11.007
[14]
蔡丰乐, 马昕, 王帅丽, 卢良涛, 邵瑞鑫, 李鸿萍, 赵亚丽, 穆心愿, 赵霞, 李树岩, 刘天学. 氮素对高温胁迫下玉米籽粒发育的调控效应. 华北农学报, 2022, 37(3): 119-127.

doi: 10.7668/hbnxb.20192810
CAI F L, MA X, WANG S L, LU L T, SHAO R X, LI H P, ZHAO Y L, MU X Y, ZHAO X, LI S Y, LIU T X. Effect regulating of nitrogen on grain development of maize under heat stress. Acta Agriculturae Boreali-Sinica, 2022, 37(3): 119-127. (in Chinese)

doi: 10.7668/hbnxb.20192810
[15]
DUPUIS I, DUMAS C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiology, 1990, 94(2): 665-670.

doi: 10.1104/pp.94.2.665
[16]
WANG Y Y, LIU X L, HOU X F, SHENG D C, DONG X, GAO Y B, WANG P, HUANG S B. Maximum lethal temperature for flowering and seed set in maize with contrasting male and female flower sensitivities. Journal of Agronomy and Crop Science, 2021, 207(4): 679-689.

doi: 10.1111/jac.v207.4
[17]
闫振华, 刘东尧, 贾绪存, 杨琴, 陈艺博, 董朋飞, 王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响. 中国农业科学, 2021, 54(17): 3592-3608.

doi: 10.3864/j.issn.0578-1752.2021.17.004
YAN Z H, LIU D Y, JIA X C, YANG Q, CHEN Y B, DONG P F, WANG Q. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.17.004
[18]
WANG Y Y, SHENG D C, ZHANG P, DONG X, YAN Y, HOU X F, WANG P, HUANG S B. High temperature sensitivity of kernel formation in different short periods around silking in maize. Environmental and Experimental Botany, 2021, 183: 104343.

doi: 10.1016/j.envexpbot.2020.104343
[19]
侯昕芳, 王媛媛, 黄收兵, 董昕, 陶洪斌, 王璞. 花期前后高温对玉米花粉发育及结实率的影响. 中国农业大学学报, 2020, 25(3): 10-16.
HOU X F, WANG Y Y, HUANG S B, DONG X, TAO H B, WANG P. Effects of high temperature during flowering on pollen development and seed setting rate of maize (Zea mays L.). Journal of China Agricultural University, 2020, 25(3): 10-16. (in Chinese)
[20]
于康珂, 孙宁宁, 詹静, 顾海靖, 刘刚, 顾海靖, 潘利文, 刘天学. 高温胁迫对不同热敏型玉米品种雌雄穗生理特性的影响. 玉米科学, 2017, 25(4): 84-91.
YU K K, SUN N N, ZHAN J, LIU G, GU H J, LIU G, PAN L W, LIU T X. Effect of high temperature stress on physiological characteristics of tassel and ear in different maize varieties. Journal of Maize Sciences, 2017, 25(4): 84-91. (in Chinese)
[21]
穆心愿, 马智艳, 张兰薰, 付景, 刘天学, 丁勇, 夏来坤, 张凤启, 张君, 齐建双. 不同耐/感玉米品种的叶片光合荧光特性, 授粉结实和产量构成因素对花期高温的反应. 中国生态农业学报(中英文), 2022, 30(1): 57-71.
MU X Y, MA Z Y, ZHANG L X, FU J, LIU T X, DING Y, XIA L K, ZHANG F Q, ZHANG J, QI J S, ZHAO X, TANG B J. Responses of photosynthetic fluorescence characteristics, pollination, and yield components of maize cultivars to high temperature during flowering. Chinese Journal of Eco-Agriculture, 2022, 30(1): 57-71. (in Chinese)
[22]
高英波, 张慧, 单晶, 薛艳芳, 钱欣, 代红翠, 刘开昌, 李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响. 中国农业科学, 2020, 53(19): 3954-3963.

doi: 10.3864/j.issn.0578-1752.2020.19.009
GAO Y B, ZHANG H, SHAN J, XUE Y F, QIAN X, DAI H C, LIU K C, LI Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Scientia Agricultura Sinica, 2020, 53(19): 3954-3963. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.19.009
[23]
徐美玲. 温度对玉米花丝生活力的影响. 浙江农业科学, 2002, 1(3): 120-122.
XU M L. Impacts of temperature on vitality of pistils in maize. Journal of Zhejiang Agricultural Sciences, 2002, 1(3): 120-122. (in Chinese)
[24]
LIU X W, WANG X L, WANG X Y, GAO J, LUO N, MENG Q F, WANG P. Dissecting the critical stage in the response of maize kernel set to individual and combined drought and heat stress around flowering. Environmental and Experimental Botany, 2020, 179: 104213.

doi: 10.1016/j.envexpbot.2020.104213
[25]
NIU S D, DU X, WEI D J, LIU S S, TANG Q, BIAN D H, ZHANG Y R, CUI Y H, GAO Z. Heat stress after pollination reduces kernel number in maize by insufficient assimilates. Frontiers in Genetics, 2021, 12: 728166.

doi: 10.3389/fgene.2021.728166
[26]
高英波, 张慧, 王竹, 薄丽秀, 武智民, 薛艳芳, 钱欣, 代红翠, 韩小伟, 李宗新. 夏玉米品种花期耐热性鉴定与评价. 山东农业科学, 2019, 51(6): 43-48.
GAO Y B, ZHANG H, WANG Z, BO L X, WU Z M, XUE Y F, QIAN X, DAI H C, HAN X W, LI Z X. Identification and evaluation of heat tolerance of summer maize varieties during flowering stage. Shandong Agricultural Sciences, 2019, 51(6): 43-48. (in Chinese)
[27]
赵霞, 穆心愿, 马智艳, 刘天学, 齐红志, 丁勇, 张凤启, 张君, 赵发欣, 邢健伟, 吴东洪, 唐保军. 不同玉米杂交种对花期高温、干旱复合胁迫的响应. 河南农业科学, 2017, 46(8): 32-37.
ZHAO X, MU X Y, MA Z Y, LIU T X, QI H Z, DING Y, ZHANG F Q, ZHANG J, ZHAO F X, XING J W, WU D H, TANG B J. Response of different maize hybrids to high temperature and drought stresses at flowering stage. Journal of Henan Agricultural Sciences, 2017, 46(8): 32-37. (in Chinese)
[28]
任寒, 刘鹏, 董树亭, 张吉旺, 赵斌. 高温胁迫影响玉米生长发育的生理机制研究进展. 玉米科学, 2019, 27(5): 109-115.
REN H, LIU P, DONG S T, ZHANG J W, ZHAO B. Research advancements of effect of high temperature stress on growth and development of maize. Journal of Maize Sciences, 2019, 27(5): 109-115. (in Chinese)
[29]
岳玉兰, 朱敏, 于雷, 刘春光. 玉米雄穗对产量影响研究进展. 玉米科学, 2010, 18(4): 150-152.
YUE Y L, ZHU M, YU L, LIU C G. Research progress on the impact of maize tassel on yield. Journal of Maize Sciences, 2010, 18(4): 150-152. (in Chinese)
[30]
GERALDI I, FILHO J B M, VENCOVSKY R. Estimates of genetic parameters for tosses characters in maize (Zea mays L.) and breeding perspectives. Maydica, 1985, 30: 1-14.
[31]
LIZASO J I, WESTGATE M E, BATCHELOR W D, FONSECA A. Predicting potential kernel set in maize from simple flowering characteristics. Crop Science, 2003, 43(3): 892-903.

doi: 10.2135/cropsci2003.8920
[32]
SHIM D, LEE K J, LEE B W. Response of phenology- and yield-related traits of maize to elevated temperature in a temperate region. The Crop Journal, 2017, 5(4): 305-316.

doi: 10.1016/j.cj.2017.01.004
[33]
徐洪文, 宋凤斌, 童淑媛. 玉米雌雄穗发生发展及生理特性研究进展. 广东农业科学, 2012, 39(3): 22-24.
XU H W, SONG F B, TONG S Y. Research progress on development and physiological characteristics of ear and tassel in maize. Guangdong Agricultural Sciences, 2012, 39(3): 22-24. (in Chinese)
[34]
杨德光, 陈庚, 吴宝欣, 金新月, 宋翔雨, 郝天乐, 李威. 去雄携带顶叶对玉米光合特性、干物质积累及产量的影响. 西北农业学报, 2022, 31(1): 25-33.
YANG D G, CHEN G, WU B X, JIN X Y, SONG X Y, HAO T L, LI W. Effect of detasseling with top leaf on photosynthetic characteristics, dry matter accumulation and yield of maize. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(1): 25-33. (in Chinese)
[35]
王磊, 杜雄, 崔彦宏, 党红凯, 李科江, 贺振营, 于秀艳. 冗余器官去除对高产夏玉米产量形成的影响. 华北农学报, 2015, 30(4): 132-138.

doi: 10.7668/hbnxb.2015.04.023
WANG L, DU X, CUI Y H, DANG H K, LI K J, HE Z Y, YU X Y. Effects of removing redundant organs on yield formation of high-yielding summer maize. Acta Agriculturae Boreali-Sinica, 2015, 30(4): 132-138. (in Chinese)

doi: 10.7668/hbnxb.2015.04.023
[36]
宋世宗, 李继平, 李文举, 李芳, 蒋付伟, 刘爱青. 玉米授粉后去雄与去叶对穗部性状及产量影响的研究. 湖南农业科学, 2011(9): 33-35.
SONG S Z, LI J P, LI W J, LI F, JIANG F W, LIU A Q. Impacts of emasculation and defoliation after maize pollination on tassel characteristics and yield. Hunan Agricultural Sciences, 2011(9): 33-35. (in Chinese)
[37]
GAO Z, SUN L, REN J H, LIANG X G, SHEN S, LIN S, ZHAO X, CHEN X M, WU G, ZHOU S L. Detasseling increases kernel number in maize under shade stress. Agricultural and Forest Meteorology, 2020, 280: 107811.

doi: 10.1016/j.agrformet.2019.107811
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[3] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[4] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[7] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[8] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[9] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[10] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[11] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[12] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[13] FU ZhenZhen, ZHU GuangXin, LIU ZhiJuan, GUO ShiBo, LI E, YANG XiaoGuang. Spatial-Temporal Variations of High Temperature During Flowering Period in Maize-Producing Areas of China Under Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(14): 2686-2700.
[14] SHEN Zhe, HAN TianFu, QU XiaoLin, MA ChangBao, WANG HuiYing, LIU KaiLou, HUANG Jing, DU JiangXue, ZHANG Lu, LIU LiSheng, LI JiWen, ZHANG HuiMin. Spatial-Temporal Variation of Relative Yield Gap of Wheat and Maize and Its Response to Nitrogen Fertilizer in China [J]. Scientia Agricultura Sinica, 2023, 56(14): 2724-2737.
[15] LI Jin, REN LiJun, LI XiaoYu, BI RunXue, JIN XinXin, YU Na, ZHANG YuLing, ZOU HongTao, ZHANG YuLong. Effects of Different Straw Returning Patterns on Soil CO2 Emission and Carbon Balance in Maize Field [J]. Scientia Agricultura Sinica, 2023, 56(14): 2738-2750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!