Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (14): 2686-2700.doi: 10.3864/j.issn.0578-1752.2023.014.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Spatial-Temporal Variations of High Temperature During Flowering Period in Maize-Producing Areas of China Under Climate Change

FU ZhenZhen(), ZHU GuangXin, LIU ZhiJuan(), GUO ShiBo, LI E, YANG XiaoGuang   

  1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193
  • Received:2022-08-25 Accepted:2022-12-05 Online:2023-07-16 Published:2023-07-21
  • Contact: LIU ZhiJuan

Abstract:

【Objective】Under the background of global warming, the frequent occurrence of extreme high temperature would threaten crop production greatly. Therefore, the spatial-temporal variations of high temperature during crop growth period based on several heat stress index were cleared, which was crucial for developing effective disaster risk management and adaptation measures. 【Method】In this study, the maize potential planting area was focused on. Based on the daily maximum temperature data from 1981 to 2060 in two Shared Socioeconomic Pathways scenarios (SSP1-2.6 and SSP5-8.5) of Coupled Model Intercomparison Project Phase 6 (CMIP6) and maize phenology data, we analyzed the spatial distribution and temporal trend of the heat stress intensity (HSI), accumulated heat stress days (AHSD), and heat degree-days (HDD) during flowering period of maize in the baseline period (1981-2014) and future period (2015-2060).【Result】From 1981 to 2014, the HSI, AHSD and HDD during the flowering period of maize were the largest in Huang-Huai-Hai (HHH) and Northwest China (NWC), with the average value of 32.3 and 33.8 ℃, 8.4 and 9.8 d, 22.9 and 40.3 ℃·d, respectively. Due to climate warming, the high temperature during the flowering period of maize in China was characterized by long duration and wide range under the two climate scenarios, especially in SSP5-8.5. The largest temporal trend of HSI and AHSD occurred in Northern China (NC), under SSP1-2.6 and SSP5-8.5. The increasing trend of HSI were 0.97 and 1.16 ℃·(10a)-1, and the increasing trend of AHSD were 0.73 and 1.11 d·(10a)-1. The largest temporal trend of HDD occurred in HHH, under SSP1-2.6 and SSP5-8.5, with the increasing trend of 2.68 and 5.26 ℃·d·(10a)-1. 【Conclusion】In the future, the high temperature during the flowering period of maize in China was characterized by long duration and wide range, especially for HHH and NC. The former was mainly due to the high base temperature, and the latter was due to the large warming trend. The loss caused by high temperature could be reduced by selecting high temperature resistant varieties, adjusting the sowing window, adopting water, fertilizer, and chemical management measures.

Key words: maize, flowering period, heat stress intensity, accumulated heat stress days

Fig. 1

Study area and the locations of sub-regions Map content approval number: GSJING (2023)1240. The same as below"

Fig. 2

Average values of heat stress intensity (HSI) during flowering period of maize in China from 1981 to 2060"

Fig. 3

Changes of heat stress intensity (HSI), accumulated heat stress days (AHSD) and heat degree-days (HDD) during flowering period of maize in China from 2015 to 2060, compared with 1981 to 2014"

Fig. 4

Temporal trends of heat stress intensity (HSI) during flowering period of maize in China from 1981 to 2060 ER: The enter region; HHH: Huang-Huai-Hai; NC: Northern China; NWC: Northwest China; SC: Southern China; SWC: Southwest China. The same as below"

Fig. 5

Average accumulated heat stress days (AHSD) during flowering period of maize in China from 1981 to 2060"

Fig. 6

Temporal trends of accumulated heat stress days (AHSD) during flowering period of maize in China from 1981 to 2060"

Fig. 7

Average heat degree-days (HDD) during flowering period of maize in China from 1981 to 2060"

Fig. 8

Temporal trends of heat degree-days (HDD) during flowering period of maize in China from 1981 to 2060"

Fig. 9

Temporal trends of regional heat stress intensity (HSI), accumulated heat stress days (AHSD) and heat degree-days (HDD) during flowering period of maize in China from 1981 to 2060"

[1]
IPCC. Climate Change 2021:The Physical Science Basis. Cambridge: Cambridge University Press, 2021.
[2]
TAO F L, YOKOZAWA M, XU Y L, HAYASHI Y, ZHANG Z. Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agricultural and Forest Meteorology, 2006, 138(1/2/3/4): 82-92.

doi: 10.1016/j.agrformet.2006.03.014
[3]
TEIXEIRA E I, FISCHER G, VAN VELTHUIZEN H, WALTER C, EWERT F. Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 2013, 170: 206-215.

doi: 10.1016/j.agrformet.2011.09.002
[4]
赵东升, 高璇, 吴绍洪, 郑度. 基于自然分区的1960—2018年中国气候变化特征. 地球科学进展, 2020, 35(7): 750-760.
ZHAO D S, GAO X, WU S H, ZHENG D. Trend of climate variation in China from 1960 to 2018 based on natural regionalization. Advances in Earth Science, 2020, 35(7): 750-760. (in Chinese)
[5]
中华人民共和国国家统计局. 中国统计年鉴(2019). 北京: 中国统计出版社, 2020.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook of the tertiary industry (2019). Beijing: China Statistics Press, 2020. (in Chinese)
[6]
WANG Y Y, TAO H B, ZHANG P, HOU X F, SHENG D C, TIAN B J, WANG P, HUANG S B. Reduction in seed set upon exposure to high night temperature during flowering in maize. Physiologia Plantarum, 2020, 169(1): 73-82.

doi: 10.1111/ppl.v169.1
[7]
张保仁, 董树亭, 胡昌浩, 王空军. 高温对玉米籽粒淀粉合成及产量的影响. 作物学报, 2007, 33(1): 38-42.
ZHANG B R, DONG S T, HU C H, WANG K J. Effect of high air temperature during different growth stage on starch synthesis in grain and yield in maize (Zea mays L.). Acta Agronomica Sinica, 2007, 33(1): 38-42. (in Chinese)
[8]
任寒, 刘鹏, 董树亭, 张吉旺, 赵斌. 高温胁迫影响玉米生长发育的生理机制研究进展. 玉米科学, 2019, 27(5): 109-115.
REN H, LIU P, DONG S T, ZHANG J W, ZHAO B. Research advancements of effect of high temperature stress on growth and development of maize. Journal of Maize Sciences, 2019, 27(5): 109-115. (in Chinese)
[9]
徐欣莹, 邵长秀, 孙志刚, 龙步菊, 董宛麟. 高温胁迫对玉米关键生育期生理特性和产量的影响研究进展. 玉米科学, 2021, 29(2): 81-88, 96.
XU X Y, SHAO C X, SUN Z G, LONG B J, DONG W L. Research progress on the effect of heat stress on physiological characteristics of maize at key growth stage and the yield. Journal of Maize Sciences, 2021, 29(2): 81-88, 96. (in Chinese)
[10]
张吉旺. 光温胁迫对玉米产量和品质及其生理特性的影响[D]. 泰安: 山东农业大学, 2005.
ZHANG J W. Effects of light and temperature stress on physiological characteristics of yield and quality in maize (Zea mays L.)[D]. Taian: Shandong Agricultural University, 2005. (in Chinese)
[11]
张保仁. 高温对玉米产量和品质的影响及调控研究[D]. 泰安: 山东农业大学, 2003.
ZHANG B R. Studies on effect of high temperature on yield and quality and regulation in maize (Zea mays L.)[D]. Taian: Shandong Agricultural University, 2003. (in Chinese)
[12]
JIN Z N, ZHUANG Q L, TAN Z L, DUKES J S, ZHANG B Y, MELILLO J M. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Global Change Biology, 2016, 22(9): 3112-3126.

doi: 10.1111/gcb.13376 pmid: 27251794
[13]
湖北省气象局武汉区域气候中心,华中农业大学植物科学技术学院, 武汉市气象局. GB/T 21985-2008:中国气象行业标准—主要农作物高温危害温度指标. 北京: 中国国家标准化管理委员会, 2008: 5.
Wuhan Regional Climate Center, Hubei Meteorological Service, College of Plant Science & Technology of Hua Zhong Agricultural University,Wuhan Meteorological Service. Temperature index of high temperature harm of main crops: GB/T 21985-2008. Beijing: Standardization Administration, 2008: 5. (in Chinese)
[14]
王秀萍, 方文松, 杜子璇, 刘天学. 夏玉米花期高温热害时空分布特征. 玉米科学, 2021, 29(1): 61-68.
WANG X P, FANG W S, DU Z X, LIU T X. Spatiotemporal variation of flowering stage heat damage of summer maize. Journal of Maize Sciences, 2021, 29(1): 61-68. (in Chinese)
[15]
尹小刚, 王猛, 孔箐锌, 王占彪, 张海林, 褚庆全, 文新亚, 陈阜. 东北地区高温对玉米生产的影响及对策. 应用生态学报, 2015, 26(1): 186-198.
YIN X G, WANG M, KONG Q X, WANG Z B, ZHANG H L, CHU Q Q, WEN X Y, CHEN F. Impacts of high temperature on maize production and adaptation measures in Northeast China. Chinese Journal of Applied Ecology, 2015, 26(1): 186-198. (in Chinese)
[16]
陈怀亮, 李树岩. 气候变暖背景下河南省夏玉米花期高温灾害风险预估. 中国生态农业学报(中英文), 2020, 28(3): 337-348.
CHEN H L, LI S Y. Prediction of high temperature disaster risks during summer maize flowering under future climate warming background in Henan province. Chinese Journal of Eco-Agriculture, 2020, 28(3): 337-348. (in Chinese)
[17]
商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征. 作物学报, 2023, 49(1): 167-176.

doi: 10.3724/SP.J.1006.2023.23007
SHANG M F, SHI X Y, ZHAO J C, LI S, CHU Q Q. Spatiotemporal variation of high temperature stress in different regions of China under climate change. Acta Agronomica Sinica, 2023, 49(1): 167-176. (in Chinese)
[18]
韩湘玲. 作物生态学. 北京: 气象出版社, 1991.
HAN X L. Crop Ecology. Beijing: China Meteorological Press, 1991. (in Chinese)
[19]
杨镇, 才卓, 景希强. 东北玉米. 北京: 中国农业出版社, 2007.
YANG Z, CAI Z, JING X Q. Maize in Northeast Region of China. Beijing: China Agricul Ture Press, 2007. (in Chinese)
[20]
佟异亚. 中国玉米种植区划. 北京: 中国农业科技出版社, 1992.
TONG Y Y. Division of Maize Planting in China. Beijing: China Agricultural Scientech Press, 1992. (in Chinese)
[21]
郭春华, 朱秀芳, 张世喆, 唐明秀, 徐昆. 基于CMIP6的中国未来高温危险性变化评估. 地球信息科学学报, 2022, 24(7): 1391-1405.

doi: 10.12082/dqxxkx.2022.210491
GUO C H, ZHU X F, ZHANG S Z, TANG M X, XU K. Hazard changes assessment of future high temperature in China based on CMIP6. Journal of Geo-Information Science, 2022, 24(7): 1391-1405. (in Chinese)
[22]
董思言, 徐影, 周波涛, 侯美亭, 李柔珂, 於琍, 张永香. 基于CMIP5模式的中国地区未来高温灾害风险预估. 气候变化研究进展, 2014, 10(5): 365-369.
DONG S Y, XU Y, ZHOU B T, HOU M T, LI R K, YU L, ZHANG Y X. Projected risk of extreme heat in China based on CMIP5 models. Climate Change Research, 2014, 10(5): 365-369. (in Chinese)
[23]
全国农业区划委员会. 中国农业自然资源和农业区划. 北京: 中国农业出版社, 1991.
National Agricultural Division Committee. Agricultural Natural Resources and Agricultural Regionalization in China. Beijing: China Agricultural Press, 1991. (in Chinese)
[24]
翁宇威, 蔡闻佳, 王灿. 共享社会经济路径(SSPs)的应用与展望. 气候变化研究进展, 2020, 16(2): 215-222.
WENG Y W, CAI W J, WANG C. The application and future directions of the Shared Socioeconomic Pathways (SSPs). Climate Change Research, 2020, 16(2): 215-222. (in Chinese)
[25]
王璞. 农作物概论. 北京: 中国农业大学出版社, 2004.
WANG P. Introduction to Crops. Beijing: China Agricultural University Press, 2004. (in Chinese)
[26]
徐美玲. 温度对玉米花丝生活力的影响. 浙江农业科学, 2002, 43(3): 120-122.
XU M L. Effect of temperature on the viability of corn filaments. Journal of Zhejiang Agricultural Science, 2002, 43(3): 120-122. (in Chinese)
[27]
闫振华, 刘东尧, 贾绪存, 杨琴, 陈艺博, 董朋飞, 王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响. 中国农业科学, 2021, 54(17): 3592-3608.

doi: 10.3864/j.issn.0578-1752.2021.17.004
YAN Z H, LIU D Y, JIA X C, YANG Q, CHEN Y B, DONG P F, WANG Q. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.17.004
[28]
和骅芸, 胡琦, 潘学标, 马雪晴, 胡莉婷, 王晓晨, 何奇瑾. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析. 中国农业气象, 2020, 41(1): 1-15.
HE H Y, HU Q, PAN X B, MA X Q, HU L T, WANG X C, HE Q J. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China plain under climate change. Chinese Journal of Agrometeorology, 2020, 41(1): 1-15. (in Chinese)
[29]
赵福成, 景立权, 闫发宝, 陆大雷, 王桂跃, 陆卫平. 灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响. 作物学报, 2013, 39(9): 1644-1651.
ZHAO F C, JING L Q, YAN F B, LU D L, WANG G Y, LU W P. Effects of heat stress during grain filling on sugar accumulation and enzyme activity associated with sucrose metabolism in sweet corn. Acta Agronomica Sinica, 2013, 39(9): 1644-1651. (in Chinese)

doi: 10.3724/SP.J.1006.2013.01644
[30]
张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017, 50(11): 2061-2070.

doi: 10.3864/j.issn.0578-1752.2017.11.012
ZHANG P, CHEN G Y, GENG P, GAO Y, ZHENG L, ZHANG S S, WANG P. Effects of high temperature during grain filling period on superior and inferior kernels' development of different heat sensitive maize varieties. Scientia Agricultura Sinica, 2017, 50(11): 2061-2070. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.11.012
[31]
LIU B, LIU L L, TIAN L Y, CAO W X, ZHU Y, ASSENG S. Post-heading heat stress and yield impact in winter wheat of China. Global Change Biology, 2014, 20(2): 372-381.

doi: 10.1111/gcb.12442 pmid: 24259291
[32]
任国玉, 郭军, 徐铭志, 初子莹, 张莉, 邹旭凯, 李庆祥, 刘小宁. 近50年中国地面气候变化基本特征. 气象学报, 2005, 63(6): 942-956.
REN G Y, GUO J, XU M Z, CHU Z Y, ZHANG L, ZOU X K, LI Q X, LIU X N. Climate changes of China's mainland over the past half century. Acta Meteorologica Sinica, 2005, 63(6): 942-956. (in Chinese)
[33]
LOBELL D B, HAMMER G L, MCLEAN G, MESSINA C, ROBERTS M J, SCHLENKER W. The critical role of extreme heat for maize production in the United States. Nature Climate Change, 2013, 3(5): 497-501.

doi: 10.1038/nclimate1832
[34]
RISING J, DEVINENI N. Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5. Nature Communications, 2020, 11: 4991.

doi: 10.1038/s41467-020-18725-w pmid: 33020479
[35]
JIN H Y, CHEN X H, WU P, SONG C, XIA W J. Evaluation of spatial-temporal distribution of precipitation in mainland China by statistic and clustering methods. Atmospheric Research, 2021, 262: 105772.

doi: 10.1016/j.atmosres.2021.105772
[36]
DONG X, GUAN L, ZHANG P H, LIU X L, LI S J, FU Z J, TANG L, QI Z Y, QIU Z G, JIN C, HUANG S B, YANG H. Responses of maize with different growth periods to heat stress around flowering and early grain filling. Agricultural and Forest Meteorology, 2021, 303: 108378.

doi: 10.1016/j.agrformet.2021.108378
[37]
李明顺, 谢传晓, 张世煌. 提高玉米育种效率的技术途径与策略. 作物杂志, 2007(1): 4-7.
LI M S, XIE C X, ZHANG S H. Technical approaches and strategies to improve the efficiency of maize breeding. Crops, 2007(1): 4-7. (in Chinese)
[38]
SADRAS V O, VADEZ V, PURUSHOTHAMAN R, LAKE L, MARROU H. Unscrambling confounded effects of sowing date trials to screen for crop adaptation to high temperature. Field Crops Research, 2015, 177: 1-8.

doi: 10.1016/j.fcr.2015.02.024
[39]
SUN H Y, ZHANG X Y, CHEN S Y, PEI D, LIU C M. Effects of harvest and sowing time on the performance of the rotation of winter wheat- summer maize in the North China Plain. Industrial Crops and Products, 2007, 25(3): 239-247.

doi: 10.1016/j.indcrop.2006.12.003
[40]
严旖旎. 吐丝期喷施外源激素对花后高温下糯玉米产量和品质的影响[D]. 扬州: 扬州大学, 2021.
YAN Y N. Effects of spraying exogenous hormones at silking stage on the grain yield and quality under post-silking heat stress for waxy maize[D]. Yangzhou: Yangzhou University, 2021. (in Chinese)
[41]
李明德, 郑圣先. 钾素营养对玉米生长及抗旱性的影响. 土壤肥料, 1996(4): 10-12.
LI M D, ZHENG S X. Effects of potassium nutrition on growth and drought resistance of maize. Soils and Fertilizers, 1996(4): 10-12. (in Chinese)
[42]
李芳贤, 王金林, 李玉兰, 刁希强. 锌对夏玉米生长发育及产量影响的研究. 玉米科学, 1999, 7(1): 72-76.
LI F X, WANG J L, LI Y L, DIAO X Q. Study on influence of zinc to the summer corn growth, development and yield. Journal of Maize Sciences, 1999, 7(1): 72-76. ( in Chinese)
[43]
钟哲, 贾志峰, 王智, 卢玉东, 任涛, 陈瑾, 王小平. 干旱半干旱地区双垄地布覆盖对土壤水分的影响. 干旱地区农业研究, 2020, 38(2): 21-29.
ZHONG Z, JIA Z F, WANG Z, LU Y D, REN T, CHEN J, WANG X P. Effects of double ridge geotextile mulching on soil moisture in arid and semi-arid regions. Agricultural Research in the Arid Areas, 2020, 38(2): 21-29. (in Chinese)
[44]
王慧杰, 冯瑞云, 张志军, 孟晋建, 南建福. 不同土壤水分抑蒸剂保水效果研究. 华北农学报, 2009, 24(6): 60-64.

doi: 10.7668/hbnxb.2009.06.012
WANG H J, FENG R Y, ZHANG Z J, MENG J J, NAN J F. Effect of evaporation-inhibiting agents on soil water retention. Acta Agriculturae Boreali-Sinica, 2009, 24(6): 60-64. (in Chinese)
[45]
高丽红, 李式军. 适宜根际温度缓解生菜地上部高温伤害的机理. 南京农业大学学报, 1996, 19(2): 34-39.
GAO L H, LI S J. Mechanism of optimal root-zone temperature relieving heat injury in shoot of lettuce. Journal of Nanjing Agricultural University, 1996, 19(2): 34-39. (in Chinese)
[46]
郭天财, 王晨阳, 朱云集, 王化岑, 李九星, 周继泽. 后期高温对冬小麦根系及地上部衰老的影响. 作物学报, 1998, 24(6): 957-962.
GUO T C, WANG C Y, ZHU Y J, WANG H C, LI J X, ZHOU J Z. Effects of high temperature on the senescence of root and top-partial of wheat plant in the later stage. Acta Agronomica Sinica, 1998, 24(6): 957-962. (in Chinese)
[47]
崔丽娜, 董树亭. 不同氮肥处理下高温胁迫对夏玉米产量及叶片超微构造的影响. 玉米科学, 2020, 28(1): 92-97.
CUI L N, DONG S T. Effects of heat stress on grain yield and leaf anatomical structure in summer maize in different nitrogen fertilizer application. Journal of Maize Sciences, 2020, 28(1): 92-97. (in Chinese)
[48]
韦丹, 曾晓豪, 罗宁, 王丽君, 孟庆锋, 王璞. 京津冀地区极端高温发生对夏玉米产量的影响. 中国农业大学学报, 2021, 26(1): 1-17.
WEI D, ZENG X H, LUO N, WANG L J, MENG Q F, WANG P. Effects of extreme high temperature on summer maize yield in Beijing-Tianjin-Hebei region. Journal of China Agricultural University, 2021, 26(1): 1-17. (in Chinese)
[1] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[2] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[3] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[4] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[7] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[8] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[9] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[10] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[11] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[12] SHEN Zhe, HAN TianFu, QU XiaoLin, MA ChangBao, WANG HuiYing, LIU KaiLou, HUANG Jing, DU JiangXue, ZHANG Lu, LIU LiSheng, LI JiWen, ZHANG HuiMin. Spatial-Temporal Variation of Relative Yield Gap of Wheat and Maize and Its Response to Nitrogen Fertilizer in China [J]. Scientia Agricultura Sinica, 2023, 56(14): 2724-2737.
[13] LI Jin, REN LiJun, LI XiaoYu, BI RunXue, JIN XinXin, YU Na, ZHANG YuLing, ZOU HongTao, ZHANG YuLong. Effects of Different Straw Returning Patterns on Soil CO2 Emission and Carbon Balance in Maize Field [J]. Scientia Agricultura Sinica, 2023, 56(14): 2738-2750.
[14] WU JinZhi, HUANG XiuLi, HOU YuanQuan, TIAN WenZhong, LI JunHong, ZHANG Jie, LI Fang, LÜ JunJie, YAO YuQing, FU GuoZhan, HUANG Ming, LI YouJun. Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System [J]. Scientia Agricultura Sinica, 2023, 56(11): 2078-2091.
[15] ZHENG ChunYu, SHA ShanYi, ZHU Lin, WANG ShaoJie, FENG GuoZhong, GAO Qiang, WANG Yin. Optimizing Nitrogen Fertilizer Rate for High-Yield Maize in Black Soil Region Based on Ecological and Social Benefits [J]. Scientia Agricultura Sinica, 2023, 56(11): 2129-2140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!