Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (14): 2738-2750.doi: 10.3864/j.issn.0578-1752.2023.14.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Different Straw Returning Patterns on Soil CO2 Emission and Carbon Balance in Maize Field

LI Jin(), REN LiJun, LI XiaoYu, BI RunXue, JIN XinXin, YU Na, ZHANG YuLing, ZOU HongTao(), ZHANG YuLong   

  1. College of Land and Environment, Shenyang Agricultural University/Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Affairs/National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866
  • Received:2022-07-08 Accepted:2022-11-14 Online:2023-07-16 Published:2023-07-21
  • Contact: ZOU HongTao

Abstract:

【Objective】 The effects of different straw returning patterns on soil carbon dioxide (CO2) emission characteristics and carbon balance were discussed, which provided a scientific basis for carbon (C) sequestration and emission reduction as well as the selection of straw returning patterns in Northeast China. 【Method】 A field micro-plot experiment were conducted with maize as the experimental crop, and three straw returning patterns were set up, including straw shallow returning (QH), straw deep returning (SH), and straw mulching (FG). No straw returning (CK) was used as the control treatment. The LI-8100A automatic soil C flux tester was used to monitor soil CO2 emission characteristics under different straw returning patterns during the maize growth period. Effects of soil temperature, soil moisture content, pH, MBC, available nutrients and total nutrients of nitrogen, phosphorus and potassium on soil CO2 emissions were analyzed, and soil carbon balance was investigated too. 【Result】 During the maize season, soil CO2 emission rates showed a trend of first increasing and then decreasing under different straw returning patterns. The cumulative soil CO2 emissions were as follows: FG>QH>SH>CK treatment. Compared with SH treatment, the cumulative soil CO2 emissions under FG and QH treatments increased by 14.0% and 6.4%, respectively. There was a significant difference between the treatments (P<0.05). The single factor model fitting of soil CO2 emission rates, soil temperature and soil moisture content under different straw returning patterns showed a quadratic function correlation, and reached a significant level (P<0.05), soil temperature could explain the variation of soil CO2 emission rate of 68.2%-73.7%, and soil moisture content could explain 21.3%-37.5%. However, the two-factor composite model of soil temperature and soil moisture content could better explain the variation of soil CO2 emission rate, with an explanation of 78.5%-82.8%. Correlation analysis showed that cumulative CO2 emissions were significantly correlated with available potassium and MBC (P<0.01), and significantly correlated with soil organic matter, available nitrogen, total nitrogen, and pH (P<0.05). The soil carbon balance was positive under different straw returning patterns, which were the "sink" of atmospheric carbon dioxide. The soil carbon balance and carbon sequestration potential under the SH treatment were significantly higher than the QH and FG treatments by increased of 23.4%, 475.7% and 7.1%, 30.7% (P<0.05), respectively. Compared with other treatments, the SH treatment showed a strong carbon "sink" function. In the two-year harvest period, straw returning treatments significantly increased maize yield, SH treatment had the highest maize yield, but there was no significant difference with QH and FG treatments. 【Conclusion】 Therefore, under the conditions of this experiment, taking into account the carbon sequestration and emission reduction effect and yield, SH was a better straw returning pattern compared with the three patterns.

Key words: straw returning patterns, soil CO2 emission, soil temperature, soil moisture content, maize yield

Table 1

Experimental treatment"

处理Treatment 操作Operation
秸秆浅层还田
Straw shallow returning (QH)
20—40 cm土层翻动后填回,0—20 cm土层翻动并与秸秆混合
The 20-40 cm soil layer was turned and filled back, the 0-20 cm soil layer was turned and mixed with straw
秸秆深层还田
Straw deep returning (SH)
20—40 cm土层翻动并与秸秆混合,0—20 cm土层翻动后填回
The 20-40 cm soil layer was turned and mixed with straw, the 0-20 cm soil layer was turned and filled back
秸秆覆盖还田
Straw mulching (FG)
20—40和0—20 cm土层翻动后分层填回,表面覆盖秸秆
The 20-40 cm soil layer and the 0-20 cm soil layer were turned and filled back in layers, the surface was covered with straw
无秸秆还田
No straw returning (CK)
20—40和0—20 cm土层翻动后分层填回
The 20-40 cm soil layer and the 0-20 cm soil layer were turned and filled back in layers

Fig. 1

Dynamic changes of soil CO2 emission rates under different straw returning patterns"

Fig. 2

Cumulative emission of soil CO2 under different straw returning patterns Different letters represent significant difference (P<0.05)"

Fig. 3

Dynamic changes of soil temperature under different straw returning patterns"

Fig. 4

Model analysis with soil temperature and soil CO2 emission rates under different straw returning patterns *Represent significant correlation at the level of 0.05 (n=60). The same as below"

Fig. 5

Dynamic changes of soil moisture content under different straw returning patterns"

Fig. 6

Model analysis with soil moisture content and soil CO2 emission rates under different straw returning patterns"

Fig. 7

Effects of soil temperature and moisture content on soil CO2 emission rates under different straw returning patterns"

Table 2

Fitting parameters of soil temperature and soil moisture content composite model under different straw returning patterns"

处理 Treatment z a b c d R2
CK -23.785 0.556 1.610 -0.011 -0.029 0.820
QH -17.005 0.489 1.342 -0.009 -0.026 0.785
FG -14.226 -0.007 1.716 0.002 -0.035 0.828
SH -21.720 0.489 1.734 -0.010 -0.035 0.821

Fig. 8

Correlation analysis of soil CO2 cumulative emission and soil physicochemical properties"

Table 3

Carbon balance under different straw returning patterns during maize season"

处理
Treatment
NPPa
(kg·hm-2)
NPPC
(kg·hm-2)
RmC
(kg·hm-2)
NEPC
(kg·hm-2)
Cs
CK 8226.67±122.20c 5464.85±81.17c 3877.45±25.10d 1587.40±97.45b 1.22±0.02a
QH 10133.33±115.47a 6731.43±76.70a 5207.75±59.70b 1523.67±67.09b 1.12±0.01b
FG 8893.33±100.66b 5907.71±66.86b 5581.18±28.03a 326.53±40.07c 0.92±0.01c
SH 10200.00±200.10a 6775.72±132.85a 4895.84±20.19c 1879.87±124.66a 1.20±0.02a

Table 4

Maize yield and its components under different straw returning patterns"

年份
Year
处理
Treatment
穗行数
Kernel row number (No.)
穗粒数
Kernel number (No.)
百粒重
100-grain weight (g)
产量
Yield (kg·hm-2)
2020 CK 17.20±0.35a 576.15±5.38c 30.37±0.73c 8201.12±145.50c
QH 17.50±0.50a 634.42±14.40b 31.34±0.81bc 9055.20±67.39b
FG 17.85±0.79a 685.02±10.61a 32.83±0.65b 10007.21±346.17a
SH 18.20±0.34a 689.23±15.19a 34.35±0.98a 10117.79±99.42a
2021 CK 17.22±1.07a 694.67±10.26b 29.69±0.81c 11466.67±611.01b
QH 17.67±0.33a 727.33±10.01a 31.13±0.37b 13066.67±115.47a
FG 17.56±0.51a 718.00±10.53a 31.86±0.72b 12933.33±230.94a
SH 18.33±0.66a 737.67±12.89a 33.17±0.24a 13533.33±115.47a
[1]
PERKINS K M, MUNGUIA N, ELLENBECKER M, MOURE- ERASO R, VELAZQUEZ L. COVID-19 pandemic lessons to facilitate future engagement in the global climate crisis. Journal of Cleaner Production, 2021, 290: 125178.

doi: 10.1016/j.jclepro.2020.125178
[2]
LINQUIST B, VAN GROENIGEN K J, ADVIENTO-BORBE M A, PITTELKOW C, VAN KESSEL C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology, 2012, 18(1): 194-209.

doi: 10.1111/j.1365-2486.2011.02502.x
[3]
武开阔, 张哲, 武志杰, 冯良山, 宫平, 白伟, 冯晨, 张丽莉. 不同秸秆还田量和氮肥配施对玉米田土壤CO2排放的影响. 应用生态学报, 2022, 33(3): 664-670.

doi: 10.13287/j.1001-9332.202203.013
WU K K, ZHANG Z, WU Z J, FENG L S, GONG P, BAI W, FENG C, ZHANG L L. Effects of different amounts of straw return and nitrogen fertilizer application on soil CO2 emission from maize fields. Chinese Journal of Applied Ecology, 2022, 33(3): 664-670. (in Chinese)
[4]
靳玉婷, 李先藩, 蔡影, 胡宏祥, 刘运峰, 付思伟, 张博睿. 秸秆还田配施化肥对稻-油轮作土壤酶活性及微生物群落结构的影响. 环境科学, 2021, 42(8): 3985-3996.
JIN Y T, LI X F, CAI Y, HU H X, LIU Y F, FU S W, ZHANG B R. Effects of straw returning with chemical fertilizer on soil enzyme activities and microbial community structure in rice-rape rotation. Environmental Science, 2021, 42(8): 3985-3996. (in Chinese)
[5]
ZHANG W S, LI H, LIANG L Y, WANG S X, LAKSHMANAN P, JIANG Z C, LIU C Y, YANG H, ZHOU M L, CHEN X P. An integrated straw-tillage management increases maize crop productivity, soil organic carbon, and net ecosystem carbon budget. Agriculture, Ecosystems & Environment, 2022, 340: 108175.

doi: 10.1016/j.agee.2022.108175
[6]
ZUO S S, WU D, DU Z L, XU C C, WU W L. Effects of white-rot fungal pretreatment of corn straw return on greenhouse gas emissions from the North China Plain soil. Science of the Total Environment, 2022, 807: 150837.

doi: 10.1016/j.scitotenv.2021.150837
[7]
YANG X, MENG J, LAN Y, CHEN W F, YANG T X, YUAN J, LIU S N, HAN J. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agriculture, Ecosystems & Environment, 2017, 240: 24-31.

doi: 10.1016/j.agee.2017.02.001
[8]
白银萍, 海江波, 杨刚, 黄晶, 董发勤, 刘明学, 聂小琴. 稻田土壤呼吸及酶活性对不同秸秆还田方式的响应. 应用与环境生物学报, 2017, 23(1): 28-32.
BAI Y P, HAI J B, YANG G, HUANG J, DONG F Q, LIU M X, NIE X Q. Effect of the straw returning pattern on soil respiration and enzyme activities. Chinese Journal of Applied and Environmental Biology, 2017, 23(1): 28-32. (in Chinese)
[9]
WANG H, WANG S L, YU Q, ZHANG Y J, WANG R, LI J, WANG X L. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. Journal of Environmental Management, 2020, 261: 110261.

doi: 10.1016/j.jenvman.2020.110261
[10]
WU L F, LI B B, QIN Y, GREGORICH E. Soil CO2 emission and carbon budget of a wheat/maize annual double-cropped system in response to tillage and residue management in the North China Plain. International Journal of Agricultural Sustainability, 2017, 15(3): 253-263.

doi: 10.1080/14735903.2017.1288518
[11]
殷文, 史倩倩, 郭瑶, 冯福学, 赵财, 于爱忠, 柴强. 秸秆还田、一膜两年用及间作对农田碳排放的短期效应. 中国生态农业学报, 2016, 24(6): 716-724.
YIN W, SHI Q Q, GUO Y, FENG F X, ZHAO C, YU A Z, CHAI Q. Short-term response of farmland carbon emission to straw return, two-year plastic film mulching and intercropping. Chinese Journal of Eco-Agriculture, 2016, 24(6): 716-724. (in Chinese)
[12]
DOSSOU-YOVO E R, BRÜGGEMANN N, AMPOFO E, IGUE A M, JESSE N, HUAT J, AGBOSSOU E K. Combining no-tillage, rice straw mulch and nitrogen fertilizer application to increase the soil carbon balance of upland rice field in northern Benin. Soil and Tillage Research, 2016, 163: 152-159.

doi: 10.1016/j.still.2016.05.019
[13]
刘平奇, 张梦璇, 王立刚, 王迎春. 深松秸秆还田措施对东北黑土土壤呼吸及有机碳平衡的影响. 农业环境科学学报, 2020, 39(5): 1150-1160.
LIU P Q, ZHANG M X, WANG L G, WANG Y C. Effects of subsoiling and straw return on soil respiration and soil organic carbon balance in black soil of northeast China. Journal of Agro-Environment Science, 2020, 39(5): 1150-1160. (in Chinese)
[14]
马玲, 王丹蕾, 韩昌东, 范丽娟, 金鑫鑫, 叶旭红, 邹洪涛. 秸秆还田方式对东北农田土壤NH3挥发和N2O排放的影响. 环境科学研究, 2020, 33(10): 2351-2360.
MA L, WANG D L, HAN C D, FAN L J, JIN X X, YE X H, ZOU H T. Effects of straw returning mode on NH3 volatilization and N2O emission of farmland in northeast China. Research of Environmental Sciences, 2020, 33(10): 2351-2360. (in Chinese)
[15]
张晓龙, 沈冰, 权全, 董樑, 田开迪. 渭河平原农田冬小麦土壤呼吸及其影响因素. 应用生态学报, 2016, 27(8): 2551-2560.

doi: 10.13287/j.1001-9332.201608.024
ZHANG X L, SHEN B, QUAN Q, DONG L, TIAN K D. Soil respiration rates and its affecting factors in winter wheat land in the Weihe Plain, Northwest China. Chinese Journal of Applied Ecology, 2016, 27(8): 2551-2560. (in Chinese)
[16]
LI J H, LI H, ZHANG Q, SHAO H B, GAO C H, ZHANG X Z. Effects of fertilization and straw return methods on the soil carbon pool and CO2 emission in a reclaimed mine spoil in Shanxi Province, China. Soil and Tillage Research, 2019, 195: 104361.

doi: 10.1016/j.still.2019.104361
[17]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[18]
ZHAO X M, HE L, ZHANG Z D, WANG H B, ZHAO L P. Simulation of accumulation and mineralization (CO2 release) of organic carbon in chernozem under different straw return ways after corn harvesting. Soil and Tillage Research, 2016, 156: 148-154.

doi: 10.1016/j.still.2015.11.001
[19]
TIAN P, SUI P X, LIAN H L, WANG Z Y, MENG G X, SUN Y, WANG Y Y, SU Y H, MA Z Q, QI H, JIANG Y. Maize straw returning approaches affected straw decomposition and soil carbon and nitrogen storage in northeast China. Agronomy, 2019, 9(12): 818.

doi: 10.3390/agronomy9120818
[20]
XIA L L, WANG S W, YAN X Y. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China. Agriculture, Ecosystems & Environment, 2014, 197: 118-127.

doi: 10.1016/j.agee.2014.08.001
[21]
HU Z H, CUI H L, CHEN S T, SHEN S H, LI H M, YANG Y P, LI C Z. Soil respiration and N2O flux response to UV-B radiation and straw incorporation in a soybean-winter wheat rotation system. Water, Air, & Soil Pollution, 2013, 224(1): 1394.
[22]
WU L, ZHANG W J, WEI W J, HE Z L, KUZYAKOV Y, BOL R, HU R G. Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biology and Biochemistry, 2019, 135: 383-391.

doi: 10.1016/j.soilbio.2019.06.003
[23]
闫翠萍, 张玉铭, 胡春胜, 董文旭, 王玉英, 李晓欣, 秦树平. 不同耕作措施下小麦-玉米轮作农田温室气体交换及其综合增温潜势. 中国生态农业学报, 2016, 24(6): 704-715.
YAN C P, ZHANG Y M, HU C S, DONG W X, WANG Y Y, LI X X, QIN S P. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns. Chinese Journal of Eco-Agriculture, 2016, 24(6): 704-715. (in Chinese)
[24]
HEITKÖTTER J, HEINZE S, MARSCHNER B. Relevance of substrate quality and nutrients for microbial C-turnover in top- and subsoil of a Dystric Cambisol. Geoderma, 2017, 302: 89-99.

doi: 10.1016/j.geoderma.2017.04.029
[25]
朱晓晴, 安晶, 马玲, 陈松岭, 李嘉琦, 邹洪涛, 张玉龙. 秸秆还田深度对土壤温室气体排放及玉米产量的影响. 中国农业科学, 2020, 53(5): 977-989. doi: 10.3864/j.issn.0578-1752.2020.05.010.

doi: 10.3864/j.issn.0578-1752.2020.05.010
ZHU X Q, AN J, MA L, CHEN S L, LI J Q, ZOU H T, ZHANG Y L. Effects of different straw returning depths on soil greenhouse gas emission and maize yield. Scientia Agricultura Sinica, 2020, 53(5): 977-989. doi: 10.3864/j.issn.0578-1752.2020.05.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.05.010
[26]
郭海斌, 张军刚, 王文文, 冯晓曦, 许波, 王成业, 白冬, 杨永乾. 耕作方式与秸秆还田对土壤呼吸及其影响因素的影响. 陕西农业科学, 2018, 64(6): 1-3.
GUO H B, ZHANG J G, WANG W W, FENG X X, XU B, WANG C Y, BAI D, YANG Y Q. Effects of tillage methods and straw returning on soil respiration and its influencing factors. Shaanxi Journal of Agricultural Sciences, 2018, 64(6): 1-3. (in Chinese)
[27]
于建光, 李辉信, 胡锋, 沈英. 施用秸秆及接种蚯蚓对土壤颗粒有机碳及矿物结合有机碳的影响. 生态环境, 2006, 15(3): 606-610.
YU J G, LI H X, HU F, SHEN Y. Effects of straw application and earthworm inoculation on soil particulate organic carbon and mineral-associated organic carbon. Ecology and Environment, 2006, 15(3): 606-610. (in Chinese)
[28]
ZHANG H, LIANG S, WANG Y H, LIU S W, SUN H D. Greenhouse gas emissions of rice straw return varies with return depth and soil type in paddy systems of Northeast China. Archives of Agronomy and Soil Science, 2021, 67(12): 1591-1602.

doi: 10.1080/03650340.2020.1800644
[29]
王维钰, 乔博, Kashif AKHTAR, 袁率, 任广鑫, 冯永忠. 免耕条件下秸秆还田对冬小麦-夏玉米轮作系统土壤呼吸及土壤水热状况的影响. 中国农业科学, 2016, 49(11): 2136-2152. doi: 10.3864/j.issn.0578-1752.2016.11.010.

doi: 10.3864/j.issn.0578-1752.2016.11.010
WANG W Y, QIAO B, AKHTAR K, YUAN S, REN G X, FENG Y Z. Effects of straw returning to field on soil respiration and soil water heat in winter wheat-summer maize rotation system under no tillage. Scientia Agricultura Sinica, 2016, 49(11): 2136-2152. doi: 10.3864/j.issn.0578-1752.2016.11.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.11.010
[30]
陈全胜, 李凌浩, 韩兴国, 董云社, 王智平, 熊小刚, 阎志丹. 土壤呼吸对温度升高的适应. 生态学报, 2004, 24(11): 2649-2655.
CHEN Q S, LI L H, HAN X G, DONG Y S, WANG Z P, XIONG X G, YAN Z D. Acclimatization of soil respiration to warming. Acta Ecologica Sinica, 2004, 24(11): 2649-2655. (in Chinese)
[31]
XU M, QI Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 2001, 7(6): 667-677.

doi: 10.1046/j.1354-1013.2001.00435.x
[32]
DONG W Y, LIU E K, WANG J B, YAN C R, LI J, ZHANG Y Q. Impact of tillage management on the short- and long-term soil carbon dioxide emissions in the dryland of Loess Plateau in China. Geoderma, 2017, 307: 38-45.

doi: 10.1016/j.geoderma.2017.07.036
[33]
LI L J, YOU M Y, SHI H A, DING X L, QIAO Y F, HAN X Z. Soil CO2 emissions from a cultivated Mollisol: effects of organic amendments, soil temperature, and moisture. European Journal of Soil Biology, 2013, 55: 83-90.

doi: 10.1016/j.ejsobi.2012.12.009
[34]
DING W X, YU H Y, CAI Z C, HAN F X, XU Z H. Responses of soil respiration to N fertilization in a loamy soil under maize cultivation. Geoderma, 2010, 155(3/4): 381-389.

doi: 10.1016/j.geoderma.2009.12.023
[35]
LELLEI-KOVÁCS E, KOVÁCS-LÁNG E, BOTTA-DUKÁT Z, KALAPOS T, EMMETT B, BEIER C. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. European Journal of Soil Biology, 2011, 47(4): 247-255.

doi: 10.1016/j.ejsobi.2011.05.004
[36]
DILUSTRO J J, COLLINS B, DUNCAN L S, CRAWFORD C. Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. Forest Ecology and Management, 2005, 204(1): 87-97.

doi: 10.1016/j.foreco.2004.09.001
[37]
MAESTRE F T, CORTINA J. Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology, 2003, 23(3): 199-209.

doi: 10.1016/S0929-1393(03)00050-7
[38]
GOU Z W, YIN W, CHAI Q. Straw and residual film management enhances crop yield and weakens CO2 emissions in wheat-maize intercropping system. Scientific Reports, 2021, 11: 14077.

doi: 10.1038/s41598-021-93497-x
[39]
葛高飞, 梁永超. 玉米生长过程中施肥对土壤呼吸和微生物量碳的影响. 中国农学通报, 2011, 27(18): 73-78.
GE G F, LIANG Y C. Effect of fertilization on soil respiration and microbial biomass carbon during maize growth period. Chinese Agricultural Science Bulletin, 2011, 27(18): 73-78. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2011-0529
[40]
孙美佳, 周志勇, 王勇强, 沈颖, 夏威. 有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响. 南京林业大学学报(自然科学版), 2023, 47(1): 67-75.
SUN M J, ZHOU Z Y, WANG Y Q, SHEN Y, XIA W. The effect of organic matter addition on soil respiration and carbon component in Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(1): 67-75. (in Chinese)
[41]
陈仕阳, 杨荣, 苏永中, 杜泽玉. 河西绿洲农田土壤呼吸特征及其对长期施肥的响应. 中国沙漠, 2022, 42(3): 178-186.

doi: 10.7522/j.issn.1000-694X.2021.00147
CHEN S Y, YANG R, SU Y Z, DU Z Y. Characteristics of soil respiration in farmland of Hexi oasis and its response to long-term fertilization. Journal of Desert Research, 2022, 42(3): 178-186. (in Chinese)

doi: 10.7522/j.issn.1000-694X.2021.00147
[42]
WANG J L, TENG D X, HE X M, QIN L, YANG X D, LV G H. Spatial non-stationarity effects of driving factors on soil respiration in an arid desert region. Catena, 2021, 207: 105617.

doi: 10.1016/j.catena.2021.105617
[43]
张俊丽, Sikander Khan Tanveer, 温晓霞, 陈月星, 高明博, 刘杨, 廖允成. 不同耕作方式下旱作玉米田土壤呼吸及其影响因素. 农业工程学报, 2012, 28(18): 192-199.
ZHANG J L, TANVEER S K, WEN X X, CHEN Y X, GAO M B, LIU Y, LIAO Y C. Soil respiration and its affecting factors in dry-land maize field under different tillage systems. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(18): 192-199. (in Chinese)
[44]
GAO X, GU F X, HAO W P, MEI X R, LI H R, GONG D Z, MAO L L, ZHANG Z G. Carbon budget of a rainfed spring maize cropland with straw returning on the Loess Plateau, China. Science of the Total Environment, 2017, 586: 1193-1203.

doi: 10.1016/j.scitotenv.2017.02.113
[45]
WANG Y Y, HU C S, DONG W X, LI X X, ZHANG Y M, QIN S P, OENEMA O. Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain. Agriculture, Ecosystems & Environment, 2015, 206: 33-45.

doi: 10.1016/j.agee.2015.03.016
[46]
BUYSSE P, ROISIN C, AUBINET M. Fifty years of contrasted residue management of an agricultural crop: impacts on the soil carbon budget and on soil heterotrophic respiration. Agriculture, Ecosystems & Environment, 2013, 167: 52-59.

doi: 10.1016/j.agee.2013.01.006
[47]
LIU C, LU M, CUI J, LI B, FANG C M. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biology, 2014, 20(5): 1366-1381.

doi: 10.1111/gcb.12517 pmid: 24395454
[48]
WANG X K, LU F, HAN B, OUYANG Z. Carbon sequestration by cropland soil in China:potential and feasibilty. IOP Conference Series: Earth and Environmental Science, 2009, 6(24): 242041.
[49]
张莉, 王婧, 逄焕成, 张珺穜, 郭建军, 董国豪. 短期秸秆颗粒还田对小麦-玉米系统作物产量与土壤呼吸的影响. 应用生态学报, 2018, 29(2): 565-572.

doi: 10.13287/j.1001-9332.201802.030
ZHANG L, WANG J, PANG H C, ZHANG J T, GUO J J, DONG G H. Effects of short-term granulated straw incorporation on grain yield and soil respiration in a winter wheat-summer maize cropping system. Chinese Journal of Applied Ecology, 2018, 29(2): 565-572. (in Chinese)

doi: 10.13287/j.1001-9332.201802.030
[50]
LI X H, WANG S X, DUAN L, HAO J M, LI C, CHEN Y S, YANG L. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environmental Science & Technology, 2007, 41(17): 6052-6058.

doi: 10.1021/es0705137
[1] YU Ru, SONG JiaShen, ZHANG HongYuan, CHANG FangDi, WANG YongQing, WANG XiQuan, WANG Jing, WANG WeiNi, LI YuYi. Effects of Straw Interlayer Combined with Spring Irrigation on Saline- Alkali Soil Respiration and Its Temperature Sensitivity in Hetao Irrigation District [J]. Scientia Agricultura Sinica, 2023, 56(12): 2341-2353.
[2] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[3] WANG GuoLi,CHANG FangDi,ZHANG HongYuan,LU Chuang,SONG JiaShen,WANG Jing,PANG HuanCheng,LI YuYi. Effects of Straw Interlayer with Different Thickness on Saline-Alkali Soil Temperature, Water Content, and Sunflower Yield in Hetao Irrigation Area [J]. Scientia Agricultura Sinica, 2021, 54(19): 4155-4168.
[4] ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989.
[5] XueKe PU,ChunHua WU,YouMing MIAN,FangFang MIAO,XianQing HOU,Rong LI. Effects of Different Mulching Patterns on Growth of Potato and Characteristics of Soil Water and Temperature in Dry Farmland [J]. Scientia Agricultura Sinica, 2020, 53(4): 734-747.
[6] DENG HaoLiang,ZHANG HengJia,XIAO Rang,ZHANG YongLing,TIAN JianLiang,LI FuQiang,WANG YuCai,ZHOU Hong,LI Xuan. Effects of Different Covering Planting Patterns on Soil Moisture, Temperature Characteristics and Maize Yield in Semi-Arid Region of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(2): 273-287.
[7] ZHANG JianHua,GUO RuiFeng,CAO ChangLin,BAI WenBin. Effects of Black Full Film Mulching on Soil Temperature and Humidity and Weed Control in Root Zone of Sorghum [J]. Scientia Agricultura Sinica, 2019, 52(22): 4129-4138.
[8] YaJing XI,DongYang LIU,JunYu WANG,XuePing WU,XiaoXiu LI,YinKun LI,BiSheng WANG,MengNi ZHANG,XiaoJun SONG,ShaoWen HUANG. Effect of Organic Partial Replacement of Inorganic Fertilizers on N2O Emission in Greenhouse Soil [J]. Scientia Agricultura Sinica, 2019, 52(20): 3625-3636.
[9] YunPeng HOU,LiChun WANG,Qian LI,CaiXia YIN,YuBo QIN,Meng WANG,YongJun WANG,LiLi KONG. Research on Optimum Phosphorus Fertilizer Rate Based on Maize Yield and Phosphorus Balance in Soil Under Film Mulched Drip Irrigation Conditions [J]. Scientia Agricultura Sinica, 2019, 52(20): 3573-3584.
[10] YunPeng HOU,LiLi KONG,HongGuang CAI,HuiTao LIU,YuShan GAO,YongJun WANG,LiChun WANG. The Accumulation and Distribution Characteristics on Dry Matter and Nutrients of High-Yielding Maize Under Drip Irrigation and Fertilization Conditions in Semi-Arid Region of Northeastern China [J]. Scientia Agricultura Sinica, 2019, 52(20): 3559-3572.
[11] LongLong SUI,JingShan TIAN,HeSheng YAO,PengPeng ZHANG,FuBin LIANG,Jin WANG,WangFeng ZHANG. Effects of Different Sowing Dates on Emergence Rates and Seedling Growth of Cotton Under Mulched Drip Irrigation in Xinjiang [J]. Scientia Agricultura Sinica, 2018, 51(21): 4040-4051.
[12] DU Bin, HU XiaoTao, WANG WenE, MA LiHua, ZHOU ShiWei. Stem Flow Influencing Factors Sensitivity Analysis and Stem Flow Model Applicability in Filling Stage of Alternate Furrow Irrigated Maize [J]. Scientia Agricultura Sinica, 2018, 51(2): 233-245.
[13] WU Yang, JIA ZhiKuan, BIAN ShaoFeng, WANG YongJun. Regulation Effects of Different Mulching Patterns During the Whole Season on Soil Water and Temperature in the Maize Field of Loess Plateau [J]. Scientia Agricultura Sinica, 2018, 51(15): 2872-2885.
[14] WANG Yin, GUO Dan, GAO Qiang, LI CuiLan, YAN Li, FENG GuoZhong, LIU ZhenGang, FANG Jie. Differences in Maize Yield Responses to Phosphorous Fertilizer in Different Ecological Zones of Jilin Province [J]. Scientia Agricultura Sinica, 2017, 50(9): 1635-1645.
[15] ZHU Lin, LI ShiQing. Effect of Soil Surface Mulching on the Maize Source-Sink Relationship of Nitrogen Accumulation and Dry Matter Transfer [J]. Scientia Agricultura Sinica, 2017, 50(13): 2528-2537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!